2 |
7u83 |
1 |
/*
|
|
|
2 |
Crown Copyright (c) 1997
|
|
|
3 |
|
|
|
4 |
This TenDRA(r) Computer Program is subject to Copyright
|
|
|
5 |
owned by the United Kingdom Secretary of State for Defence
|
|
|
6 |
acting through the Defence Evaluation and Research Agency
|
|
|
7 |
(DERA). It is made available to Recipients with a
|
|
|
8 |
royalty-free licence for its use, reproduction, transfer
|
|
|
9 |
to other parties and amendment for any purpose not excluding
|
|
|
10 |
product development provided that any such use et cetera
|
|
|
11 |
shall be deemed to be acceptance of the following conditions:-
|
|
|
12 |
|
|
|
13 |
(1) Its Recipients shall ensure that this Notice is
|
|
|
14 |
reproduced upon any copies or amended versions of it;
|
|
|
15 |
|
|
|
16 |
(2) Any amended version of it shall be clearly marked to
|
|
|
17 |
show both the nature of and the organisation responsible
|
|
|
18 |
for the relevant amendment or amendments;
|
|
|
19 |
|
|
|
20 |
(3) Its onward transfer from a recipient to another
|
|
|
21 |
party shall be deemed to be that party's acceptance of
|
|
|
22 |
these conditions;
|
|
|
23 |
|
|
|
24 |
(4) DERA gives no warranty or assurance as to its
|
|
|
25 |
quality or suitability for any purpose and DERA accepts
|
|
|
26 |
no liability whatsoever in relation to any use to which
|
|
|
27 |
it may be put.
|
|
|
28 |
*/
|
|
|
29 |
|
|
|
30 |
|
|
|
31 |
/**********************************************************************
|
|
|
32 |
$Author: release $
|
|
|
33 |
$Date: 1998/01/17 15:55:47 $
|
|
|
34 |
$Revision: 1.1.1.1 $
|
|
|
35 |
$Log: flpt_fns.c,v $
|
|
|
36 |
* Revision 1.1.1.1 1998/01/17 15:55:47 release
|
|
|
37 |
* First version to be checked into rolling release.
|
|
|
38 |
*
|
|
|
39 |
* Revision 1.1 1997/11/04 18:23:43 pwe
|
|
|
40 |
* split install_fns with new flpt_fns
|
|
|
41 |
*
|
|
|
42 |
***********************************************************************/
|
|
|
43 |
|
|
|
44 |
|
|
|
45 |
|
|
|
46 |
/* This file consists of the floating point and complex operations
|
|
|
47 |
extracted from install_fns.c, to reduce compilation unit sizes
|
|
|
48 |
*/
|
|
|
49 |
|
|
|
50 |
#include "config.h"
|
|
|
51 |
#include <ctype.h>
|
|
|
52 |
#include <time.h>
|
|
|
53 |
#include "common_types.h"
|
|
|
54 |
#include "basicread.h"
|
|
|
55 |
#include "exp.h"
|
|
|
56 |
#include "expmacs.h"
|
|
|
57 |
#include "main_reads.h"
|
|
|
58 |
#include "tags.h"
|
|
|
59 |
#include "flags.h"
|
|
|
60 |
#include "me_fns.h"
|
|
|
61 |
#include "installglob.h"
|
|
|
62 |
#include "readglob.h"
|
|
|
63 |
#include "table_fns.h"
|
|
|
64 |
#include "flpttypes.h"
|
|
|
65 |
#include "flpt.h"
|
|
|
66 |
#include "xalloc.h"
|
|
|
67 |
#include "shapemacs.h"
|
|
|
68 |
#include "read_fns.h"
|
|
|
69 |
#include "sortmacs.h"
|
|
|
70 |
#include "machine.h"
|
|
|
71 |
#include "spec.h"
|
|
|
72 |
#include "check_id.h"
|
|
|
73 |
#include "check.h"
|
|
|
74 |
#include "szs_als.h"
|
|
|
75 |
#include "messages_c.h"
|
|
|
76 |
#include "natmacs.h"
|
|
|
77 |
#include "f64.h"
|
|
|
78 |
#include "readglob.h"
|
|
|
79 |
#include "case_opt.h"
|
|
|
80 |
#include "install_fns.h"
|
|
|
81 |
#include "externs.h"
|
|
|
82 |
|
|
|
83 |
|
|
|
84 |
extern shape shcomplexsh;
|
|
|
85 |
extern shape complexsh;
|
|
|
86 |
extern shape complexdoublesh;
|
|
|
87 |
exp_list reorder_list PROTO_S ( ( exp_list, int ) ) ;
|
|
|
88 |
exp me_contents PROTO_S ( ( exp ) ) ;
|
|
|
89 |
extern int eq_et PROTO_S ( ( error_treatment, error_treatment ) ) ;
|
|
|
90 |
extern exp TDFcallaux PROTO_S ( ( error_treatment, exp, char *, shape ) ) ;
|
|
|
91 |
extern exp find_named_tg PROTO_S ( ( char *, shape ) ) ;
|
|
|
92 |
|
|
|
93 |
static exp me_complete_chain PROTO_S ( ( exp, exp, exp ) ) ;
|
|
|
94 |
static exp push PROTO_S ( ( exp, exp ) ) ;
|
|
|
95 |
static void square_x_iy PROTO_S ( ( error_treatment, exp *, exp *, exp ) ) ;
|
|
|
96 |
static void mult_w_by_z PROTO_S ( ( error_treatment, exp *, exp *, exp, exp, exp ) ) ;
|
|
|
97 |
static exp make_comp_1_z PROTO_S ( ( floating_variety, error_treatment, exp, exp, exp, exp, exp, exp ) ) ;
|
|
|
98 |
static exp f_bin_floating_plus PROTO_S ( ( error_treatment, exp, exp ) ) ;
|
|
|
99 |
static exp f_bin_floating_mult PROTO_S ( ( error_treatment, exp, exp ) ) ;
|
|
|
100 |
static exp real_power PROTO_S ( ( error_treatment, exp, exp ) ) ;
|
|
|
101 |
|
|
|
102 |
|
|
|
103 |
|
|
|
104 |
exp f_change_floating_variety
|
|
|
105 |
PROTO_N ( (flpt_err, r, arg1) )
|
|
|
106 |
PROTO_T ( error_treatment flpt_err X floating_variety r X exp arg1 )
|
|
|
107 |
{
|
|
|
108 |
if (name(sh(arg1)) == bothd)
|
|
|
109 |
return arg1;
|
|
|
110 |
|
|
|
111 |
#if check_shape
|
|
|
112 |
if ( ! ( (is_complex(sh(arg1)) && is_complex(f_floating(r)) ) ||
|
|
|
113 |
(is_float(sh(arg1)) && is_float(f_floating(r)) )
|
|
|
114 |
)
|
|
|
115 |
)
|
|
|
116 |
failer(CHSH_CHFL);
|
|
|
117 |
#endif
|
|
|
118 |
if (eq_shape(f_floating(r), sh(arg1))) /* i.e. does nothing */
|
|
|
119 |
return arg1; /* Discard the other bits ? */
|
|
|
120 |
|
|
|
121 |
#if substitute_complex
|
|
|
122 |
if (is_complex(sh(arg1)))
|
|
|
123 |
{
|
|
|
124 |
shape complex_shape = sh(arg1);
|
|
|
125 |
floating_variety real_fv = f_float_of_complex (f_floating(r));
|
|
|
126 |
|
|
|
127 |
exp c1 = me_startid (complex_shape, arg1, 0);
|
|
|
128 |
|
|
|
129 |
exp obtain1_c1 = me_obtain(c1); /* contents of arg1 */
|
|
|
130 |
exp obtain2_c1 = me_obtain(c1);
|
|
|
131 |
|
|
|
132 |
exp x = f_real_part (obtain1_c1); /* re(arg1) */
|
|
|
133 |
exp y = f_imaginary_part (obtain2_c1); /* im(arg1) */
|
|
|
134 |
|
|
|
135 |
exp new_x = f_change_floating_variety (flpt_err, real_fv, x);
|
|
|
136 |
exp new_y = f_change_floating_variety (flpt_err, real_fv, y);
|
|
|
137 |
|
|
|
138 |
exp make_comp = f_make_complex (r, new_x, new_y);
|
|
|
139 |
c1 = me_complete_id (c1, make_comp); /* Does a 'hold_check' */
|
|
|
140 |
|
|
|
141 |
return c1;
|
|
|
142 |
};
|
|
|
143 |
#endif /* substitute complex */
|
|
|
144 |
|
|
|
145 |
#if ishppa
|
|
|
146 |
{
|
|
|
147 |
exp t = me_c1(f_floating(r), flpt_err, arg1, chfl_tag);
|
|
|
148 |
if (!optop(t) && name(sh(t))==doublehd) {
|
|
|
149 |
exp id = me_startid(sh(t),t,0);
|
|
|
150 |
exp tmp = me_complete_id(id,me_obtain(id));
|
|
|
151 |
return tmp;
|
|
|
152 |
}
|
|
|
153 |
else
|
|
|
154 |
return t;
|
|
|
155 |
}
|
|
|
156 |
#endif
|
|
|
157 |
return me_c1(f_floating(r), flpt_err, arg1, chfl_tag);
|
|
|
158 |
}
|
|
|
159 |
|
|
|
160 |
|
|
|
161 |
|
|
|
162 |
exp f_complex_conjugate
|
|
|
163 |
PROTO_N ( (arg1) )
|
|
|
164 |
PROTO_T ( exp arg1 )
|
|
|
165 |
{
|
|
|
166 |
if (name(sh(arg1)) == bothd)
|
|
|
167 |
return arg1;
|
|
|
168 |
#if check_shape
|
|
|
169 |
if (!is_complex(sh(arg1)))
|
|
|
170 |
failer(CHSH_CONJUGATE);
|
|
|
171 |
#endif
|
|
|
172 |
|
|
|
173 |
#if substitute_complex
|
|
|
174 |
{
|
|
|
175 |
shape complex_shape = sh(arg1); /* shape of our complex numbers */
|
|
|
176 |
floating_variety real_fv = f_float_of_complex(complex_shape);
|
|
|
177 |
shape real_shape = f_floating(real_fv);
|
|
|
178 |
floating_variety complex_fv = f_complex_of_float(real_shape);
|
|
|
179 |
|
|
|
180 |
exp c1 = me_startid(complex_shape, arg1, 0);
|
|
|
181 |
|
|
|
182 |
exp obtain1_c1 = hold_check(me_obtain(c1)); /* contents of arg1 */
|
|
|
183 |
exp obtain2_c1 = hold_check(me_obtain(c1));
|
|
|
184 |
|
|
|
185 |
exp x1 = f_real_part(obtain1_c1); /* re(arg1) */
|
|
|
186 |
exp y1 = f_imaginary_part(obtain2_c1); /* im(arg1) */
|
|
|
187 |
|
|
|
188 |
exp neg_im = f_floating_negate(f_impossible, y1); /* - im(arg1) */
|
|
|
189 |
exp make_comp = f_make_complex(complex_fv, x1, neg_im);
|
|
|
190 |
|
|
|
191 |
c1 = me_complete_id(c1, make_comp);
|
|
|
192 |
|
|
|
193 |
return c1;
|
|
|
194 |
}
|
|
|
195 |
#else
|
|
|
196 |
return me_u3(sh(arg1), arg1, conj_tag);
|
|
|
197 |
#endif
|
|
|
198 |
}
|
|
|
199 |
|
|
|
200 |
|
|
|
201 |
|
|
|
202 |
exp f_float_int
|
|
|
203 |
PROTO_N ( (flpt_err, f, arg1) )
|
|
|
204 |
PROTO_T ( error_treatment flpt_err X floating_variety f X exp arg1 )
|
|
|
205 |
{
|
|
|
206 |
if (name(sh(arg1)) == bothd)
|
|
|
207 |
return arg1;
|
|
|
208 |
|
|
|
209 |
#if check_shape
|
|
|
210 |
if (!is_integer(sh(arg1)))
|
|
|
211 |
failer(CHSH_FLINT);
|
|
|
212 |
#endif
|
|
|
213 |
|
|
|
214 |
if (is_complex(f_floating(f))) {
|
|
|
215 |
flpt fzero_copy = new_flpt();
|
|
|
216 |
floating_variety fv = f_float_of_complex(f_floating(f));
|
|
|
217 |
shape real_shape = f_floating(fv);
|
|
|
218 |
exp zero;
|
|
|
219 |
exp res = f_float_int(flpt_err, fv, arg1);
|
|
|
220 |
res = hold_check(res);
|
|
|
221 |
flt_copy (flptnos[fzero_no], &flptnos[fzero_copy]);
|
|
|
222 |
zero = getexp(real_shape, nilexp, 1, nilexp, nilexp, 0,
|
|
|
223 |
fzero_copy, real_tag);
|
|
|
224 |
return f_make_complex(f, res, zero);
|
|
|
225 |
}
|
|
|
226 |
#if !has64bits
|
|
|
227 |
if ((name(arg1)!=val_tag || flpt_err.err_code > 2)
|
|
|
228 |
&& shape_size(sh(arg1))> 32) {
|
|
|
229 |
#if use_long_double
|
|
|
230 |
exp z = TDFcallaux(flpt_err, arg1,
|
|
|
231 |
(is_signed(sh(arg1))?"__TDFUs_float":"__TDFUu_float"), doublesh);
|
|
|
232 |
z = hold_check(z);
|
|
|
233 |
if (f != doublefv) {
|
|
|
234 |
z = me_c1(f_floating(f), flpt_err, z, chfl_tag);
|
|
|
235 |
}
|
|
|
236 |
return z;
|
|
|
237 |
#else
|
|
|
238 |
exp z = TDFcallaux(flpt_err, arg1,
|
|
|
239 |
(is_signed(sh(arg1))?"__TDFUs_float":"__TDFUu_float"), realsh);
|
|
|
240 |
z = hold_check(z);
|
|
|
241 |
if (f != realfv) {
|
|
|
242 |
z = me_c1(f_floating(f), flpt_err, z, chfl_tag);
|
|
|
243 |
}
|
|
|
244 |
return z;
|
|
|
245 |
#endif
|
|
|
246 |
}
|
|
|
247 |
#endif
|
|
|
248 |
return me_c1(f_floating(f), flpt_err, arg1, float_tag);
|
|
|
249 |
}
|
|
|
250 |
|
|
|
251 |
|
|
|
252 |
exp f_floating_abs
|
|
|
253 |
PROTO_N ( (ov_err, arg1) )
|
|
|
254 |
PROTO_T ( error_treatment ov_err X exp arg1 )
|
|
|
255 |
{
|
|
|
256 |
if (name(sh(arg1)) == bothd)
|
|
|
257 |
return arg1;
|
|
|
258 |
|
|
|
259 |
#if check_shape
|
|
|
260 |
if (!is_float(sh(arg1)))
|
|
|
261 |
failer(CHSH_FLABS);
|
|
|
262 |
#endif
|
|
|
263 |
|
|
|
264 |
#if ishppa
|
|
|
265 |
{
|
|
|
266 |
exp r = me_u1(ov_err, arg1, fabs_tag);
|
|
|
267 |
if (!optop(r) && name(sh(r))==doublehd) {
|
|
|
268 |
exp id = me_startid(sh(r),r,0);
|
|
|
269 |
exp tmp = me_complete_id(id,me_obtain(id));
|
|
|
270 |
return tmp;
|
|
|
271 |
}
|
|
|
272 |
else
|
|
|
273 |
return r;
|
|
|
274 |
}
|
|
|
275 |
#endif
|
|
|
276 |
return me_u1(ov_err, arg1, fabs_tag);
|
|
|
277 |
}
|
|
|
278 |
|
|
|
279 |
|
|
|
280 |
exp f_floating_div
|
|
|
281 |
PROTO_N ( (ov_err, arg1, arg2) )
|
|
|
282 |
PROTO_T ( error_treatment ov_err X exp arg1 X exp arg2 )
|
|
|
283 |
{
|
|
|
284 |
if (name(sh(arg1)) == bothd)
|
|
|
285 |
{ kill_exp(arg2,arg2); return arg1; }
|
|
|
286 |
if (name(sh(arg2)) == bothd)
|
|
|
287 |
{ kill_exp(arg1,arg1); return arg2; }
|
|
|
288 |
|
|
|
289 |
#if check_shape
|
|
|
290 |
if (! ((is_float(sh(arg1)) || is_complex(sh(arg1))) && eq_shape(sh(arg1), sh(arg2))) )
|
|
|
291 |
failer(CHSH_FLDIV);
|
|
|
292 |
#endif
|
|
|
293 |
|
|
|
294 |
/* PAB changes - 21 October 1994 */
|
|
|
295 |
#if substitute_complex
|
|
|
296 |
if (is_complex(sh(arg1))) {
|
|
|
297 |
|
|
|
298 |
shape complex_shape = sh(arg1); /* shape of our complex numbers */
|
|
|
299 |
floating_variety real_fv = f_float_of_complex(complex_shape);
|
|
|
300 |
shape real_shape = f_floating(real_fv);
|
|
|
301 |
floating_variety complex_fv = f_complex_of_float(real_shape);
|
|
|
302 |
|
|
|
303 |
exp z1 = me_startid(complex_shape, arg1, 0);
|
|
|
304 |
exp z2 = me_startid(complex_shape, arg2, 0);
|
|
|
305 |
|
|
|
306 |
exp obtain1_z1 = hold_check(me_obtain(z1)); /* contents of arg1 */
|
|
|
307 |
exp obtain2_z1 = hold_check(me_obtain(z1));
|
|
|
308 |
exp obtain1_z2 = hold_check(me_obtain(z2)); /* contents of arg2 */
|
|
|
309 |
exp obtain2_z2 = hold_check(me_obtain(z2));
|
|
|
310 |
|
|
|
311 |
exp z1_re = f_real_part(obtain1_z1); /* re(arg1) */
|
|
|
312 |
exp z2_re = f_real_part(obtain1_z2); /* re(arg2) */
|
|
|
313 |
exp z1_im = f_imaginary_part(obtain2_z1); /* im(arg1) */
|
|
|
314 |
exp z2_im = f_imaginary_part(obtain2_z2); /* im(arg2) */
|
|
|
315 |
|
|
|
316 |
exp x1 = me_startid(real_shape, z1_re, 0);
|
|
|
317 |
exp x2 = me_startid(real_shape, z2_re, 0);
|
|
|
318 |
exp y1 = me_startid(real_shape, z1_im, 0);
|
|
|
319 |
exp y2 = me_startid(real_shape, z2_im, 0);
|
|
|
320 |
|
|
|
321 |
exp obtain1_x1 = hold_check(me_obtain(x1)); /* x1 is used twice */
|
|
|
322 |
exp obtain2_x1 = hold_check(me_obtain(x1));
|
|
|
323 |
exp obtain1_y1 = hold_check(me_obtain(y1)); /* y1 is used twice */
|
|
|
324 |
exp obtain2_y1 = hold_check(me_obtain(y1));
|
|
|
325 |
|
|
|
326 |
exp obtain1_x2 = hold_check(me_obtain(x2)); /* x2 is used four times */
|
|
|
327 |
exp obtain2_x2 = hold_check(me_obtain(x2));
|
|
|
328 |
exp obtain3_x2 = hold_check(me_obtain(x2));
|
|
|
329 |
exp obtain4_x2 = hold_check(me_obtain(x2));
|
|
|
330 |
exp obtain1_y2 = hold_check(me_obtain(y2)); /* y2 is used four times */
|
|
|
331 |
exp obtain2_y2 = hold_check(me_obtain(y2));
|
|
|
332 |
exp obtain3_y2 = hold_check(me_obtain(y2));
|
|
|
333 |
exp obtain4_y2 = hold_check(me_obtain(y2));
|
|
|
334 |
|
|
|
335 |
exp mult_x2_x2 = f_bin_floating_mult(ov_err, obtain1_x2, obtain2_x2);
|
|
|
336 |
exp mult_y2_y2 = f_bin_floating_mult(ov_err, obtain1_y2, obtain2_y2);
|
|
|
337 |
exp mult_x1_x2 = f_bin_floating_mult(ov_err, obtain1_x1, obtain3_x2);
|
|
|
338 |
exp mult_y1_y2 = f_bin_floating_mult(ov_err, obtain1_y1, obtain3_y2);
|
|
|
339 |
exp mult_y1_x2 = f_bin_floating_mult(ov_err, obtain2_y1, obtain4_x2);
|
|
|
340 |
exp mult_x1_y2 = f_bin_floating_mult(ov_err, obtain2_x1, obtain4_y2);
|
|
|
341 |
|
|
|
342 |
exp plus1 = f_bin_floating_plus(ov_err, mult_x2_x2, mult_y2_y2);
|
|
|
343 |
exp plus2 = f_bin_floating_plus(ov_err, mult_x1_x2, mult_y1_y2);
|
|
|
344 |
exp minus1 = f_floating_minus(ov_err, mult_y1_x2, mult_x1_y2);
|
|
|
345 |
|
|
|
346 |
exp denom = me_startid(real_shape, plus1, 0);
|
|
|
347 |
|
|
|
348 |
exp obtain_denom1 = hold_check(me_obtain(denom));
|
|
|
349 |
exp obtain_denom2 = hold_check(me_obtain(denom));
|
|
|
350 |
|
|
|
351 |
exp answer_re = f_floating_div(ov_err, plus2, obtain_denom1);
|
|
|
352 |
exp answer_im = f_floating_div(ov_err, minus1, obtain_denom2);
|
|
|
353 |
exp make_comp = f_make_complex(complex_fv, answer_re, answer_im);
|
|
|
354 |
|
|
|
355 |
denom = me_complete_id(denom, make_comp);
|
|
|
356 |
y2 = me_complete_id(y2, denom);
|
|
|
357 |
y1 = me_complete_id(y1, y2);
|
|
|
358 |
x2 = me_complete_id(x2, y1);
|
|
|
359 |
x1 = me_complete_id(x1, x2);
|
|
|
360 |
z2 = me_complete_id(z2, x1);
|
|
|
361 |
z1 = me_complete_id(z1, z2);
|
|
|
362 |
|
|
|
363 |
return z1;
|
|
|
364 |
};
|
|
|
365 |
#endif
|
|
|
366 |
#if ishppa
|
|
|
367 |
{
|
|
|
368 |
exp r = hold_check(me_b1(ov_err, arg1, arg2, fdiv_tag));
|
|
|
369 |
if (!optop(r) && name(sh(r))==doublehd) {
|
|
|
370 |
exp id = me_startid(sh(r),r,0);
|
|
|
371 |
exp tmp = me_complete_id(id,me_obtain(id));
|
|
|
372 |
return tmp;
|
|
|
373 |
}
|
|
|
374 |
else
|
|
|
375 |
return r;
|
|
|
376 |
}
|
|
|
377 |
#endif
|
|
|
378 |
return hold_check(me_b1(ov_err, arg1, arg2, fdiv_tag));
|
|
|
379 |
}
|
|
|
380 |
|
|
|
381 |
|
|
|
382 |
exp f_floating_maximum
|
|
|
383 |
PROTO_N ( (flpt_err, arg1, arg2) )
|
|
|
384 |
PROTO_T ( error_treatment flpt_err X exp arg1 X exp arg2 )
|
|
|
385 |
{
|
|
|
386 |
if (name(sh(arg1)) == bothd)
|
|
|
387 |
{ kill_exp(arg2,arg2); return arg1; }
|
|
|
388 |
if (name(sh(arg2)) == bothd)
|
|
|
389 |
{ kill_exp(arg1,arg1); return arg2; }
|
|
|
390 |
|
|
|
391 |
#if check_shape
|
|
|
392 |
if (!is_float(sh(arg1)) || !eq_shape(sh(arg1), sh(arg2)))
|
|
|
393 |
failer(CHSH_FLMAX);
|
|
|
394 |
#endif
|
|
|
395 |
return hold_check(me_b1(flpt_err, arg1, arg2, fmax_tag));
|
|
|
396 |
}
|
|
|
397 |
|
|
|
398 |
|
|
|
399 |
exp f_floating_minimum
|
|
|
400 |
PROTO_N ( (flpt_err, arg1, arg2) )
|
|
|
401 |
PROTO_T ( error_treatment flpt_err X exp arg1 X exp arg2 )
|
|
|
402 |
{
|
|
|
403 |
if (name(sh(arg1)) == bothd)
|
|
|
404 |
{ kill_exp(arg2,arg2); return arg1; }
|
|
|
405 |
if (name(sh(arg2)) == bothd)
|
|
|
406 |
{ kill_exp(arg1,arg1); return arg2; }
|
|
|
407 |
|
|
|
408 |
|
|
|
409 |
#if check_shape
|
|
|
410 |
if (!is_float(sh(arg1)) || !eq_shape(sh(arg1), sh(arg2)))
|
|
|
411 |
failer(CHSH_FLMIN);
|
|
|
412 |
#endif
|
|
|
413 |
return hold_check(me_b1(flpt_err, arg1, arg2, fmin_tag));
|
|
|
414 |
}
|
|
|
415 |
|
|
|
416 |
|
|
|
417 |
|
|
|
418 |
|
|
|
419 |
/****************************************************************/
|
|
|
420 |
/* The following code needs to generate labels for use with */
|
|
|
421 |
/* 'cond_tag'. This is currently implemented using the */
|
|
|
422 |
/* knowledge that a label can be obtained by taking a pointer */
|
|
|
423 |
/* to an EXP - a hack which was introduced because of the */
|
|
|
424 |
/* need to use 'f_integer_test' with 64-bit integers. This */
|
|
|
425 |
/* hack is performed exclusively by the MACRO 'make_label' */
|
|
|
426 |
/****************************************************************/
|
|
|
427 |
|
|
|
428 |
#define make_label(EXP) &EXP
|
|
|
429 |
|
|
|
430 |
|
|
|
431 |
/************************************************/
|
|
|
432 |
/* 'is_constant_arg' checks to see if E1 is */
|
|
|
433 |
/* a constant that will fit into type 'int'. */
|
|
|
434 |
/************************************************/
|
|
|
435 |
|
|
|
436 |
#define is_constant_arg(E1) \
|
|
|
437 |
((name(E1) == val_tag) && !isbigval(E1) && \
|
|
|
438 |
(is_signed(sh(E1)) || (no(E1) >> 31 == 0)))
|
|
|
439 |
|
|
|
440 |
|
|
|
441 |
|
|
|
442 |
exp f_floating_power
|
|
|
443 |
PROTO_N ( (ov_err, arg1, arg2) )
|
|
|
444 |
PROTO_T ( error_treatment ov_err X exp arg1 X exp arg2 )
|
|
|
445 |
{
|
|
|
446 |
if (name(sh(arg1)) == bothd)
|
|
|
447 |
{ kill_exp(arg2,arg2); return arg1; }
|
|
|
448 |
if (name(sh(arg2)) == bothd)
|
|
|
449 |
{ kill_exp(arg1,arg1); return arg2; }
|
|
|
450 |
|
|
|
451 |
#if check_shape
|
|
|
452 |
if (!( (is_float(sh(arg1)) || is_complex(sh(arg1))) && is_integer(sh(arg2)) ))
|
|
|
453 |
failer(CHSH_FLPOWER);
|
|
|
454 |
#endif
|
|
|
455 |
|
|
|
456 |
/* PAB changes - 31 October 1994 */
|
|
|
457 |
|
|
|
458 |
/* Gives shorter .s file if n<10 and arg1 is unknown */
|
|
|
459 |
|
|
|
460 |
if (is_complex(sh(arg1))) {
|
|
|
461 |
|
|
|
462 |
shape integer_shape = sh(arg2);
|
|
|
463 |
shape complex_shape = sh(arg1); /* shape of our complex numbers */
|
|
|
464 |
floating_variety real_fv = f_float_of_complex(complex_shape);
|
|
|
465 |
shape real_shape = f_floating(real_fv);
|
|
|
466 |
floating_variety complex_fv = f_complex_of_float(real_shape);
|
|
|
467 |
|
|
|
468 |
exp sn = me_startid(integer_shape, arg2, 0);
|
|
|
469 |
|
|
|
470 |
if (is_constant_arg(arg2) ||
|
|
|
471 |
((name(arg2) == name_tag) && (name(son(arg2)) == ident_tag)
|
|
|
472 |
&& !isvar(son(arg2)) && is_constant_arg(son(son(arg2)))))
|
|
|
473 |
{ /* we know the power */
|
|
|
474 |
int n;
|
|
|
475 |
int exponent;
|
|
|
476 |
exp z = push (sn, me_startid(complex_shape, arg1, 0));
|
|
|
477 |
|
|
|
478 |
if (is_constant_arg(arg2)) {
|
|
|
479 |
exponent = no(arg2); /* arg2 is a constant */
|
|
|
480 |
}
|
|
|
481 |
else {
|
|
|
482 |
exponent = no(son(son(arg2)));
|
|
|
483 |
/* arg2 identifies a constant */
|
|
|
484 |
}
|
|
|
485 |
|
|
|
486 |
n = abs(exponent);
|
|
|
487 |
if (n == 0) {
|
|
|
488 |
|
|
|
489 |
exp answer_re, answer_im, make_comp;
|
|
|
490 |
|
|
|
491 |
flpt fzero_copy = new_flpt();
|
|
|
492 |
flpt fone_copy = new_flpt();
|
|
|
493 |
|
|
|
494 |
flt_copy (flptnos[fzero_no], &flptnos[fzero_copy]);
|
|
|
495 |
flt_copy (flptnos[fone_no], &flptnos[fone_copy]);
|
|
|
496 |
|
|
|
497 |
answer_re = getexp(real_shape, nilexp, 1, nilexp, nilexp, 0, fone_copy, real_tag);
|
|
|
498 |
answer_im = getexp(real_shape, nilexp, 1, nilexp, nilexp, 0, fzero_copy, real_tag);
|
|
|
499 |
|
|
|
500 |
make_comp = f_make_complex(complex_fv, answer_re, answer_im);
|
|
|
501 |
return me_complete_chain(z, arg2, make_comp);
|
|
|
502 |
|
|
|
503 |
} else {
|
|
|
504 |
|
|
|
505 |
exp link_next;
|
|
|
506 |
|
|
|
507 |
exp z_re = f_real_part (me_obtain(z));
|
|
|
508 |
exp z_im = f_imaginary_part(me_obtain(z));
|
|
|
509 |
|
|
|
510 |
exp x = push (z, me_startid(real_shape, z_re, 0));
|
|
|
511 |
exp y = push (x, me_startid(real_shape, z_im, 0));
|
|
|
512 |
|
|
|
513 |
exp u, v, mylast;;
|
|
|
514 |
|
|
|
515 |
while ((n % 2) == 0) {
|
|
|
516 |
mylast = y;
|
|
|
517 |
square_x_iy(ov_err, &x, &y, mylast);
|
|
|
518 |
n = n / 2;
|
|
|
519 |
}
|
|
|
520 |
|
|
|
521 |
if (n == 1) { /* return z */
|
|
|
522 |
|
|
|
523 |
if (exponent < 0) {
|
|
|
524 |
link_next = make_comp_1_z(complex_fv, ov_err,
|
|
|
525 |
me_obtain(x), me_obtain(x), me_obtain(x),
|
|
|
526 |
me_obtain(y), me_obtain(y), me_obtain(y));
|
|
|
527 |
} else {
|
|
|
528 |
link_next = f_make_complex(complex_fv, me_obtain(x), me_obtain(y));
|
|
|
529 |
}
|
|
|
530 |
|
|
|
531 |
return me_complete_chain(y, arg2, link_next); /* return z */
|
|
|
532 |
|
|
|
533 |
} else { /* w = z */
|
|
|
534 |
|
|
|
535 |
u = push (y, me_startid(real_shape, me_obtain(x), 0));
|
|
|
536 |
v = push (u, me_startid(real_shape, me_obtain(y), 0));
|
|
|
537 |
mylast = v;
|
|
|
538 |
}
|
|
|
539 |
|
|
|
540 |
while (n != 1) {
|
|
|
541 |
square_x_iy(ov_err, &x, &y, mylast); /* z = z*z */
|
|
|
542 |
mylast = y;
|
|
|
543 |
n = n / 2;
|
|
|
544 |
if ((n % 2) == 1) {
|
|
|
545 |
mult_w_by_z (ov_err, &u, &v, x, y, mylast); /* w = w*z */
|
|
|
546 |
mylast = v;
|
|
|
547 |
}
|
|
|
548 |
}
|
|
|
549 |
|
|
|
550 |
if (exponent < 0) {
|
|
|
551 |
link_next = make_comp_1_z(complex_fv, ov_err,
|
|
|
552 |
me_obtain(u), me_obtain(u), me_obtain(u),
|
|
|
553 |
me_obtain(v), me_obtain(v), me_obtain(v));
|
|
|
554 |
} else {
|
|
|
555 |
link_next = f_make_complex(complex_fv, me_obtain(u), me_obtain(v));
|
|
|
556 |
}
|
|
|
557 |
return me_complete_chain(v, arg2, link_next); /* return w */
|
|
|
558 |
}
|
|
|
559 |
|
|
|
560 |
} else {
|
|
|
561 |
|
|
|
562 |
exp reinitialise_w, main_loop, make_comp; /* main building blocks */
|
|
|
563 |
exp square_z, mult_z_w, half_n, update_w, repeat_body;
|
|
|
564 |
exp seq, seq_zero, make_comp1, make_comp2;
|
|
|
565 |
exp real0, real1, x, y, u, v;
|
|
|
566 |
|
|
|
567 |
exp z = me_startid(complex_shape, arg1, 0);
|
|
|
568 |
|
|
|
569 |
exp abs_val_sn = f_abs(ov_err, me_obtain(sn));
|
|
|
570 |
exp n = me_startid(sh(sn), abs_val_sn, 1);
|
|
|
571 |
|
|
|
572 |
exp z_re = f_real_part (me_obtain(z));
|
|
|
573 |
exp z_im = f_imaginary_part(me_obtain(z));
|
|
|
574 |
|
|
|
575 |
flpt fzero_copy = new_flpt();
|
|
|
576 |
flpt fone_copy = new_flpt();
|
|
|
577 |
|
|
|
578 |
flt_copy (flptnos[fzero_no], &flptnos[fzero_copy]);
|
|
|
579 |
flt_copy (flptnos[fone_no], &flptnos[fone_copy]);
|
|
|
580 |
|
|
|
581 |
real0 = getexp(real_shape, nilexp, 1, nilexp, nilexp, 0, fzero_copy, real_tag);
|
|
|
582 |
real1 = getexp(real_shape, nilexp, 1, nilexp, nilexp, 0, fone_copy, real_tag);
|
|
|
583 |
|
|
|
584 |
x = me_startid(real_shape, z_re, 1); /* re(arg1) */
|
|
|
585 |
y = me_startid(real_shape, z_im, 1); /* re(arg2) */
|
|
|
586 |
|
|
|
587 |
u = me_startid(real_shape, real1, 1); /* re(w) = 1.0 */
|
|
|
588 |
v = me_startid(real_shape, real0, 1); /* im(w) = 0.0 */
|
|
|
589 |
|
|
|
590 |
|
|
|
591 |
/* change value of w to z if n is odd */
|
|
|
592 |
|
|
|
593 |
{
|
|
|
594 |
exp constant1 = me_shint(integer_shape, 1);
|
|
|
595 |
exp constant2 = me_shint(integer_shape, 2);
|
|
|
596 |
|
|
|
597 |
exp rem_n_2 = f_rem0 (f_impossible, f_impossible,
|
|
|
598 |
me_contents(n), constant2);
|
|
|
599 |
|
|
|
600 |
exp assign_u = hold_check(me_b3(f_top, me_obtain(u), me_contents(x), ass_tag));
|
|
|
601 |
exp assign_v = hold_check(me_b3(f_top, me_obtain(v), me_contents(y), ass_tag));
|
|
|
602 |
|
|
|
603 |
exp top_cell = me_l1(f_top, top_tag);
|
|
|
604 |
exp alt_labst = hold_check(me_b3(sh(top_cell), me_null(f_top,0,clear_tag),
|
|
|
605 |
top_cell, labst_tag));
|
|
|
606 |
|
|
|
607 |
exp is_n_odd = f_integer_test (no_nat_option, f_equal,
|
|
|
608 |
make_label(alt_labst), rem_n_2, constant1);
|
|
|
609 |
|
|
|
610 |
exp seq_zero = hold_check(me_b2(is_n_odd, assign_u, 0));
|
|
|
611 |
exp seq = hold_check(me_b3(sh(assign_v), seq_zero, assign_v, seq_tag));
|
|
|
612 |
|
|
|
613 |
reinitialise_w = hold_check(me_b3(lub_shape(sh(seq),sh(alt_labst)),
|
|
|
614 |
seq, alt_labst, cond_tag));
|
|
|
615 |
}
|
|
|
616 |
|
|
|
617 |
|
|
|
618 |
/* z=z*z */
|
|
|
619 |
|
|
|
620 |
{
|
|
|
621 |
exp minus_x_y = f_floating_minus(ov_err, me_contents(x), me_contents(y));
|
|
|
622 |
exp plus_x_y = f_bin_floating_plus(ov_err, me_contents(x), me_contents(y));
|
|
|
623 |
exp mult_x_y = f_bin_floating_mult(ov_err, me_contents(x), me_contents(y));
|
|
|
624 |
|
|
|
625 |
exp tmp = me_startid(real_shape, mult_x_y, 0);
|
|
|
626 |
|
|
|
627 |
exp answer_re = f_bin_floating_mult(ov_err, minus_x_y, plus_x_y);
|
|
|
628 |
exp answer_im = f_bin_floating_plus(ov_err, me_obtain(tmp), me_obtain(tmp));
|
|
|
629 |
|
|
|
630 |
exp assign_x = hold_check(me_b3(f_top, me_obtain(x), answer_re, ass_tag));
|
|
|
631 |
exp assign_y = hold_check(me_b3(f_top, me_obtain(y), answer_im, ass_tag));
|
|
|
632 |
|
|
|
633 |
exp seq_zero = hold_check(me_u2(assign_x, 0));
|
|
|
634 |
exp seq = hold_check(me_b3(sh(assign_y), seq_zero, assign_y, seq_tag));
|
|
|
635 |
|
|
|
636 |
square_z = me_complete_id(tmp, seq);
|
|
|
637 |
}
|
|
|
638 |
|
|
|
639 |
|
|
|
640 |
/* w=z*w */
|
|
|
641 |
|
|
|
642 |
{
|
|
|
643 |
exp mult_x_u = f_bin_floating_mult(ov_err, me_contents(x), me_contents(u));
|
|
|
644 |
exp mult_x_v = f_bin_floating_mult(ov_err, me_contents(x), me_contents(v));
|
|
|
645 |
exp mult_y_u = f_bin_floating_mult(ov_err, me_contents(y), me_contents(u));
|
|
|
646 |
exp mult_y_v = f_bin_floating_mult(ov_err, me_contents(y), me_contents(v));
|
|
|
647 |
|
|
|
648 |
exp tmp = me_startid(real_shape, mult_y_u, 0);
|
|
|
649 |
|
|
|
650 |
exp answer_re = f_floating_minus(ov_err, mult_x_u, mult_y_v);
|
|
|
651 |
exp answer_im = f_bin_floating_plus(ov_err, mult_x_v, me_obtain(tmp));
|
|
|
652 |
|
|
|
653 |
exp assign_u = hold_check(me_b3(f_top, me_obtain(u), answer_re, ass_tag));
|
|
|
654 |
exp assign_v = hold_check(me_b3(f_top, me_obtain(v), answer_im, ass_tag));
|
|
|
655 |
|
|
|
656 |
exp seq_zero = hold_check(me_u2(assign_u, 0));
|
|
|
657 |
exp seq = hold_check(me_b3(sh(assign_v), seq_zero, assign_v, seq_tag));
|
|
|
658 |
|
|
|
659 |
mult_z_w = me_complete_id(tmp, seq);
|
|
|
660 |
}
|
|
|
661 |
|
|
|
662 |
|
|
|
663 |
/* n=n/2 */
|
|
|
664 |
|
|
|
665 |
{
|
|
|
666 |
exp constant2 = me_shint(integer_shape, 2);
|
|
|
667 |
|
|
|
668 |
exp answer = f_div0 (f_impossible, f_impossible,
|
|
|
669 |
me_contents(n), constant2);
|
|
|
670 |
half_n = hold_check(me_b3(f_top, me_obtain(n), answer, ass_tag));
|
|
|
671 |
}
|
|
|
672 |
|
|
|
673 |
|
|
|
674 |
/* if n is odd then w = z*w */
|
|
|
675 |
|
|
|
676 |
{
|
|
|
677 |
exp constant1 = me_shint(integer_shape, 1);
|
|
|
678 |
exp constant2 = me_shint(integer_shape, 2);
|
|
|
679 |
|
|
|
680 |
exp rem_n_2 = f_rem0 (f_impossible, f_impossible,
|
|
|
681 |
me_contents(n), constant2);
|
|
|
682 |
|
|
|
683 |
exp top_cell = me_l1(f_top, top_tag);
|
|
|
684 |
exp alt_labst = hold_check(me_b3(f_top, me_null(f_top,0,clear_tag),
|
|
|
685 |
top_cell, labst_tag));
|
|
|
686 |
|
|
|
687 |
exp is_n_odd = f_integer_test (no_nat_option, f_equal,
|
|
|
688 |
make_label(alt_labst), rem_n_2, constant1);
|
|
|
689 |
exp seq_zero = hold_check(me_u2(is_n_odd, 0));
|
|
|
690 |
exp seq = hold_check(me_b3(sh(mult_z_w), seq_zero, mult_z_w, seq_tag));
|
|
|
691 |
|
|
|
692 |
update_w = hold_check(me_b3(lub_shape(sh(seq),sh(alt_labst)),
|
|
|
693 |
seq, alt_labst, cond_tag));
|
|
|
694 |
}
|
|
|
695 |
|
|
|
696 |
|
|
|
697 |
/* repeat + body */
|
|
|
698 |
|
|
|
699 |
{
|
|
|
700 |
exp if_n_equals_1, seq_zero, seq, body_labst;
|
|
|
701 |
|
|
|
702 |
exp constant1 = me_shint(integer_shape, 1);
|
|
|
703 |
exp top_cell = me_l1(f_top, top_tag);
|
|
|
704 |
|
|
|
705 |
body_labst = hold_check(me_b3(sh(top_cell), me_null(f_top,0,clear_tag),
|
|
|
706 |
top_cell, labst_tag));
|
|
|
707 |
|
|
|
708 |
if_n_equals_1 = f_integer_test (no_nat_option, f_equal, make_label(body_labst),
|
|
|
709 |
me_contents(n), constant1);
|
|
|
710 |
|
|
|
711 |
seq_zero = me_b2(square_z, update_w, 0);
|
|
|
712 |
setbro (square_z, half_n); /* insert half_n between */
|
|
|
713 |
setbro (half_n, update_w); /* square_x and update_w */
|
|
|
714 |
clearlast (half_n);
|
|
|
715 |
seq_zero = hold_check(seq_zero);
|
|
|
716 |
|
|
|
717 |
seq = hold_check(me_b3(sh(if_n_equals_1), seq_zero, if_n_equals_1, seq_tag));
|
|
|
718 |
|
|
|
719 |
setbro(son(body_labst), seq);
|
|
|
720 |
clearlast(son(body_labst));
|
|
|
721 |
setfather(body_labst, seq);
|
|
|
722 |
|
|
|
723 |
repeat_body = hold_check(me_b3(sh(seq), top_cell, body_labst, rep_tag));
|
|
|
724 |
note_repeat(repeat_body);
|
|
|
725 |
}
|
|
|
726 |
|
|
|
727 |
|
|
|
728 |
/* make loop - only done if mod(n) > 1 */
|
|
|
729 |
|
|
|
730 |
{
|
|
|
731 |
exp constant1 = me_shint(integer_shape, 1);
|
|
|
732 |
|
|
|
733 |
exp top_cell = me_l1(f_top, top_tag);
|
|
|
734 |
exp alt_labst = hold_check(me_b3(f_top, me_null(f_top,0,clear_tag),
|
|
|
735 |
top_cell, labst_tag));
|
|
|
736 |
|
|
|
737 |
exp is_n_gt_1 = f_integer_test (no_nat_option, f_greater_than,
|
|
|
738 |
make_label(alt_labst), me_contents(n), constant1);
|
|
|
739 |
|
|
|
740 |
exp seq_zero = hold_check(me_u2(is_n_gt_1, 0));
|
|
|
741 |
exp seq = hold_check(me_b3(sh(repeat_body), seq_zero, repeat_body, seq_tag));
|
|
|
742 |
|
|
|
743 |
main_loop = hold_check(me_b3(lub_shape(sh(seq),sh(alt_labst)),
|
|
|
744 |
seq, alt_labst, cond_tag));
|
|
|
745 |
}
|
|
|
746 |
|
|
|
747 |
make_comp1 = f_make_complex(complex_fv, me_contents(u), me_contents(v));
|
|
|
748 |
make_comp2 = make_comp_1_z(complex_fv, ov_err,
|
|
|
749 |
me_contents(u), me_contents(u), me_contents(u),
|
|
|
750 |
me_contents(v), me_contents(v), me_contents(v));
|
|
|
751 |
|
|
|
752 |
|
|
|
753 |
/* if arg2 is negative then make_comp2 else make_comp1 */
|
|
|
754 |
|
|
|
755 |
{
|
|
|
756 |
exp constant0 = me_shint(integer_shape, 0);
|
|
|
757 |
|
|
|
758 |
exp alt_labst = hold_check(me_b3(sh(make_comp1),
|
|
|
759 |
me_null(f_top,0,clear_tag),
|
|
|
760 |
make_comp1, labst_tag));
|
|
|
761 |
|
|
|
762 |
exp is_arg2_negative = f_integer_test (no_nat_option, f_less_than,
|
|
|
763 |
make_label(alt_labst),
|
|
|
764 |
me_obtain(sn), constant0);
|
|
|
765 |
|
|
|
766 |
exp seq_zero = hold_check(me_u2(is_arg2_negative, 0));
|
|
|
767 |
exp seq = hold_check(me_b3(sh(make_comp2), seq_zero, make_comp2, seq_tag));
|
|
|
768 |
|
|
|
769 |
make_comp = hold_check(me_b3(lub_shape(sh(seq),sh(alt_labst)),
|
|
|
770 |
seq, alt_labst, cond_tag));
|
|
|
771 |
}
|
|
|
772 |
|
|
|
773 |
seq_zero = hold_check(me_b2(reinitialise_w, main_loop, 0));
|
|
|
774 |
seq = hold_check(me_b3(sh(make_comp), seq_zero, make_comp, seq_tag));
|
|
|
775 |
|
|
|
776 |
|
|
|
777 |
v = me_complete_id(v, seq);
|
|
|
778 |
u = me_complete_id(u, v);
|
|
|
779 |
y = me_complete_id(y, u);
|
|
|
780 |
x = me_complete_id(x, y);
|
|
|
781 |
n = me_complete_id(n, x);
|
|
|
782 |
sn = me_complete_id(sn, n);
|
|
|
783 |
z = me_complete_id(z, sn);
|
|
|
784 |
|
|
|
785 |
return z;
|
|
|
786 |
}
|
|
|
787 |
}
|
|
|
788 |
|
|
|
789 |
return real_power(ov_err, arg1, arg2);
|
|
|
790 |
}
|
|
|
791 |
|
|
|
792 |
|
|
|
793 |
exp f_floating_minus
|
|
|
794 |
PROTO_N ( (ov_err, arg1, arg2) )
|
|
|
795 |
PROTO_T ( error_treatment ov_err X exp arg1 X exp arg2 )
|
|
|
796 |
{
|
|
|
797 |
if (name(sh(arg1)) == bothd)
|
|
|
798 |
{ kill_exp(arg2,arg2); return arg1; }
|
|
|
799 |
if (name(sh(arg2)) == bothd)
|
|
|
800 |
{ kill_exp(arg1,arg1); return arg2; }
|
|
|
801 |
|
|
|
802 |
#if check_shape
|
|
|
803 |
if (! ((is_float(sh(arg1)) || is_complex(sh(arg1))) && eq_shape(sh(arg1), sh(arg2))) )
|
|
|
804 |
failer(CHSH_FLMINUS);
|
|
|
805 |
#endif
|
|
|
806 |
|
|
|
807 |
/* PAB changes - 18 October 1994 */
|
|
|
808 |
#if substitute_complex
|
|
|
809 |
if (is_complex(sh(arg1))) {
|
|
|
810 |
|
|
|
811 |
shape complex_shape = sh(arg1); /* shape of our complex numbers */
|
|
|
812 |
floating_variety real_fv = f_float_of_complex(complex_shape);
|
|
|
813 |
shape real_shape = f_floating(real_fv);
|
|
|
814 |
floating_variety complex_fv = f_complex_of_float(real_shape);
|
|
|
815 |
|
|
|
816 |
exp z1 = me_startid(complex_shape, arg1, 0);
|
|
|
817 |
exp z2 = me_startid(complex_shape, arg2, 0);
|
|
|
818 |
|
|
|
819 |
exp x1 = f_real_part (me_obtain(z1)); /* re(arg1) */
|
|
|
820 |
exp x2 = f_real_part (me_obtain(z2)); /* re(arg2) */
|
|
|
821 |
exp y1 = f_imaginary_part(me_obtain(z1)); /* im(arg1) */
|
|
|
822 |
exp y2 = f_imaginary_part(me_obtain(z2)); /* im(arg2) */
|
|
|
823 |
|
|
|
824 |
exp minus_re = f_floating_minus(ov_err, x1, x2);
|
|
|
825 |
exp minus_im = f_floating_minus(ov_err, y1, y2);
|
|
|
826 |
exp make_comp = f_make_complex(complex_fv, minus_re, minus_im);
|
|
|
827 |
|
|
|
828 |
z2 = me_complete_id(z2, make_comp);
|
|
|
829 |
z1 = me_complete_id(z1, z2);
|
|
|
830 |
|
|
|
831 |
return z1;
|
|
|
832 |
};
|
|
|
833 |
#endif
|
|
|
834 |
#if ishppa
|
|
|
835 |
{
|
|
|
836 |
exp r = hold_check(me_b1(ov_err, arg1, arg2, fminus_tag));
|
|
|
837 |
if (!optop(r) && name(sh(r))==doublehd) {
|
|
|
838 |
exp id = me_startid(sh(r),r,0);
|
|
|
839 |
exp tmp = me_complete_id(id,me_obtain(id));
|
|
|
840 |
return tmp;
|
|
|
841 |
}
|
|
|
842 |
else
|
|
|
843 |
return r;
|
|
|
844 |
}
|
|
|
845 |
#endif
|
|
|
846 |
return hold_check(me_b1(ov_err, arg1, arg2, fminus_tag));
|
|
|
847 |
}
|
|
|
848 |
|
|
|
849 |
|
|
|
850 |
exp f_floating_mult
|
|
|
851 |
PROTO_N ( (ov_err, arg1) )
|
|
|
852 |
PROTO_T ( error_treatment ov_err X exp_list arg1 )
|
|
|
853 |
{
|
|
|
854 |
exp first = arg1.start;
|
|
|
855 |
exp r = getexp (sh(first), nilexp, 0, first,
|
|
|
856 |
nilexp,
|
|
|
857 |
0, 0, fmult_tag);
|
|
|
858 |
if (name(sh(first)) == bothd || arg1.number == 1)
|
|
|
859 |
return first;
|
|
|
860 |
clear_exp_list(arg1);
|
|
|
861 |
seterrhandle(r, ov_err.err_code);
|
|
|
862 |
if (isov(r))
|
|
|
863 |
setjmp_dest(r, get_lab(ov_err.jmp_dest));
|
|
|
864 |
|
|
|
865 |
#if check_shape
|
|
|
866 |
{exp t = first;
|
|
|
867 |
while (1)
|
|
|
868 |
{
|
|
|
869 |
if (! ((is_float(sh(t)) || is_complex(sh(t))) && eq_shape(sh(t), sh(first))) )
|
|
|
870 |
failer(CHSH_FLMULT);
|
|
|
871 |
if (t == arg1.end)
|
|
|
872 |
break;
|
|
|
873 |
t = bro(t);
|
|
|
874 |
if (name(sh(t)) == bothd)
|
|
|
875 |
return t;
|
|
|
876 |
};
|
|
|
877 |
};
|
|
|
878 |
#endif
|
|
|
879 |
|
|
|
880 |
/* PAB changes - 19 October 1994 */
|
|
|
881 |
#if substitute_complex
|
|
|
882 |
if (is_complex(sh(arg1.start))) {
|
|
|
883 |
|
|
|
884 |
shape complex_shape = sh(arg1.start); /* shape of our complex numbers */
|
|
|
885 |
floating_variety real_fv = f_float_of_complex(complex_shape);
|
|
|
886 |
shape real_shape = f_floating(real_fv);
|
|
|
887 |
floating_variety complex_fv = f_complex_of_float(real_shape);
|
|
|
888 |
|
|
|
889 |
exp x1, y1, x2, y2, z1, z1_re, z1_im, t, link_next, prod_re, prod_im;
|
|
|
890 |
|
|
|
891 |
#if 0
|
|
|
892 |
arg1 = reorder_list(arg1, 1); /* reorder so constants are at the front */
|
|
|
893 |
#endif
|
|
|
894 |
|
|
|
895 |
z1 = me_startid(complex_shape, arg1.start, 0);
|
|
|
896 |
|
|
|
897 |
z1_re = f_real_part (me_obtain(z1)); /* re(arg1.first) */
|
|
|
898 |
z1_im = f_imaginary_part(me_obtain(z1)); /* im(arg1.first) */
|
|
|
899 |
|
|
|
900 |
x1 = push(z1, me_startid(real_shape, z1_re, 0));
|
|
|
901 |
y1 = push(x1, me_startid(real_shape, z1_im, 0));
|
|
|
902 |
|
|
|
903 |
t = arg1.start;
|
|
|
904 |
|
|
|
905 |
while (t != arg1.end) {
|
|
|
906 |
|
|
|
907 |
t = bro(t);
|
|
|
908 |
z1 = push(y1, me_startid(complex_shape, t, 0));
|
|
|
909 |
|
|
|
910 |
z1_re = f_real_part (me_obtain(z1)); /* contents of next */
|
|
|
911 |
z1_im = f_imaginary_part(me_obtain(z1)); /* list element */
|
|
|
912 |
|
|
|
913 |
x2 = push(z1, me_startid(real_shape, z1_re, 0));
|
|
|
914 |
y2 = push(x2, me_startid(real_shape, z1_im, 0));
|
|
|
915 |
|
|
|
916 |
if (eq_exp(x1,x2) && eq_exp(y1,y2)) {
|
|
|
917 |
|
|
|
918 |
exp minus_x1_x2 = f_floating_minus(ov_err, me_obtain(x1), me_obtain(x2));
|
|
|
919 |
exp plus_x1_x2 = f_bin_floating_plus(ov_err, me_obtain(x1), me_obtain(x2));
|
|
|
920 |
exp mult_x1_y1 = f_bin_floating_mult(ov_err, me_obtain(x1), me_obtain(y1));
|
|
|
921 |
|
|
|
922 |
prod_re = f_bin_floating_mult(ov_err, minus_x1_x2, plus_x1_x2);
|
|
|
923 |
prod_im = f_bin_floating_plus(ov_err, mult_x1_y1, mult_x1_y1);
|
|
|
924 |
}
|
|
|
925 |
|
|
|
926 |
else
|
|
|
927 |
|
|
|
928 |
{
|
|
|
929 |
exp mult_x1_x2 = f_bin_floating_mult(ov_err, me_obtain(x1), me_obtain(x2));
|
|
|
930 |
exp mult_y1_y2 = f_bin_floating_mult(ov_err, me_obtain(y1), me_obtain(y2));
|
|
|
931 |
exp mult_x1_y2 = f_bin_floating_mult(ov_err, me_obtain(x1), me_obtain(y2));
|
|
|
932 |
exp mult_x2_y1 = f_bin_floating_mult(ov_err, me_obtain(x2), me_obtain(y1));
|
|
|
933 |
|
|
|
934 |
prod_re = f_floating_minus(ov_err, mult_x1_x2, mult_y1_y2);
|
|
|
935 |
prod_im = f_bin_floating_plus(ov_err, mult_x1_y2, mult_x2_y1);
|
|
|
936 |
}
|
|
|
937 |
|
|
|
938 |
x1 = push(y2, me_startid(real_shape, prod_re, 0));
|
|
|
939 |
y1 = push(x1, me_startid(real_shape, prod_im, 0));
|
|
|
940 |
}
|
|
|
941 |
|
|
|
942 |
link_next = f_make_complex(complex_fv, me_obtain(x1), me_obtain(y1));
|
|
|
943 |
|
|
|
944 |
return me_complete_chain(y1, arg1.start, link_next);
|
|
|
945 |
}
|
|
|
946 |
#endif
|
|
|
947 |
setfather (r, arg1.end);
|
|
|
948 |
#if ishppa
|
|
|
949 |
if (!optop(r) && name(sh(r))==doublehd) {
|
|
|
950 |
exp id = me_startid(sh(r),r,0);
|
|
|
951 |
exp tmp = me_complete_id(id,me_obtain(id));
|
|
|
952 |
return tmp;
|
|
|
953 |
}
|
|
|
954 |
else
|
|
|
955 |
#endif
|
|
|
956 |
return r;
|
|
|
957 |
}
|
|
|
958 |
|
|
|
959 |
|
|
|
960 |
exp f_floating_negate
|
|
|
961 |
PROTO_N ( (ov_err, arg1) )
|
|
|
962 |
PROTO_T ( error_treatment ov_err X exp arg1 )
|
|
|
963 |
{
|
|
|
964 |
if (name(sh(arg1)) == bothd)
|
|
|
965 |
return arg1;
|
|
|
966 |
|
|
|
967 |
#if check_shape
|
|
|
968 |
if (!is_float(sh(arg1)) && !is_complex(sh(arg1)))
|
|
|
969 |
failer(CHSH_FLNEGATE);
|
|
|
970 |
#endif
|
|
|
971 |
|
|
|
972 |
/* PAB changes - 18 October 1994 */
|
|
|
973 |
#if substitute_complex
|
|
|
974 |
if (is_complex(sh(arg1))) {
|
|
|
975 |
|
|
|
976 |
shape complex_shape = sh(arg1); /* shape of our complex numbers */
|
|
|
977 |
floating_variety real_fv = f_float_of_complex(complex_shape);
|
|
|
978 |
shape real_shape = f_floating(real_fv);
|
|
|
979 |
floating_variety complex_fv = f_complex_of_float(real_shape);
|
|
|
980 |
|
|
|
981 |
exp c1 = me_startid(complex_shape, arg1, 0);
|
|
|
982 |
|
|
|
983 |
exp obtain1_c1 = hold_check(me_obtain(c1)); /* contents of arg1 */
|
|
|
984 |
exp obtain2_c1 = hold_check(me_obtain(c1));
|
|
|
985 |
|
|
|
986 |
exp x1 = f_real_part(obtain1_c1); /* re(arg1) */
|
|
|
987 |
exp y1 = f_imaginary_part(obtain2_c1); /* im(arg1) */
|
|
|
988 |
|
|
|
989 |
exp neg_re = f_floating_negate(ov_err, x1); /* - re(arg1) */
|
|
|
990 |
exp neg_im = f_floating_negate(ov_err, y1); /* - im(arg1) */
|
|
|
991 |
exp make_comp = f_make_complex(complex_fv, neg_re, neg_im);
|
|
|
992 |
|
|
|
993 |
c1 = me_complete_id(c1, make_comp);
|
|
|
994 |
|
|
|
995 |
return c1;
|
|
|
996 |
};
|
|
|
997 |
#endif
|
|
|
998 |
#if ishppa
|
|
|
999 |
{
|
|
|
1000 |
exp r = hold_check(me_u1(ov_err, arg1, fneg_tag));
|
|
|
1001 |
if (!optop(r) && name(sh(r))==doublehd) {
|
|
|
1002 |
exp id = me_startid(sh(r),r,0);
|
|
|
1003 |
exp tmp = me_complete_id(id,me_obtain(id));
|
|
|
1004 |
return tmp;
|
|
|
1005 |
}
|
|
|
1006 |
else
|
|
|
1007 |
return r;
|
|
|
1008 |
}
|
|
|
1009 |
#endif
|
|
|
1010 |
return hold_check(me_u1(ov_err, arg1, fneg_tag));
|
|
|
1011 |
}
|
|
|
1012 |
|
|
|
1013 |
|
|
|
1014 |
exp f_floating_plus
|
|
|
1015 |
PROTO_N ( (ov_err, arg1) )
|
|
|
1016 |
PROTO_T ( error_treatment ov_err X exp_list arg1 )
|
|
|
1017 |
{
|
|
|
1018 |
exp first = arg1.start;
|
|
|
1019 |
exp r = getexp (sh(first), nilexp, 0, first,
|
|
|
1020 |
nilexp, 0, 0, fplus_tag);
|
|
|
1021 |
if (name(sh(first)) == bothd || arg1.number == 1)
|
|
|
1022 |
return first;
|
|
|
1023 |
clear_exp_list(arg1);
|
|
|
1024 |
seterrhandle(r, ov_err.err_code);
|
|
|
1025 |
if (isov(r))
|
|
|
1026 |
setjmp_dest(r, get_lab(ov_err.jmp_dest));
|
|
|
1027 |
|
|
|
1028 |
#if check_shape
|
|
|
1029 |
{exp t = first;
|
|
|
1030 |
while (1)
|
|
|
1031 |
{
|
|
|
1032 |
if (! ((is_float(sh(t)) || is_complex(sh(t))) && eq_shape(sh(t), sh(first))) )
|
|
|
1033 |
failer(CHSH_FLPLUS);
|
|
|
1034 |
if (t == arg1.end)
|
|
|
1035 |
break;
|
|
|
1036 |
t = bro(t);
|
|
|
1037 |
if (name(sh(t)) == bothd)
|
|
|
1038 |
return t;
|
|
|
1039 |
};
|
|
|
1040 |
};
|
|
|
1041 |
#endif
|
|
|
1042 |
|
|
|
1043 |
/* PAB changes - 18 October 1994 */
|
|
|
1044 |
#if substitute_complex
|
|
|
1045 |
if (is_complex(sh(arg1.start))) {
|
|
|
1046 |
|
|
|
1047 |
exp z1, z2, x1, y1, x2, y2, make_comp, t;
|
|
|
1048 |
|
|
|
1049 |
shape complex_shape = sh(arg1.start); /* shape of our complex numbers */
|
|
|
1050 |
floating_variety real_fv = f_float_of_complex(complex_shape);
|
|
|
1051 |
shape real_shape = f_floating(real_fv);
|
|
|
1052 |
floating_variety complex_fv = f_complex_of_float(real_shape);
|
|
|
1053 |
|
|
|
1054 |
#if 0
|
|
|
1055 |
arg1 = reorder_list(arg1, 1); /* reorder so constants are at the front */
|
|
|
1056 |
#endif
|
|
|
1057 |
|
|
|
1058 |
z1 = me_startid(complex_shape, arg1.start, 0);
|
|
|
1059 |
|
|
|
1060 |
x1 = f_real_part (me_obtain(z1)); /* re(arg1.first) */
|
|
|
1061 |
y1 = f_imaginary_part(me_obtain(z1)); /* im(arg1.first) */
|
|
|
1062 |
|
|
|
1063 |
t=arg1.start;
|
|
|
1064 |
z2 = z1; /* start chain of idents */
|
|
|
1065 |
|
|
|
1066 |
while (t != arg1.end) {
|
|
|
1067 |
|
|
|
1068 |
t = bro(t);
|
|
|
1069 |
z2 = push(z2, me_startid(complex_shape, t, 0));
|
|
|
1070 |
|
|
|
1071 |
x2 = f_real_part (me_obtain(z2)); /* contents of next */
|
|
|
1072 |
y2 = f_imaginary_part(me_obtain(z2)); /* list element */
|
|
|
1073 |
|
|
|
1074 |
x1 = f_bin_floating_plus(ov_err, x1, x2); /* pass it this on */
|
|
|
1075 |
y1 = f_bin_floating_plus(ov_err, y1, y2); /* as new result */
|
|
|
1076 |
}
|
|
|
1077 |
|
|
|
1078 |
make_comp = f_make_complex(complex_fv, x1, y1);
|
|
|
1079 |
|
|
|
1080 |
return me_complete_chain(z2, arg1.start, make_comp);
|
|
|
1081 |
}
|
|
|
1082 |
#endif
|
|
|
1083 |
setfather (r, arg1.end);
|
|
|
1084 |
#if ishppa
|
|
|
1085 |
if (!optop(r) && name(sh(r))==doublehd) {
|
|
|
1086 |
exp id = me_startid(sh(r),r,0);
|
|
|
1087 |
exp tmp = me_complete_id(id,me_obtain(id));
|
|
|
1088 |
return tmp;
|
|
|
1089 |
}
|
|
|
1090 |
else
|
|
|
1091 |
#endif
|
|
|
1092 |
return r;
|
|
|
1093 |
}
|
|
|
1094 |
|
|
|
1095 |
|
|
|
1096 |
exp f_floating_test
|
|
|
1097 |
PROTO_N ( (prob, flpt_err, nt, dest, arg1, arg2) )
|
|
|
1098 |
PROTO_T ( nat_option prob X error_treatment flpt_err X ntest nt X label dest X exp arg1 X exp arg2 )
|
|
|
1099 |
{
|
|
|
1100 |
if (name(sh(arg1)) == bothd)
|
|
|
1101 |
{ kill_exp(arg2,arg2); return arg1; }
|
|
|
1102 |
if (name(sh(arg2)) == bothd)
|
|
|
1103 |
{ kill_exp(arg1,arg1); return arg2; }
|
|
|
1104 |
|
|
|
1105 |
#if check_shape
|
|
|
1106 |
if (! ((is_float(sh(arg1)) || is_complex(sh(arg1))) && eq_shape(sh(arg1), sh(arg2))) )
|
|
|
1107 |
failer(CHSH_FLTEST);
|
|
|
1108 |
#endif
|
|
|
1109 |
|
|
|
1110 |
/* PAB changes - 18 October 1994 */
|
|
|
1111 |
#if substitute_complex
|
|
|
1112 |
if (is_complex(sh(arg1))) { /* is arg1 a complex number ? */
|
|
|
1113 |
|
|
|
1114 |
shape complex_shape = sh(arg1); /* shape of our complex numbers */
|
|
|
1115 |
exp z1 = me_startid(complex_shape, arg1, 0);
|
|
|
1116 |
exp z2 = me_startid(complex_shape, arg2, 0);
|
|
|
1117 |
|
|
|
1118 |
exp obtain1_z1 = hold_check(me_obtain(z1)); /* contents of arg1 */
|
|
|
1119 |
exp obtain2_z1 = hold_check(me_obtain(z1));
|
|
|
1120 |
exp obtain1_z2 = hold_check(me_obtain(z2)); /* contents of arg2 */
|
|
|
1121 |
exp obtain2_z2 = hold_check(me_obtain(z2));
|
|
|
1122 |
|
|
|
1123 |
exp x1 = f_real_part (obtain1_z1); /* re(arg1) */
|
|
|
1124 |
exp x2 = f_real_part (obtain1_z2); /* re(arg2) */
|
|
|
1125 |
exp y1 = f_imaginary_part(obtain2_z1); /* im(arg1) */
|
|
|
1126 |
exp y2 = f_imaginary_part(obtain2_z2); /* im(arg2) */
|
|
|
1127 |
|
|
|
1128 |
#if check_shape
|
|
|
1129 |
if ((nt != f_equal) && (nt != f_not_equal))
|
|
|
1130 |
failer(CHSH_FLTEST);
|
|
|
1131 |
#endif
|
|
|
1132 |
|
|
|
1133 |
if (nt == f_equal) { /* equality of z1 and z2 */
|
|
|
1134 |
|
|
|
1135 |
exp test1 = f_floating_test (prob, flpt_err, f_equal, dest, x1, x2);
|
|
|
1136 |
exp test2 = f_floating_test (prob, flpt_err, f_equal, dest, y1, y2);
|
|
|
1137 |
|
|
|
1138 |
exp seq_zero = hold_check(me_u2(test1, 0));
|
|
|
1139 |
exp seq = hold_check(me_b3(sh(test2), seq_zero, test2, seq_tag));
|
|
|
1140 |
z2 = me_complete_id(z2, seq);
|
|
|
1141 |
|
|
|
1142 |
} else { /* inequality of z1 and z2 */
|
|
|
1143 |
|
|
|
1144 |
exp seq, conditional;
|
|
|
1145 |
|
|
|
1146 |
exp top_cell = me_l1(f_top, top_tag);
|
|
|
1147 |
exp alt_labst = hold_check(me_b3(f_top, me_null(f_top,0,clear_tag),
|
|
|
1148 |
top_cell, labst_tag));
|
|
|
1149 |
|
|
|
1150 |
exp test1 = f_floating_test (prob, flpt_err, f_equal,
|
|
|
1151 |
make_label(alt_labst), x1, x2);
|
|
|
1152 |
exp test2 = f_floating_test (prob, flpt_err, f_not_equal,
|
|
|
1153 |
dest, y1, y2);
|
|
|
1154 |
exp seq_zero = hold_check(me_b2(test1, test2, 0));
|
|
|
1155 |
|
|
|
1156 |
seq = hold_check(me_b3(f_bottom, seq_zero, f_make_top(), seq_tag));
|
|
|
1157 |
|
|
|
1158 |
conditional = hold_check(me_b3(f_top,
|
|
|
1159 |
seq, alt_labst, cond_tag));
|
|
|
1160 |
|
|
|
1161 |
z2 = me_complete_id(z2, conditional);
|
|
|
1162 |
}
|
|
|
1163 |
z1 = me_complete_id(z1, z2);
|
|
|
1164 |
|
|
|
1165 |
return z1;
|
|
|
1166 |
}
|
|
|
1167 |
#endif
|
|
|
1168 |
return me_q2(prob, flpt_err, nt, dest, arg1, arg2, test_tag);
|
|
|
1169 |
}
|
|
|
1170 |
|
|
|
1171 |
|
|
|
1172 |
|
|
|
1173 |
exp f_imaginary_part
|
|
|
1174 |
PROTO_N ( (arg1) )
|
|
|
1175 |
PROTO_T ( exp arg1 )
|
|
|
1176 |
{
|
|
|
1177 |
shape real_shape;
|
|
|
1178 |
|
|
|
1179 |
if (name(sh(arg1)) == bothd)
|
|
|
1180 |
return arg1;
|
|
|
1181 |
#if check_shape
|
|
|
1182 |
if (!is_complex(sh(arg1)))
|
|
|
1183 |
failer(CHSH_IMAG);
|
|
|
1184 |
#endif
|
|
|
1185 |
|
|
|
1186 |
/* PAB changes - 25 May 1995 */
|
|
|
1187 |
real_shape = f_floating(f_float_of_complex(sh(arg1)));
|
|
|
1188 |
#if substitute_complex
|
|
|
1189 |
{
|
|
|
1190 |
exp t = me_u3(real_shape, arg1, field_tag);
|
|
|
1191 |
no(t) = shape_size(real_shape);
|
|
|
1192 |
return hold_check(t);
|
|
|
1193 |
}
|
|
|
1194 |
#else
|
|
|
1195 |
return me_u3(real_shape, arg1, imag_tag);
|
|
|
1196 |
#endif
|
|
|
1197 |
}
|
|
|
1198 |
|
|
|
1199 |
|
|
|
1200 |
exp f_real_part
|
|
|
1201 |
PROTO_N ( (arg1) )
|
|
|
1202 |
PROTO_T ( exp arg1 )
|
|
|
1203 |
{
|
|
|
1204 |
shape real_shape;
|
|
|
1205 |
|
|
|
1206 |
if (name(sh(arg1)) == bothd)
|
|
|
1207 |
return arg1;
|
|
|
1208 |
#if check_shape
|
|
|
1209 |
if (!is_complex(sh(arg1)))
|
|
|
1210 |
failer(CHSH_REAL);
|
|
|
1211 |
#endif
|
|
|
1212 |
|
|
|
1213 |
/* PAB changes - 25 May 1995 */
|
|
|
1214 |
real_shape = f_floating(f_float_of_complex(sh(arg1)));
|
|
|
1215 |
#if substitute_complex
|
|
|
1216 |
{
|
|
|
1217 |
exp t = me_u3(real_shape, arg1, field_tag);
|
|
|
1218 |
no(t) = 0;
|
|
|
1219 |
return hold_check(t);
|
|
|
1220 |
}
|
|
|
1221 |
#else
|
|
|
1222 |
return me_u3(real_shape, arg1, realpart_tag);
|
|
|
1223 |
#endif
|
|
|
1224 |
}
|
|
|
1225 |
|
|
|
1226 |
|
|
|
1227 |
|
|
|
1228 |
exp f_make_complex
|
|
|
1229 |
PROTO_N ( (f, arg1, arg2) )
|
|
|
1230 |
PROTO_T ( floating_variety f X exp arg1 X exp arg2 )
|
|
|
1231 |
{
|
|
|
1232 |
if (name(sh(arg1)) == bothd)
|
|
|
1233 |
{ kill_exp(arg2,arg2); return arg1; }
|
|
|
1234 |
if (name(sh(arg2)) == bothd)
|
|
|
1235 |
{ kill_exp(arg1,arg1); return arg2; }
|
|
|
1236 |
|
|
|
1237 |
#if check_shape
|
|
|
1238 |
if (!is_float(sh(arg1)) || !is_float(sh(arg2)) ||
|
|
|
1239 |
!eq_shape(sh(arg1), sh(arg2)) || f != f_complex_of_float(sh(arg1)))
|
|
|
1240 |
failer(CHSH_MAKE_COMPLEX);
|
|
|
1241 |
#endif
|
|
|
1242 |
|
|
|
1243 |
|
|
|
1244 |
/* PAB changes - 19 October 1994 */
|
|
|
1245 |
#if substitute_complex
|
|
|
1246 |
switch (f) {
|
|
|
1247 |
case shcomplexfv:
|
|
|
1248 |
{
|
|
|
1249 |
shape off_set = f_offset(SHREAL_ALIGN, SHREAL_ALIGN);
|
|
|
1250 |
exp val1 = me_shint(off_set, 0);
|
|
|
1251 |
exp val2 = me_shint(off_set, SHREAL_SZ);
|
|
|
1252 |
exp sz = me_shint(off_set, SHREAL_SZ + SHREAL_SZ);
|
|
|
1253 |
exp r = getexp(f_compound(sz), nilexp, 0, val1, nilexp, 0, 0, compound_tag);
|
|
|
1254 |
|
|
|
1255 |
setbro(val1, arg1);
|
|
|
1256 |
clearlast(val1);
|
|
|
1257 |
setbro(arg1, val2);
|
|
|
1258 |
clearlast(arg1);
|
|
|
1259 |
setbro(val2, arg2);
|
|
|
1260 |
clearlast(val2);
|
|
|
1261 |
setfather(r, arg2);
|
|
|
1262 |
return hold_check(r);
|
|
|
1263 |
}
|
|
|
1264 |
case complexfv:
|
|
|
1265 |
{
|
|
|
1266 |
shape off_set = f_offset(REAL_ALIGN, REAL_ALIGN);
|
|
|
1267 |
exp val1 = me_shint(off_set, 0);
|
|
|
1268 |
exp val2 = me_shint(off_set, REAL_SZ);
|
|
|
1269 |
exp sz = me_shint(off_set, REAL_SZ + REAL_SZ);
|
|
|
1270 |
exp r = getexp(f_compound(sz), nilexp, 0, val1, nilexp, 0, 0, compound_tag);
|
|
|
1271 |
|
|
|
1272 |
setbro(val1, arg1);
|
|
|
1273 |
clearlast(val1);
|
|
|
1274 |
setbro(arg1, val2);
|
|
|
1275 |
clearlast(arg1);
|
|
|
1276 |
setbro(val2, arg2);
|
|
|
1277 |
clearlast(val2);
|
|
|
1278 |
setfather(r, arg2);
|
|
|
1279 |
return hold_check(r);
|
|
|
1280 |
}
|
|
|
1281 |
case complexdoublefv:
|
|
|
1282 |
{
|
|
|
1283 |
shape off_set = f_offset(DOUBLE_ALIGN, DOUBLE_ALIGN);
|
|
|
1284 |
exp val1 = me_shint(off_set, 0);
|
|
|
1285 |
exp val2 = me_shint(off_set, DOUBLE_SZ);
|
|
|
1286 |
exp sz = me_shint(off_set, DOUBLE_SZ + DOUBLE_SZ);
|
|
|
1287 |
exp r = getexp(f_compound(sz), nilexp, 0, val1, nilexp, 0, 0, compound_tag);
|
|
|
1288 |
|
|
|
1289 |
setbro(val1, arg1);
|
|
|
1290 |
clearlast(val1);
|
|
|
1291 |
setbro(arg1, val2);
|
|
|
1292 |
clearlast(arg1);
|
|
|
1293 |
setbro(val2, arg2);
|
|
|
1294 |
clearlast(val2);
|
|
|
1295 |
setfather(r, arg2);
|
|
|
1296 |
return hold_check(r);
|
|
|
1297 |
}
|
|
|
1298 |
default:
|
|
|
1299 |
{
|
|
|
1300 |
failer("Illegal floating_variety for make_complex_tag\n");
|
|
|
1301 |
}
|
|
|
1302 |
}
|
|
|
1303 |
#endif
|
|
|
1304 |
return me_b3(f_floating(f), arg1, arg2,
|
|
|
1305 |
make_complex_tag);
|
|
|
1306 |
}
|
|
|
1307 |
|
|
|
1308 |
|
|
|
1309 |
#if FBASE == 10
|
|
|
1310 |
|
|
|
1311 |
exp f_make_floating
|
|
|
1312 |
PROTO_N ( (fv, rm, sign, mantissa, base, expo) )
|
|
|
1313 |
PROTO_T ( floating_variety fv X rounding_mode rm X bool sign X string mantissa X nat base X signed_nat expo )
|
|
|
1314 |
{
|
|
|
1315 |
int ignore_zero = 1;
|
|
|
1316 |
int lg = mantissa.number;
|
|
|
1317 |
flpt f = new_flpt ();
|
|
|
1318 |
int sig_digs = 0;
|
|
|
1319 |
int i;
|
|
|
1320 |
int point = 0;
|
|
|
1321 |
char ch;
|
|
|
1322 |
int exponent = snatint(expo);
|
|
|
1323 |
|
|
|
1324 |
if (PIC_code)
|
|
|
1325 |
proc_externs = 1;
|
|
|
1326 |
|
|
|
1327 |
if (snatneg(expo))
|
|
|
1328 |
exponent = - exponent;
|
|
|
1329 |
|
|
|
1330 |
if (natint(base) != 10)
|
|
|
1331 |
failer (BASE_NOT_10);
|
|
|
1332 |
for (i = 0; i < MANT_SIZE; ++i)
|
|
|
1333 |
(flptnos[f].mant)[i] = 0;
|
|
|
1334 |
|
|
|
1335 |
for (i = 0; i < lg; ++i) {
|
|
|
1336 |
ch = mantissa.ints.chars[i];
|
|
|
1337 |
if (ch == '0' && ignore_zero) {
|
|
|
1338 |
if (point)
|
|
|
1339 |
--exponent;
|
|
|
1340 |
}
|
|
|
1341 |
else {
|
|
|
1342 |
if (ch == '.')
|
|
|
1343 |
point = 1;
|
|
|
1344 |
else {
|
|
|
1345 |
ignore_zero = 0;
|
|
|
1346 |
if (!point)
|
|
|
1347 |
++exponent;
|
|
|
1348 |
if (sig_digs < MANT_SIZE)
|
|
|
1349 |
(flptnos[f].mant)[sig_digs++] = ch - '0';
|
|
|
1350 |
};
|
|
|
1351 |
};
|
|
|
1352 |
};
|
|
|
1353 |
|
|
|
1354 |
if (ignore_zero) {
|
|
|
1355 |
flptnos[f].exp = 0;
|
|
|
1356 |
flptnos[f].sign = 0;
|
|
|
1357 |
}
|
|
|
1358 |
else {
|
|
|
1359 |
flptnos[f].exp = exponent - 1;
|
|
|
1360 |
flptnos[f].sign = (sign ? -1 : 1);
|
|
|
1361 |
};
|
|
|
1362 |
|
|
|
1363 |
if (flptnos[f].exp > target_dbl_maxexp)
|
|
|
1364 |
failer (BIG_FLPT);
|
|
|
1365 |
|
|
|
1366 |
return (getexp (f_floating(fv), nilexp, 0, nilexp, nilexp,
|
|
|
1367 |
0, f, real_tag));
|
|
|
1368 |
|
|
|
1369 |
}
|
|
|
1370 |
|
|
|
1371 |
#else
|
|
|
1372 |
|
|
|
1373 |
exp f_make_floating
|
|
|
1374 |
PROTO_N ( (fv, rm, sign, mantissa, natbase, expo) )
|
|
|
1375 |
PROTO_T ( floating_variety fv X rounding_mode rm X bool sign X string mantissa X nat natbase X signed_nat expo )
|
|
|
1376 |
{
|
|
|
1377 |
int ignore_zero = 1;
|
|
|
1378 |
int lg = mantissa.number;
|
|
|
1379 |
flpt f = new_flpt ();
|
|
|
1380 |
int has_sig_digs = 0;
|
|
|
1381 |
int i;
|
|
|
1382 |
int point = 0;
|
|
|
1383 |
int exponent = snatint(expo);
|
|
|
1384 |
flt fr;
|
|
|
1385 |
int base = natint(natbase);
|
|
|
1386 |
|
|
|
1387 |
|
|
|
1388 |
flt_zero(&fr);
|
|
|
1389 |
|
|
|
1390 |
if (PIC_code)
|
|
|
1391 |
proc_externs = 1;
|
|
|
1392 |
|
|
|
1393 |
if (base != 10 && base != 16 && base !=8 && base != 2 && base != 4)
|
|
|
1394 |
failer (BAD_BASE);
|
|
|
1395 |
|
|
|
1396 |
if (snatneg(expo))
|
|
|
1397 |
exponent = - exponent;
|
|
|
1398 |
|
|
|
1399 |
for (i = 0; i < lg; ++i) {
|
|
|
1400 |
char c = mantissa.ints.chars[i];
|
|
|
1401 |
if (c != '0' || !ignore_zero) {
|
|
|
1402 |
ignore_zero = 0;
|
|
|
1403 |
if (c == '.')
|
|
|
1404 |
point = 1;
|
|
|
1405 |
else {
|
|
|
1406 |
c = c - '0';
|
|
|
1407 |
if (c != 0)
|
|
|
1408 |
has_sig_digs = 1;
|
|
|
1409 |
exponent -= point;
|
|
|
1410 |
flpt_newdig((unsigned int)c, &fr, base);
|
|
|
1411 |
};
|
|
|
1412 |
};
|
|
|
1413 |
};
|
|
|
1414 |
|
|
|
1415 |
if (ignore_zero) {
|
|
|
1416 |
fr.exp = 0;
|
|
|
1417 |
fr.sign = 0;
|
|
|
1418 |
}
|
|
|
1419 |
else {
|
|
|
1420 |
if (has_sig_digs)
|
|
|
1421 |
fr.sign = (sign ? -1 : 1);
|
|
|
1422 |
else
|
|
|
1423 |
fr.sign = 0;
|
|
|
1424 |
flpt_scale(exponent, &fr, base);
|
|
|
1425 |
};
|
|
|
1426 |
|
|
|
1427 |
|
|
|
1428 |
flpt_round((int)rm, flpt_bits((floating_variety)fv), &fr);
|
|
|
1429 |
|
|
|
1430 |
if (flpt_const_overflow_fail) {
|
|
|
1431 |
r2l r;
|
|
|
1432 |
r = real2longs_IEEE(&fr, fv);
|
|
|
1433 |
UNUSED(r);
|
|
|
1434 |
};
|
|
|
1435 |
|
|
|
1436 |
flptnos[f] = fr;
|
|
|
1437 |
|
|
|
1438 |
return (getexp (f_floating(fv), nilexp, 0, nilexp, nilexp,
|
|
|
1439 |
0, f, real_tag));
|
|
|
1440 |
|
|
|
1441 |
}
|
|
|
1442 |
|
|
|
1443 |
#endif
|
|
|
1444 |
|
|
|
1445 |
|
|
|
1446 |
|
|
|
1447 |
exp f_power
|
|
|
1448 |
PROTO_N ( (ov_err, arg1, arg2) )
|
|
|
1449 |
PROTO_T ( error_treatment ov_err X exp arg1 X exp arg2 )
|
|
|
1450 |
{
|
|
|
1451 |
if (name(sh(arg1)) == bothd)
|
|
|
1452 |
{ kill_exp(arg2,arg2); return arg1; }
|
|
|
1453 |
if (name(sh(arg2)) == bothd)
|
|
|
1454 |
{ kill_exp(arg1,arg1); return arg2; }
|
|
|
1455 |
#if check_shape
|
|
|
1456 |
if (!is_integer(sh(arg1)) || !is_integer(sh(arg2)))
|
|
|
1457 |
failer(CHSH_POWER);
|
|
|
1458 |
#endif
|
|
|
1459 |
|
|
|
1460 |
return real_power(ov_err, arg1, arg2);
|
|
|
1461 |
}
|
|
|
1462 |
|
|
|
1463 |
|
|
|
1464 |
exp f_round_with_mode
|
|
|
1465 |
PROTO_N ( (flpt_err, mode, r, arg1) )
|
|
|
1466 |
PROTO_T ( error_treatment flpt_err X rounding_mode mode X variety r X exp arg1 )
|
|
|
1467 |
{
|
|
|
1468 |
exp res;
|
|
|
1469 |
if (name(sh(arg1)) == bothd)
|
|
|
1470 |
return arg1;
|
|
|
1471 |
if (is_complex(sh(arg1))) {
|
|
|
1472 |
arg1 = f_real_part(arg1);
|
|
|
1473 |
}
|
|
|
1474 |
#if check_shape
|
|
|
1475 |
if (!is_float(sh(arg1)))
|
|
|
1476 |
failer(CHSH_ROUND);
|
|
|
1477 |
#endif
|
|
|
1478 |
#if !has64bits
|
|
|
1479 |
if ( shape_size(r)>32 && (name(arg1) != real_tag || flpt_err.err_code>=4) ) {
|
|
|
1480 |
int s = is_signed(r);
|
|
|
1481 |
char * fn;
|
|
|
1482 |
exp e;
|
|
|
1483 |
#if use_long_double
|
|
|
1484 |
arg1 = hold_check(
|
|
|
1485 |
f_change_floating_variety(f_impossible, 2, arg1));
|
|
|
1486 |
#else
|
|
|
1487 |
arg1 = hold_check(
|
|
|
1488 |
f_change_floating_variety(f_impossible, 1, arg1));
|
|
|
1489 |
#endif
|
|
|
1490 |
switch(mode) {
|
|
|
1491 |
case R2NEAR: fn = (s)?"__TDFUs_R2NEAR":"__TDFUu_R2NEAR"; break;
|
|
|
1492 |
case R2PINF: fn = (s)?"__TDFUs_R2PINF":"__TDFUu_R2PINF"; break;
|
|
|
1493 |
case R2NINF: fn = (s)?"__TDFUs_R2NINF":"__TDFUu_R2NINF"; break;
|
|
|
1494 |
case R2ZERO: fn = (s)?"__TDFUs_R2ZERO":"__TDFUu_R2ZERO"; break;
|
|
|
1495 |
default: fn = (s)?"__TDFUs_ASSTATE":"__TDFUu_R2ASSTATE";
|
|
|
1496 |
}
|
|
|
1497 |
e = TDFcallaux(flpt_err, arg1, fn, r);
|
|
|
1498 |
return (hold_check(e));
|
|
|
1499 |
}
|
|
|
1500 |
#endif
|
|
|
1501 |
#if ismips
|
|
|
1502 |
/* mips does not seem to get float->unsigned long right -
|
|
|
1503 |
so convert to signed long and adjust if too big*/
|
|
|
1504 |
else
|
|
|
1505 |
if (name(arg1)!=real_tag && shape_size(r)==32 && !is_signed(r) ) {
|
|
|
1506 |
floating_variety fa = (shape_size(sh(arg1))==32)?0:1;
|
|
|
1507 |
exp_list st;
|
|
|
1508 |
exp z;
|
|
|
1509 |
exp d1 = me_startid(r, arg1, 0);
|
|
|
1510 |
exp hldr = getexp(f_top, nilexp, 0, nilexp, nilexp, 0, 0, 0);
|
|
|
1511 |
exp lb = getexp(f_top, nilexp, 0, hldr, nilexp, 0, 0, labst_tag);
|
|
|
1512 |
|
|
|
1513 |
exp fmax = hold_check(f_float_int(f_impossible, fa,
|
|
|
1514 |
me_shint(ulongsh,0x80000000 )));
|
|
|
1515 |
exp d2 = me_startid(r, fmax, 0);
|
|
|
1516 |
exp tst = f_floating_test(no_nat_option,
|
|
|
1517 |
f_impossible, f_less_than, &lb,
|
|
|
1518 |
me_obtain(d1), me_obtain(d2));
|
|
|
1519 |
exp nconv = f_round_with_mode(flpt_err, mode, slongsh,
|
|
|
1520 |
me_obtain(d1));
|
|
|
1521 |
exp first; exp alt; exp cnd;
|
|
|
1522 |
st = new_exp_list(1);
|
|
|
1523 |
st = add_exp_list(st, tst, 0);
|
|
|
1524 |
first = f_sequence(st, f_change_variety(flpt_err, r, nconv));
|
|
|
1525 |
z = f_round_with_mode(flpt_err, mode, slongsh,
|
|
|
1526 |
f_floating_minus(f_impossible, me_obtain(d1), me_obtain(d2)));
|
|
|
1527 |
alt = f_plus(f_impossible,
|
|
|
1528 |
f_change_variety(f_impossible, r, z), me_shint(r, 0x80000000));
|
|
|
1529 |
cnd = f_conditional(&lb, first, alt);
|
|
|
1530 |
return me_complete_id(d1, me_complete_id(d2, cnd));
|
|
|
1531 |
|
|
|
1532 |
}
|
|
|
1533 |
#endif
|
|
|
1534 |
#if ispower
|
|
|
1535 |
if (name(arg1)!=real_tag || flpt_err.err_code>2) {
|
|
|
1536 |
if (architecture!=POWERPC_CODE)
|
|
|
1537 |
{
|
|
|
1538 |
exp id;
|
|
|
1539 |
exp apply1;
|
|
|
1540 |
exp apply2;
|
|
|
1541 |
long shp_sze = shape_size(f_integer(r));
|
|
|
1542 |
bool sgned = is_signed(f_integer(r));
|
|
|
1543 |
bool err = (flpt_err.err_code>2);
|
|
|
1544 |
char *nm ;
|
|
|
1545 |
char *nm_err;
|
|
|
1546 |
int power_mode;
|
|
|
1547 |
|
|
|
1548 |
/* Set up ident to hold arg1 */
|
|
|
1549 |
if (name(sh(arg1))==shrealhd)
|
|
|
1550 |
{
|
|
|
1551 |
arg1 = f_change_floating_variety(f_impossible,realfv,arg1);
|
|
|
1552 |
}
|
|
|
1553 |
id = me_startid(f_top,arg1,0);
|
|
|
1554 |
|
|
|
1555 |
/* Set up power_mode */
|
|
|
1556 |
switch (mode)
|
|
|
1557 |
{
|
|
|
1558 |
|
|
|
1559 |
case R2ZERO: power_mode = 0;break;
|
|
|
1560 |
case R2NEAR: power_mode = 1;break;
|
|
|
1561 |
case R2PINF: power_mode = 2;break;
|
|
|
1562 |
case R2NINF: power_mode = 3;break;
|
|
|
1563 |
default:power_mode = 1;break;
|
|
|
1564 |
}
|
|
|
1565 |
|
|
|
1566 |
/* Work out which functions to call */
|
|
|
1567 |
if (sgned)
|
|
|
1568 |
{
|
|
|
1569 |
nm = "__TDFrnd_sgned";
|
|
|
1570 |
nm_err = "__TDFerr_rnd_sgned";
|
|
|
1571 |
}
|
|
|
1572 |
else
|
|
|
1573 |
{
|
|
|
1574 |
nm = "__TDFrnd_unsgned";
|
|
|
1575 |
nm_err = "__TDFerr_rnd_unsgned";
|
|
|
1576 |
}
|
|
|
1577 |
|
|
|
1578 |
{
|
|
|
1579 |
exp_list pars2;
|
|
|
1580 |
exp_option no_var ;
|
|
|
1581 |
pars2 = new_exp_list(2);
|
|
|
1582 |
no_var.present = 0;
|
|
|
1583 |
pars2 = add_exp_list(pars2,me_obtain(id),0);
|
|
|
1584 |
pars2 = add_exp_list(pars2,me_shint(uwordsh,power_mode),1);
|
|
|
1585 |
apply2 = f_apply_proc(sgned?slongsh:ulongsh,me_obtain(find_named_tg(nm,f_proc)),pars2,no_var);
|
|
|
1586 |
}
|
|
|
1587 |
|
|
|
1588 |
if (err)
|
|
|
1589 |
{
|
|
|
1590 |
exp_list st;
|
|
|
1591 |
exp seq;
|
|
|
1592 |
exp pl;
|
|
|
1593 |
exp_list pars1;
|
|
|
1594 |
exp_option no_var;
|
|
|
1595 |
no_var.present = 0;
|
|
|
1596 |
|
|
|
1597 |
pars1 = new_exp_list(2);
|
|
|
1598 |
pars1 = add_exp_list(pars1,me_obtain(id),0);
|
|
|
1599 |
pars1 = add_exp_list(pars1,me_shint(uwordsh,power_mode),1);
|
|
|
1600 |
apply1 = f_apply_proc(f_top,me_obtain(find_named_tg(nm_err,f_proc)),pars1,no_var);
|
|
|
1601 |
|
|
|
1602 |
pl = f_plus(flpt_err,me_shint(slongsh,INT_MAX),me_obtain(find_named_tg("__TDFrnd_error",slongsh)));
|
|
|
1603 |
st = new_exp_list(2);
|
|
|
1604 |
st = add_exp_list(st,apply1,0);
|
|
|
1605 |
st = add_exp_list(st,pl,1);
|
|
|
1606 |
seq = f_sequence(st,apply2);
|
|
|
1607 |
id = me_complete_id(id,seq);
|
|
|
1608 |
}
|
|
|
1609 |
else
|
|
|
1610 |
{
|
|
|
1611 |
id = me_complete_id(id,apply2);
|
|
|
1612 |
}
|
|
|
1613 |
if (shp_sze <32)
|
|
|
1614 |
{
|
|
|
1615 |
id = f_change_variety(flpt_err,f_integer(r),id);
|
|
|
1616 |
}
|
|
|
1617 |
return id;
|
|
|
1618 |
}/*end ispower */
|
|
|
1619 |
}
|
|
|
1620 |
/* FALL THROUGH */
|
|
|
1621 |
#endif
|
|
|
1622 |
|
|
|
1623 |
res = getexp (f_integer(r), nilexp, 0, arg1, nilexp,
|
|
|
1624 |
0, 0, round_tag);
|
|
|
1625 |
setround_number(res, mode);
|
|
|
1626 |
seterrhandle(res, flpt_err.err_code);
|
|
|
1627 |
if (flpt_err.err_code == 4)
|
|
|
1628 |
setjmp_dest(res, get_lab(flpt_err.jmp_dest));
|
|
|
1629 |
setfather (res, arg1);
|
|
|
1630 |
return res;
|
|
|
1631 |
}
|
|
|
1632 |
|
|
|
1633 |
|
|
|
1634 |
|
|
|
1635 |
floating_variety f_flvar_parms
|
|
|
1636 |
PROTO_N ( (base, mantissa_digits, minimum_exponent, maximum_exponent) )
|
|
|
1637 |
PROTO_T ( nat base X nat mantissa_digits X nat minimum_exponent X nat maximum_exponent )
|
|
|
1638 |
{
|
|
|
1639 |
int b = natint(base);
|
|
|
1640 |
int mantdig = natint(mantissa_digits);
|
|
|
1641 |
int neg_minexp = natint(minimum_exponent);
|
|
|
1642 |
int maxexp = natint(maximum_exponent);
|
|
|
1643 |
|
|
|
1644 |
while (b !=2) {
|
|
|
1645 |
if ((b & 1) != 0) {
|
|
|
1646 |
failer("base in flvar_parms must be a power of 2");
|
|
|
1647 |
}
|
|
|
1648 |
mantdig+=mantdig;
|
|
|
1649 |
neg_minexp+=neg_minexp;
|
|
|
1650 |
maxexp+=maxexp;
|
|
|
1651 |
b = (b>>1);
|
|
|
1652 |
}
|
|
|
1653 |
|
|
|
1654 |
if (mantdig <= 24 && neg_minexp <= 126 &&
|
|
|
1655 |
maxexp <= 127)
|
|
|
1656 |
return (0);
|
|
|
1657 |
if (mantdig <= 53 && neg_minexp <= 1022 &&
|
|
|
1658 |
maxexp <= 1023)
|
|
|
1659 |
return (1);
|
|
|
1660 |
|
|
|
1661 |
#if use_long_double
|
|
|
1662 |
if (mantdig <= 64 && neg_minexp <= 16382 &&
|
|
|
1663 |
maxexp <= 16383)
|
|
|
1664 |
return (2);
|
|
|
1665 |
return (2);
|
|
|
1666 |
#else
|
|
|
1667 |
return 1;
|
|
|
1668 |
#endif
|
|
|
1669 |
}
|
|
|
1670 |
|
|
|
1671 |
|
|
|
1672 |
floating_variety f_complex_parms
|
|
|
1673 |
PROTO_N ( (base, mantissa_digits, minimum_exponent, maximum_exponent) )
|
|
|
1674 |
PROTO_T ( nat base X nat mantissa_digits X nat minimum_exponent X nat maximum_exponent )
|
|
|
1675 |
{
|
|
|
1676 |
return float_to_complex_var(f_flvar_parms(base, mantissa_digits,
|
|
|
1677 |
minimum_exponent, maximum_exponent));
|
|
|
1678 |
}
|
|
|
1679 |
|
|
|
1680 |
|
|
|
1681 |
void init_floating_variety
|
|
|
1682 |
PROTO_Z ()
|
|
|
1683 |
{
|
|
|
1684 |
shrealsh = getshape(0, const_al1, const_al1, SHREAL_ALIGN,
|
|
|
1685 |
SHREAL_SZ, shrealhd);
|
|
|
1686 |
realsh = getshape(0, const_al1, const_al1, REAL_ALIGN, REAL_SZ, realhd);
|
|
|
1687 |
doublesh = getshape(0, const_al1, const_al1, DOUBLE_ALIGN,
|
|
|
1688 |
DOUBLE_SZ, doublehd);
|
|
|
1689 |
#if substitute_complex
|
|
|
1690 |
shcomplexsh = getshape(0, const_al1, const_al1, SHREAL_ALIGN,
|
|
|
1691 |
2*SHREAL_SZ, cpdhd);
|
|
|
1692 |
complexsh = getshape(0, const_al1, const_al1, REAL_ALIGN,
|
|
|
1693 |
2*REAL_SZ, cpdhd);
|
|
|
1694 |
complexdoublesh = getshape(0, const_al1, const_al1, DOUBLE_ALIGN,
|
|
|
1695 |
2*DOUBLE_SZ, cpdhd);
|
|
|
1696 |
#else
|
|
|
1697 |
shcomplexsh = getshape(0, const_al1, const_al1, SHREAL_ALIGN,
|
|
|
1698 |
2*SHREAL_SZ, shcomplexhd);
|
|
|
1699 |
complexsh = getshape(0, const_al1, const_al1, REAL_ALIGN,
|
|
|
1700 |
2*REAL_SZ, complexhd);
|
|
|
1701 |
complexdoublesh = getshape(0, const_al1, const_al1, DOUBLE_ALIGN,
|
|
|
1702 |
2*DOUBLE_SZ, complexdoublehd);
|
|
|
1703 |
#endif
|
|
|
1704 |
return;
|
|
|
1705 |
}
|
|
|
1706 |
|
|
|
1707 |
|
|
|
1708 |
|
|
|
1709 |
floating_variety f_dummy_floating_variety;
|
|
|
1710 |
|
|
|
1711 |
floating_variety f_float_of_complex
|
|
|
1712 |
PROTO_N ( (sha) )
|
|
|
1713 |
PROTO_T ( shape sha )
|
|
|
1714 |
{
|
|
|
1715 |
int s = shape_size(sha)/2;
|
|
|
1716 |
if (s==SHREAL_SZ) return shrealfv;
|
|
|
1717 |
if (s==REAL_SZ) return realfv;
|
|
|
1718 |
if (s==DOUBLE_SZ) return doublefv;
|
|
|
1719 |
failer("Expecting a complex shape");
|
|
|
1720 |
|
|
|
1721 |
return f_dummy_floating_variety;
|
|
|
1722 |
}
|
|
|
1723 |
|
|
|
1724 |
floating_variety f_complex_of_float
|
|
|
1725 |
PROTO_N ( (sha) )
|
|
|
1726 |
PROTO_T ( shape sha )
|
|
|
1727 |
{
|
|
|
1728 |
int s = shape_size(sha);
|
|
|
1729 |
if (s==SHREAL_SZ) return shcomplexfv;
|
|
|
1730 |
if (s==REAL_SZ) return complexfv;
|
|
|
1731 |
if (s==DOUBLE_SZ) return complexdoublefv;
|
|
|
1732 |
failer("Expecting a floating shape");
|
|
|
1733 |
return f_dummy_floating_variety;
|
|
|
1734 |
}
|
|
|
1735 |
|
|
|
1736 |
floating_variety fv_of_shape
|
|
|
1737 |
PROTO_N ( (sha) )
|
|
|
1738 |
PROTO_T ( shape sha )
|
|
|
1739 |
{
|
|
|
1740 |
int s = shape_size(sha);
|
|
|
1741 |
if (s==SHREAL_SZ) return shrealfv;
|
|
|
1742 |
if (s==REAL_SZ) return realfv;
|
|
|
1743 |
if (s==DOUBLE_SZ) return doublefv;
|
|
|
1744 |
failer("Expecting a complex shape");
|
|
|
1745 |
|
|
|
1746 |
return f_dummy_floating_variety;
|
|
|
1747 |
}
|
|
|
1748 |
|
|
|
1749 |
|
|
|
1750 |
|
|
|
1751 |
static void square_x_iy
|
|
|
1752 |
PROTO_N ( (ov_err, arg1, arg2, arg3) )
|
|
|
1753 |
PROTO_T ( error_treatment ov_err X exp *arg1 X exp *arg2 X exp arg3 )
|
|
|
1754 |
{
|
|
|
1755 |
exp x = *arg1;
|
|
|
1756 |
exp y = *arg2;
|
|
|
1757 |
|
|
|
1758 |
exp obtain1_x = me_obtain(x);
|
|
|
1759 |
exp obtain2_x = me_obtain(x);
|
|
|
1760 |
exp obtain3_x = me_obtain(x);
|
|
|
1761 |
exp obtain1_y = me_obtain(y);
|
|
|
1762 |
exp obtain2_y = me_obtain(y);
|
|
|
1763 |
exp obtain3_y = me_obtain(y);
|
|
|
1764 |
|
|
|
1765 |
exp minus_x_y = f_floating_minus(ov_err, obtain1_x, obtain1_y);
|
|
|
1766 |
exp plus_x_y = f_bin_floating_plus(ov_err, obtain2_x, obtain2_y);
|
|
|
1767 |
exp mult_x_y = f_bin_floating_mult(ov_err, obtain3_x, obtain3_y);
|
|
|
1768 |
|
|
|
1769 |
exp tmp = push(arg3, me_startid(sh(x), mult_x_y, 0));
|
|
|
1770 |
|
|
|
1771 |
exp obtain1_tmp = hold_check(me_obtain(tmp));
|
|
|
1772 |
exp obtain2_tmp = hold_check(me_obtain(tmp));
|
|
|
1773 |
|
|
|
1774 |
exp answer_re = f_bin_floating_mult(ov_err, minus_x_y, plus_x_y);
|
|
|
1775 |
exp answer_im = f_bin_floating_plus(ov_err, obtain1_tmp, obtain2_tmp);
|
|
|
1776 |
|
|
|
1777 |
x = push(tmp, me_startid(sh(x), answer_re, 0));
|
|
|
1778 |
y = push(x, me_startid(sh(x), answer_im, 0));
|
|
|
1779 |
|
|
|
1780 |
*arg1 = x;
|
|
|
1781 |
*arg2 = y;
|
|
|
1782 |
|
|
|
1783 |
return;
|
|
|
1784 |
}
|
|
|
1785 |
|
|
|
1786 |
|
|
|
1787 |
static void mult_w_by_z
|
|
|
1788 |
PROTO_N ( (ov_err, arg1, arg2, arg3, arg4, arg5) )
|
|
|
1789 |
PROTO_T ( error_treatment ov_err X exp *arg1 X exp *arg2 X exp arg3 X exp arg4 X exp arg5 )
|
|
|
1790 |
{
|
|
|
1791 |
exp u = *arg1;
|
|
|
1792 |
exp v = *arg2;
|
|
|
1793 |
exp x = arg3;
|
|
|
1794 |
exp y = arg4;
|
|
|
1795 |
|
|
|
1796 |
exp obtain1_x = me_obtain(x);
|
|
|
1797 |
exp obtain2_x = me_obtain(x);
|
|
|
1798 |
exp obtain1_y = me_obtain(y);
|
|
|
1799 |
exp obtain2_y = me_obtain(y);
|
|
|
1800 |
|
|
|
1801 |
exp obtain1_u = me_obtain(u);
|
|
|
1802 |
exp obtain2_u = me_obtain(u);
|
|
|
1803 |
exp obtain1_v = me_obtain(v);
|
|
|
1804 |
exp obtain2_v = me_obtain(v);
|
|
|
1805 |
|
|
|
1806 |
exp mult_x_u = f_bin_floating_mult(ov_err, obtain1_x, obtain1_u);
|
|
|
1807 |
exp mult_x_v = f_bin_floating_mult(ov_err, obtain2_x, obtain1_v);
|
|
|
1808 |
exp mult_y_u = f_bin_floating_mult(ov_err, obtain1_y, obtain2_u);
|
|
|
1809 |
exp mult_y_v = f_bin_floating_mult(ov_err, obtain2_y, obtain2_v);
|
|
|
1810 |
|
|
|
1811 |
exp tmp = push(arg5, me_startid(sh(x), mult_y_u, 0));
|
|
|
1812 |
exp obtain_tmp = hold_check(me_obtain(tmp));
|
|
|
1813 |
|
|
|
1814 |
exp answer_re = f_floating_minus(ov_err, mult_x_u, mult_y_v);
|
|
|
1815 |
exp answer_im = f_bin_floating_plus(ov_err, mult_x_v, obtain_tmp);
|
|
|
1816 |
|
|
|
1817 |
u = push(tmp, me_startid(sh(x), answer_re, 0));
|
|
|
1818 |
v = push(u, me_startid(sh(x), answer_im, 0));
|
|
|
1819 |
|
|
|
1820 |
*arg1 = u;
|
|
|
1821 |
*arg2 = v;
|
|
|
1822 |
|
|
|
1823 |
return;
|
|
|
1824 |
}
|
|
|
1825 |
|
|
|
1826 |
|
|
|
1827 |
static exp make_comp_1_z
|
|
|
1828 |
PROTO_N ( (complex_fv, ov_err, contents1_u, contents2_u, contents3_u,
|
|
|
1829 |
contents1_v, contents2_v, contents3_v) )
|
|
|
1830 |
PROTO_T ( floating_variety complex_fv X error_treatment ov_err X
|
|
|
1831 |
exp contents1_u X exp contents2_u X exp contents3_u X
|
|
|
1832 |
exp contents1_v X exp contents2_v X exp contents3_v )
|
|
|
1833 |
{
|
|
|
1834 |
exp mult_u_u = f_bin_floating_mult(ov_err, contents1_u, contents2_u);
|
|
|
1835 |
exp mult_v_v = f_bin_floating_mult(ov_err, contents1_v, contents2_v);
|
|
|
1836 |
exp mod_squared = f_bin_floating_plus(ov_err, mult_u_u, mult_v_v);
|
|
|
1837 |
exp mod_sq = me_startid(sh(contents1_u), mod_squared, 0);
|
|
|
1838 |
|
|
|
1839 |
exp obtain1_mod_sq = me_obtain(mod_sq);
|
|
|
1840 |
exp obtain2_mod_sq = me_obtain(mod_sq);
|
|
|
1841 |
|
|
|
1842 |
exp v_div_mod_sq = f_floating_div(ov_err, contents3_v, obtain2_mod_sq);
|
|
|
1843 |
|
|
|
1844 |
exp answer_re = f_floating_div(ov_err, contents3_u, obtain1_mod_sq);
|
|
|
1845 |
exp answer_im = f_floating_negate(ov_err, v_div_mod_sq);
|
|
|
1846 |
|
|
|
1847 |
exp make_comp = f_make_complex(complex_fv, answer_re, answer_im);
|
|
|
1848 |
return me_complete_id(mod_sq, make_comp);
|
|
|
1849 |
}
|
|
|
1850 |
|
|
|
1851 |
|
|
|
1852 |
#define is_const(X) (name(X) != ident_tag)
|
|
|
1853 |
|
|
|
1854 |
exp_list reorder_list
|
|
|
1855 |
PROTO_N ( (arg1, consts_first) )
|
|
|
1856 |
PROTO_T ( exp_list arg1 X int consts_first )
|
|
|
1857 |
{
|
|
|
1858 |
exp type1_start, type1_end, type2_start, type2_end, t;
|
|
|
1859 |
|
|
|
1860 |
type1_start = type1_end = type2_start = type2_end = nilexp;
|
|
|
1861 |
setbro(arg1.end, nilexp);
|
|
|
1862 |
for (t = arg1.start; t != arg1.end; t=bro(t)) {
|
|
|
1863 |
if ((is_const(t) && consts_first) || !(is_const(t) || consts_first)) {
|
|
|
1864 |
if (type1_start == nilexp) {
|
|
|
1865 |
type1_start = type1_end = t; /* first of type 1 */
|
|
|
1866 |
} else {
|
|
|
1867 |
setbro(type1_end, t); /* add to existing type 1's */
|
|
|
1868 |
type1_end = t;
|
|
|
1869 |
}
|
|
|
1870 |
} else {
|
|
|
1871 |
if (type2_start == nilexp) {
|
|
|
1872 |
type2_start = type2_end = t; /* first of type 2 */
|
|
|
1873 |
} else {
|
|
|
1874 |
setbro(type2_end, t); /* add to existing type 2's */
|
|
|
1875 |
type2_end = t;
|
|
|
1876 |
}
|
|
|
1877 |
}
|
|
|
1878 |
}
|
|
|
1879 |
|
|
|
1880 |
if ((type1_start != nilexp) && (type2_start != nilexp)) {
|
|
|
1881 |
arg1.start = type1_start;
|
|
|
1882 |
setbro(type1_end, type2_start); /* if list is not a mixture */
|
|
|
1883 |
arg1.end = type2_end; /* no reordering has to be done */
|
|
|
1884 |
}
|
|
|
1885 |
|
|
|
1886 |
return arg1;
|
|
|
1887 |
}
|
|
|
1888 |
|
|
|
1889 |
|
|
|
1890 |
exp me_contents
|
|
|
1891 |
PROTO_N ( (arg1) )
|
|
|
1892 |
PROTO_T ( exp arg1 )
|
|
|
1893 |
{
|
|
|
1894 |
exp r = me_u3(sh(arg1), me_obtain(arg1), cont_tag);
|
|
|
1895 |
|
|
|
1896 |
return hold_check(r);
|
|
|
1897 |
}
|
|
|
1898 |
|
|
|
1899 |
|
|
|
1900 |
|
|
|
1901 |
/* Used in conjunction with the function "me_complete_chain",
|
|
|
1902 |
this function is used to push "ident_tag" declarations
|
|
|
1903 |
onto a "stack" so that they can be linked up later. It is
|
|
|
1904 |
used in loops where the number of "ident_tag"s is unknown
|
|
|
1905 |
and they need to be bound together in a "first-used last-
|
|
|
1906 |
bound" order - hence the stack.
|
|
|
1907 |
|
|
|
1908 |
arg1 is the new element
|
|
|
1909 |
arg2 is the top element on the stack
|
|
|
1910 |
*/
|
|
|
1911 |
|
|
|
1912 |
static exp push
|
|
|
1913 |
PROTO_N ( (arg1, arg2) )
|
|
|
1914 |
PROTO_T ( exp arg1 X exp arg2 )
|
|
|
1915 |
{
|
|
|
1916 |
setbro(arg2, arg1);
|
|
|
1917 |
return arg2;
|
|
|
1918 |
}
|
|
|
1919 |
|
|
|
1920 |
|
|
|
1921 |
/* Take the stack full of "ident_tag" declarations and link them
|
|
|
1922 |
together with the last element in the list being "last_link"
|
|
|
1923 |
and the body around which the declarations are put be "link_to".
|
|
|
1924 |
*/
|
|
|
1925 |
|
|
|
1926 |
static exp me_complete_chain
|
|
|
1927 |
PROTO_N ( (ident_chain, last_link, link_to) )
|
|
|
1928 |
PROTO_T ( exp ident_chain X exp last_link X exp link_to )
|
|
|
1929 |
{
|
|
|
1930 |
exp remove_link;
|
|
|
1931 |
|
|
|
1932 |
while (son(ident_chain) != last_link) {
|
|
|
1933 |
remove_link = bro(ident_chain);
|
|
|
1934 |
link_to = me_complete_id(ident_chain, link_to);
|
|
|
1935 |
ident_chain = remove_link;
|
|
|
1936 |
};
|
|
|
1937 |
|
|
|
1938 |
return me_complete_id(ident_chain, link_to);
|
|
|
1939 |
}
|
|
|
1940 |
|
|
|
1941 |
|
|
|
1942 |
|
|
|
1943 |
/* Binary version of 'f_floating_plus' */
|
|
|
1944 |
|
|
|
1945 |
static exp f_bin_floating_plus
|
|
|
1946 |
PROTO_N ( (ov_err, arg1, arg2) )
|
|
|
1947 |
PROTO_T ( error_treatment ov_err X exp arg1 X exp arg2 )
|
|
|
1948 |
{
|
|
|
1949 |
exp_list el;
|
|
|
1950 |
el = new_exp_list(2);
|
|
|
1951 |
el = add_exp_list(el, arg1, 0);
|
|
|
1952 |
el = add_exp_list(el, arg2, 1);
|
|
|
1953 |
return f_floating_plus (ov_err,el);
|
|
|
1954 |
}
|
|
|
1955 |
|
|
|
1956 |
|
|
|
1957 |
/* Binary version of 'f_floating_mult' */
|
|
|
1958 |
|
|
|
1959 |
static exp f_bin_floating_mult
|
|
|
1960 |
PROTO_N ( (ov_err, arg1, arg2) )
|
|
|
1961 |
PROTO_T ( error_treatment ov_err X exp arg1 X exp arg2 )
|
|
|
1962 |
{
|
|
|
1963 |
exp_list el;
|
|
|
1964 |
el = new_exp_list(2);
|
|
|
1965 |
el = add_exp_list(el, arg1, 0);
|
|
|
1966 |
el = add_exp_list(el, arg2, 1);
|
|
|
1967 |
return f_floating_mult (ov_err,el);
|
|
|
1968 |
}
|
|
|
1969 |
|
|
|
1970 |
static exp optimise_with_wrap
|
|
|
1971 |
PROTO_N ( (arg, shape1, shape2) )
|
|
|
1972 |
PROTO_T ( exp arg X shape shape1 X shape shape2 )
|
|
|
1973 |
{
|
|
|
1974 |
if (! eq_shape(shape1,shape2))
|
|
|
1975 |
return f_change_variety (f_wrap, shape2, arg);
|
|
|
1976 |
|
|
|
1977 |
return (arg);
|
|
|
1978 |
}
|
|
|
1979 |
|
|
|
1980 |
static exp real_power
|
|
|
1981 |
PROTO_N ( (ov_err, arg1, arg2) )
|
|
|
1982 |
PROTO_T ( error_treatment ov_err X exp arg1 X exp arg2 )
|
|
|
1983 |
{
|
|
|
1984 |
|
|
|
1985 |
/* Gives shorter .s file if n<10 and arg1 is unknown */
|
|
|
1986 |
|
|
|
1987 |
exp real1, sn;
|
|
|
1988 |
exp (*f_real_mult) PROTO_S ((error_treatment, exp, exp));
|
|
|
1989 |
shape real_shape, integer_shape, tmp_shape;
|
|
|
1990 |
|
|
|
1991 |
|
|
|
1992 |
/* With wrap, we may as well work with 'int's and change back after */
|
|
|
1993 |
|
|
|
1994 |
tmp_shape = sh(arg1);
|
|
|
1995 |
if (is_integer(tmp_shape) && !is_signed(tmp_shape) &&
|
|
|
1996 |
shape_size(sh(arg1)) < 32 &&
|
|
|
1997 |
eq_et(ov_err, f_wrap))
|
|
|
1998 |
{
|
|
|
1999 |
arg1 = hold_check (f_change_variety (f_impossible, ulongsh, arg1));
|
|
|
2000 |
}
|
|
|
2001 |
|
|
|
2002 |
|
|
|
2003 |
/* Widen to 'int' if necessary - guarantees negate will work */
|
|
|
2004 |
|
|
|
2005 |
if (shape_size(sh(arg2)) < 32) {
|
|
|
2006 |
arg2 = hold_check (f_change_variety (f_impossible, slongsh, arg2));
|
|
|
2007 |
}
|
|
|
2008 |
|
|
|
2009 |
real_shape = sh(arg1); /* shape of the result */
|
|
|
2010 |
integer_shape = sh(arg2);
|
|
|
2011 |
sn = me_startid(integer_shape, arg2, 0);
|
|
|
2012 |
|
|
|
2013 |
|
|
|
2014 |
/* Identify an exp which represents the value 1 (or 1.0) */
|
|
|
2015 |
|
|
|
2016 |
if (is_integer(real_shape)) {
|
|
|
2017 |
real1 = me_shint(real_shape,1);
|
|
|
2018 |
}
|
|
|
2019 |
else {
|
|
|
2020 |
real1 = me_shint(integer_shape,1);
|
|
|
2021 |
real1 = f_float_int (f_impossible, fv_of_shape(real_shape), real1);
|
|
|
2022 |
real1 = hold_check (real1); /* This should be reduced to 1.0 */
|
|
|
2023 |
}
|
|
|
2024 |
real1 = push (sn, me_startid(real_shape, real1, 0));
|
|
|
2025 |
|
|
|
2026 |
|
|
|
2027 |
/* Decide which is the suitable function for multiplying two numbers */
|
|
|
2028 |
|
|
|
2029 |
f_real_mult = (is_integer(real_shape) ? f_mult : f_bin_floating_mult);
|
|
|
2030 |
|
|
|
2031 |
if (is_constant_arg(arg2) ||
|
|
|
2032 |
((name(arg2) == name_tag) && (name(son(arg2)) == ident_tag)
|
|
|
2033 |
&& !isvar(son(arg2)) && is_constant_arg(son(son(arg2)))))
|
|
|
2034 |
{ /* we know the power */
|
|
|
2035 |
int exponent;
|
|
|
2036 |
exp x;
|
|
|
2037 |
|
|
|
2038 |
if (is_constant_arg(arg2)) {
|
|
|
2039 |
exponent = no(arg2); /* arg2 is a constant */
|
|
|
2040 |
}
|
|
|
2041 |
else {
|
|
|
2042 |
exponent = no(son(son(arg2)));
|
|
|
2043 |
/* arg2 identifies a constant */
|
|
|
2044 |
}
|
|
|
2045 |
|
|
|
2046 |
if (exponent < 0) {
|
|
|
2047 |
if (is_integer(real_shape)) {
|
|
|
2048 |
failer("constant value out of range: power: must be non-negative");
|
|
|
2049 |
}
|
|
|
2050 |
else { /* take reciprocal */
|
|
|
2051 |
arg1 = hold_check (f_floating_div (ov_err, me_obtain(real1), arg1));
|
|
|
2052 |
}
|
|
|
2053 |
}
|
|
|
2054 |
x = push (real1, me_startid(real_shape, arg1, 0));
|
|
|
2055 |
|
|
|
2056 |
if (exponent == 0) {
|
|
|
2057 |
return me_complete_chain (x, arg2, optimise_with_wrap (
|
|
|
2058 |
me_obtain(real1), real_shape, tmp_shape));
|
|
|
2059 |
}
|
|
|
2060 |
|
|
|
2061 |
{
|
|
|
2062 |
exp w, mylast = x;
|
|
|
2063 |
int n = abs(exponent);
|
|
|
2064 |
|
|
|
2065 |
while ((n % 2) == 0) {
|
|
|
2066 |
exp mult_x_x;
|
|
|
2067 |
mult_x_x = (*f_real_mult)(ov_err, me_obtain(x), me_obtain(x));
|
|
|
2068 |
mylast = x = push (mylast,
|
|
|
2069 |
me_startid(real_shape, hold_check(mult_x_x), 0));
|
|
|
2070 |
n = n / 2;
|
|
|
2071 |
}
|
|
|
2072 |
|
|
|
2073 |
if (n == 1) {
|
|
|
2074 |
return me_complete_chain (x, arg2, optimise_with_wrap (
|
|
|
2075 |
me_obtain(x), real_shape, tmp_shape)); /* return x */
|
|
|
2076 |
}
|
|
|
2077 |
else { /* w = x */
|
|
|
2078 |
mylast = w = push (x, me_startid(real_shape, me_obtain(x), 0));
|
|
|
2079 |
}
|
|
|
2080 |
|
|
|
2081 |
while (n != 1) {
|
|
|
2082 |
exp mult_x_x;
|
|
|
2083 |
mult_x_x = (*f_real_mult)(ov_err, me_obtain(x), me_obtain(x));
|
|
|
2084 |
mylast = x = push (mylast,
|
|
|
2085 |
me_startid(real_shape, hold_check(mult_x_x), 0));
|
|
|
2086 |
n = n / 2;
|
|
|
2087 |
if ((n % 2) == 1) {
|
|
|
2088 |
exp mult_w_x;
|
|
|
2089 |
mult_w_x = (*f_real_mult)(ov_err, me_obtain(w), me_obtain(x));
|
|
|
2090 |
mylast = w = push (mylast,
|
|
|
2091 |
me_startid(real_shape, hold_check(mult_w_x), 0));
|
|
|
2092 |
}
|
|
|
2093 |
}
|
|
|
2094 |
|
|
|
2095 |
return me_complete_chain (w, arg2, optimise_with_wrap (
|
|
|
2096 |
me_obtain(w), real_shape, tmp_shape)); /* return w */
|
|
|
2097 |
}
|
|
|
2098 |
|
|
|
2099 |
} else {
|
|
|
2100 |
|
|
|
2101 |
exp reinitialise_w, main_loop, make_comp; /* main building blocks */
|
|
|
2102 |
exp square_x, mult_x_w, half_n, update_w, repeat_body;
|
|
|
2103 |
exp seq, w, x, n;
|
|
|
2104 |
|
|
|
2105 |
n = me_obtain(sn);
|
|
|
2106 |
if (!is_integer(real_shape)) { /* Must be positive for integer powers */
|
|
|
2107 |
n = f_abs (f_impossible, n);
|
|
|
2108 |
}
|
|
|
2109 |
|
|
|
2110 |
n = push (real1, me_startid (integer_shape, n, 1));
|
|
|
2111 |
w = push (n, me_startid(real_shape, me_obtain(real1), 1));
|
|
|
2112 |
x = push (w, me_startid(real_shape, arg1, 1));
|
|
|
2113 |
|
|
|
2114 |
|
|
|
2115 |
/* change value of w to z if n is odd */
|
|
|
2116 |
|
|
|
2117 |
{
|
|
|
2118 |
exp rem_n_2 = f_and (me_contents(n), me_shint(integer_shape, 1));
|
|
|
2119 |
exp assign_w = f_assign (me_obtain(w), me_contents(x));
|
|
|
2120 |
exp alt_labst = hold_check(me_b3(f_top, f_make_value(f_top),
|
|
|
2121 |
f_make_top(), labst_tag));
|
|
|
2122 |
exp is_n_odd = f_integer_test (no_nat_option, f_equal, make_label(alt_labst),
|
|
|
2123 |
rem_n_2, me_shint(integer_shape, 1));
|
|
|
2124 |
exp seq = f_sequence (add_exp_list(new_exp_list(1), is_n_odd, 0), assign_w);
|
|
|
2125 |
reinitialise_w = hold_check(me_b3(lub_shape(sh(seq),sh(alt_labst)),
|
|
|
2126 |
seq, alt_labst, cond_tag));
|
|
|
2127 |
}
|
|
|
2128 |
|
|
|
2129 |
/* x=x*x */
|
|
|
2130 |
{
|
|
|
2131 |
exp mult_x_x;
|
|
|
2132 |
mult_x_x = (*f_real_mult) (ov_err, me_contents(x), me_contents(x));
|
|
|
2133 |
square_x = f_assign (me_obtain(x), mult_x_x);
|
|
|
2134 |
}
|
|
|
2135 |
|
|
|
2136 |
/* w=x*w */
|
|
|
2137 |
{
|
|
|
2138 |
exp answer;
|
|
|
2139 |
answer = (*f_real_mult)(ov_err, me_contents(x), me_contents(w));
|
|
|
2140 |
mult_x_w = f_assign (me_obtain(w), answer);
|
|
|
2141 |
}
|
|
|
2142 |
|
|
|
2143 |
/* n=n/2 */
|
|
|
2144 |
{
|
|
|
2145 |
exp answer = f_shift_right (me_contents(n), me_shint(integer_shape, 1));
|
|
|
2146 |
half_n = f_assign (me_obtain(n), answer);
|
|
|
2147 |
}
|
|
|
2148 |
|
|
|
2149 |
/* if n is odd then w = z*w */
|
|
|
2150 |
{
|
|
|
2151 |
exp rem_n_2 = f_and (me_contents(n), me_shint(integer_shape, 1));
|
|
|
2152 |
exp alt_labst = hold_check(me_b3(f_top, f_make_value(f_top),
|
|
|
2153 |
f_make_top(), labst_tag));
|
|
|
2154 |
exp is_n_odd = f_integer_test (no_nat_option, f_equal, make_label(alt_labst),
|
|
|
2155 |
rem_n_2, me_shint(integer_shape, 1));
|
|
|
2156 |
exp seq = f_sequence (add_exp_list(new_exp_list(1),
|
|
|
2157 |
is_n_odd, 0), mult_x_w);
|
|
|
2158 |
update_w = hold_check(me_b3(lub_shape(sh(seq),sh(alt_labst)),
|
|
|
2159 |
seq, alt_labst, cond_tag));
|
|
|
2160 |
}
|
|
|
2161 |
|
|
|
2162 |
/* repeat + body */
|
|
|
2163 |
{
|
|
|
2164 |
exp body_labst, if_n_equals_1;
|
|
|
2165 |
exp_list st;
|
|
|
2166 |
|
|
|
2167 |
body_labst = hold_check(me_b3(f_top, f_make_value(f_top), f_make_top(), labst_tag));
|
|
|
2168 |
|
|
|
2169 |
if_n_equals_1 = f_integer_test (no_nat_option, f_equal, make_label(body_labst),
|
|
|
2170 |
me_contents(n), me_shint(integer_shape, 1));
|
|
|
2171 |
|
|
|
2172 |
st = new_exp_list(1);
|
|
|
2173 |
st = add_exp_list(st, square_x, 0);
|
|
|
2174 |
st = add_exp_list(st, half_n, 1);
|
|
|
2175 |
st = add_exp_list(st, update_w, 2);
|
|
|
2176 |
seq = f_sequence (st, if_n_equals_1);
|
|
|
2177 |
|
|
|
2178 |
setbro (son(body_labst), seq);
|
|
|
2179 |
setsh (body_labst, sh (seq)); /* put seq into the body */
|
|
|
2180 |
clearlast (son(body_labst)); /* of the labst */
|
|
|
2181 |
setfather (body_labst, seq);
|
|
|
2182 |
|
|
|
2183 |
repeat_body = hold_check(me_b3(sh(body_labst), f_make_top(), body_labst, rep_tag));
|
|
|
2184 |
note_repeat(repeat_body);
|
|
|
2185 |
}
|
|
|
2186 |
|
|
|
2187 |
/* make loop - only done if mod(n) > 1 */
|
|
|
2188 |
{
|
|
|
2189 |
exp alt_labst = hold_check(me_b3(f_top, f_make_value(f_top),
|
|
|
2190 |
f_make_top(), labst_tag));
|
|
|
2191 |
exp is_n_gt_1 = f_integer_test (no_nat_option, f_greater_than, make_label(alt_labst),
|
|
|
2192 |
me_contents(n), me_shint(integer_shape, 1));
|
|
|
2193 |
exp seq = f_sequence (add_exp_list(new_exp_list(1),
|
|
|
2194 |
is_n_gt_1, 0), repeat_body);
|
|
|
2195 |
main_loop = hold_check(me_b3(lub_shape(sh(seq),sh(alt_labst)),
|
|
|
2196 |
seq, alt_labst, cond_tag));
|
|
|
2197 |
}
|
|
|
2198 |
|
|
|
2199 |
if (is_integer(real_shape)) {
|
|
|
2200 |
make_comp = me_contents(w);
|
|
|
2201 |
}
|
|
|
2202 |
else {
|
|
|
2203 |
exp make_comp2 = f_floating_div(ov_err, me_obtain(real1), me_contents(w));
|
|
|
2204 |
exp alt_labst = hold_check(me_b3(real_shape, f_make_value(f_top),
|
|
|
2205 |
make_comp2, labst_tag));
|
|
|
2206 |
exp is_arg2_positive = f_integer_test (no_nat_option, f_greater_than_or_equal,
|
|
|
2207 |
make_label(alt_labst), me_obtain(sn),
|
|
|
2208 |
me_shint(integer_shape, 0));
|
|
|
2209 |
exp seq = f_sequence (add_exp_list(new_exp_list(1),
|
|
|
2210 |
is_arg2_positive, 0), me_contents(w));
|
|
|
2211 |
|
|
|
2212 |
make_comp = hold_check(me_b3(lub_shape(sh(seq),sh(alt_labst)),
|
|
|
2213 |
seq, alt_labst, cond_tag));
|
|
|
2214 |
}
|
|
|
2215 |
|
|
|
2216 |
seq = f_sequence (add_exp_list (add_exp_list(new_exp_list(1),
|
|
|
2217 |
reinitialise_w, 0), main_loop, 1), make_comp);
|
|
|
2218 |
seq = optimise_with_wrap (seq, real_shape, tmp_shape);
|
|
|
2219 |
return me_complete_chain(x, arg2, seq);
|
|
|
2220 |
}
|
|
|
2221 |
}
|