Warning: Attempt to read property "date" on null in /usr/local/www/websvn.planix.org/blame.php on line 247

Warning: Attempt to read property "msg" on null in /usr/local/www/websvn.planix.org/blame.php on line 247
WebSVN – planix.SVN – Blame – /os/branches/feature-vt/sys/src/ape/cmd/diff/regex.c – Rev 2

Subversion Repositories planix.SVN

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 - 1
/* Extended regular expression matching and search library, version
2
   0.12.  (Implements POSIX draft P10003.2/D11.2, except for
3
   internationalization features.)
4
 
5
   Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 2, or (at your option)
10
   any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20
   USA.	 */
21
 
22
/* AIX requires this to be the first thing in the file. */
23
#if defined (_AIX) && !defined (REGEX_MALLOC)
24
  #pragma alloca
25
#endif
26
 
27
#undef	_GNU_SOURCE
28
#define _GNU_SOURCE
29
 
30
#ifdef emacs
31
/* Converts the pointer to the char to BEG-based offset from the start.	 */
32
#define PTR_TO_OFFSET(d)						\
33
	POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING			\
34
			  ? (d) - string1 : (d) - (string2 - size1))
35
#define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
36
#else
37
#define PTR_TO_OFFSET(d) 0
38
#endif
39
 
40
#include "config.h"
41
 
42
/* We need this for `regex.h', and perhaps for the Emacs include files.	 */
43
#include <sys/types.h>
44
 
45
/* This is for other GNU distributions with internationalized messages.	 */
46
#if HAVE_LIBINTL_H || defined (_LIBC)
47
# include <libintl.h>
48
#else
49
# define gettext(msgid) (msgid)
50
#endif
51
 
52
#ifndef gettext_noop
53
/* This define is so xgettext can find the internationalizable
54
   strings.  */
55
#define gettext_noop(String) String
56
#endif
57
 
58
/* The `emacs' switch turns on certain matching commands
59
   that make sense only in Emacs. */
60
#ifdef emacs
61
 
62
#include "lisp.h"
63
#include "buffer.h"
64
 
65
/* Make syntax table lookup grant data in gl_state.  */
66
#define SYNTAX_ENTRY_VIA_PROPERTY
67
 
68
#include "syntax.h"
69
#include "charset.h"
70
#include "category.h"
71
 
72
#define malloc xmalloc
73
#define realloc xrealloc
74
#define free xfree
75
 
76
#else  /* not emacs */
77
 
78
/* If we are not linking with Emacs proper,
79
   we can't use the relocating allocator
80
   even if config.h says that we can.  */
81
#undef REL_ALLOC
82
 
83
#if defined (STDC_HEADERS) || defined (_LIBC)
84
#include <stdlib.h>
85
#else
86
char *malloc ();
87
char *realloc ();
88
#endif
89
 
90
/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
91
   If nothing else has been done, use the method below.	 */
92
#ifdef INHIBIT_STRING_HEADER
93
#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
94
#if !defined (bzero) && !defined (bcopy)
95
#undef INHIBIT_STRING_HEADER
96
#endif
97
#endif
98
#endif
99
 
100
/* This is the normal way of making sure we have a bcopy and a bzero.
101
   This is used in most programs--a few other programs avoid this
102
   by defining INHIBIT_STRING_HEADER.  */
103
#ifndef INHIBIT_STRING_HEADER
104
#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
105
#include <string.h>
106
#ifndef bcmp
107
#define bcmp(s1, s2, n)	memcmp ((s1), (s2), (n))
108
#endif
109
#ifndef bcopy
110
#define bcopy(s, d, n)	memcpy ((d), (s), (n))
111
#endif
112
#ifndef bzero
113
#define bzero(s, n)	memset ((s), 0, (n))
114
#endif
115
#else
116
#include <strings.h>
117
#endif
118
#endif
119
 
120
/* Define the syntax stuff for \<, \>, etc.  */
121
 
122
/* This must be nonzero for the wordchar and notwordchar pattern
123
   commands in re_match_2.  */
124
#ifndef Sword
125
#define Sword 1
126
#endif
127
 
128
#ifdef SWITCH_ENUM_BUG
129
#define SWITCH_ENUM_CAST(x) ((int)(x))
130
#else
131
#define SWITCH_ENUM_CAST(x) (x)
132
#endif
133
 
134
#ifdef SYNTAX_TABLE
135
 
136
extern char *re_syntax_table;
137
 
138
#else /* not SYNTAX_TABLE */
139
 
140
/* How many characters in the character set.  */
141
#define CHAR_SET_SIZE 256
142
 
143
static char re_syntax_table[CHAR_SET_SIZE];
144
 
145
static void
146
init_syntax_once ()
147
{
148
   register int c;
149
   static int done = 0;
150
 
151
   if (done)
152
     return;
153
 
154
   bzero (re_syntax_table, sizeof re_syntax_table);
155
 
156
   for (c = 'a'; c <= 'z'; c++)
157
     re_syntax_table[c] = Sword;
158
 
159
   for (c = 'A'; c <= 'Z'; c++)
160
     re_syntax_table[c] = Sword;
161
 
162
   for (c = '0'; c <= '9'; c++)
163
     re_syntax_table[c] = Sword;
164
 
165
   re_syntax_table['_'] = Sword;
166
 
167
   done = 1;
168
}
169
 
170
#endif /* not SYNTAX_TABLE */
171
 
172
#define SYNTAX(c) re_syntax_table[c]
173
 
174
/* Dummy macros for non-Emacs environments.  */
175
#define BASE_LEADING_CODE_P(c) (0)
176
#define WORD_BOUNDARY_P(c1, c2) (0)
177
#define CHAR_HEAD_P(p) (1)
178
#define SINGLE_BYTE_CHAR_P(c) (1)
179
#define SAME_CHARSET_P(c1, c2) (1)
180
#define MULTIBYTE_FORM_LENGTH(p, s) (1)
181
#define STRING_CHAR(p, s) (*(p))
182
#define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
183
#define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
184
  (c = ((p) == (end1) ? *(str2) : *(p)))
185
#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
186
  (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
187
#endif /* not emacs */
188
 
189
/* Get the interface, including the syntax bits.  */
190
#include "regex.h"
191
 
192
/* isalpha etc. are used for the character classes.  */
193
#include <ctype.h>
194
 
195
/* Jim Meyering writes:
196
 
197
   "... Some ctype macros are valid only for character codes that
198
   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
199
   using /bin/cc or gcc but without giving an ansi option).  So, all
200
   ctype uses should be through macros like ISPRINT...	If
201
   STDC_HEADERS is defined, then autoconf has verified that the ctype
202
   macros don't need to be guarded with references to isascii. ...
203
   Defining isascii to 1 should let any compiler worth its salt
204
   eliminate the && through constant folding."	*/
205
 
206
#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
207
#define ISASCII(c) 1
208
#else
209
#define ISASCII(c) isascii(c)
210
#endif
211
 
212
#ifdef isblank
213
#define ISBLANK(c) (ISASCII (c) && isblank (c))
214
#else
215
#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
216
#endif
217
#ifdef isgraph
218
#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
219
#else
220
#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
221
#endif
222
 
223
#define ISPRINT(c) (ISASCII (c) && isprint (c))
224
#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
225
#define ISALNUM(c) (ISASCII (c) && isalnum (c))
226
#define ISALPHA(c) (ISASCII (c) && isalpha (c))
227
#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
228
#define ISLOWER(c) (ISASCII (c) && islower (c))
229
#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
230
#define ISSPACE(c) (ISASCII (c) && isspace (c))
231
#define ISUPPER(c) (ISASCII (c) && isupper (c))
232
#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
233
 
234
#ifndef NULL
235
#define NULL (void *)0
236
#endif
237
 
238
/* We remove any previous definition of `SIGN_EXTEND_CHAR',
239
   since ours (we hope) works properly with all combinations of
240
   machines, compilers, `char' and `unsigned char' argument types.
241
   (Per Bothner suggested the basic approach.)	*/
242
#undef SIGN_EXTEND_CHAR
243
#if __STDC__
244
#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
245
#else  /* not __STDC__ */
246
/* As in Harbison and Steele.  */
247
#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
248
#endif
249
 
250
/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
251
   use `alloca' instead of `malloc'.  This is because using malloc in
252
   re_search* or re_match* could cause memory leaks when C-g is used in
253
   Emacs; also, malloc is slower and causes storage fragmentation.  On
254
   the other hand, malloc is more portable, and easier to debug.
255
 
256
   Because we sometimes use alloca, some routines have to be macros,
257
   not functions -- `alloca'-allocated space disappears at the end of the
258
   function it is called in.  */
259
 
260
#ifdef REGEX_MALLOC
261
 
262
#define REGEX_ALLOCATE malloc
263
#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
264
#define REGEX_FREE free
265
 
266
#else /* not REGEX_MALLOC  */
267
 
268
/* Emacs already defines alloca, sometimes.  */
269
#ifndef alloca
270
 
271
/* Make alloca work the best possible way.  */
272
#ifdef __GNUC__
273
#define alloca __builtin_alloca
274
#else /* not __GNUC__ */
275
#if HAVE_ALLOCA_H
276
#include <alloca.h>
277
#else /* not __GNUC__ or HAVE_ALLOCA_H */
278
#if 0 /* It is a bad idea to declare alloca.  We always cast the result.  */
279
#ifndef _AIX /* Already did AIX, up at the top.	 */
280
char *alloca ();
281
#endif /* not _AIX */
282
#endif
283
#endif /* not HAVE_ALLOCA_H */
284
#endif /* not __GNUC__ */
285
 
286
#endif /* not alloca */
287
 
288
#define REGEX_ALLOCATE alloca
289
 
290
/* Assumes a `char *destination' variable.  */
291
#define REGEX_REALLOCATE(source, osize, nsize)				\
292
  (destination = (char *) alloca (nsize),				\
293
   bcopy (source, destination, osize),					\
294
   destination)
295
 
296
/* No need to do anything to free, after alloca.  */
297
#define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
298
 
299
#endif /* not REGEX_MALLOC */
300
 
301
/* Define how to allocate the failure stack.  */
302
 
303
#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
304
 
305
#define REGEX_ALLOCATE_STACK(size)				\
306
  r_alloc (&failure_stack_ptr, (size))
307
#define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
308
  r_re_alloc (&failure_stack_ptr, (nsize))
309
#define REGEX_FREE_STACK(ptr)					\
310
  r_alloc_free (&failure_stack_ptr)
311
 
312
#else /* not using relocating allocator */
313
 
314
#ifdef REGEX_MALLOC
315
 
316
#define REGEX_ALLOCATE_STACK malloc
317
#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
318
#define REGEX_FREE_STACK free
319
 
320
#else /* not REGEX_MALLOC */
321
 
322
#define REGEX_ALLOCATE_STACK alloca
323
 
324
#define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
325
   REGEX_REALLOCATE (source, osize, nsize)
326
/* No need to explicitly free anything.	 */
327
#define REGEX_FREE_STACK(arg)
328
 
329
#endif /* not REGEX_MALLOC */
330
#endif /* not using relocating allocator */
331
 
332
 
333
/* True if `size1' is non-NULL and PTR is pointing anywhere inside
334
   `string1' or just past its end.  This works if PTR is NULL, which is
335
   a good thing.  */
336
#define FIRST_STRING_P(ptr)					\
337
  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
338
 
339
/* (Re)Allocate N items of type T using malloc, or fail.  */
340
#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
341
#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
342
#define RETALLOC_IF(addr, n, t) \
343
  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
344
#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
345
 
346
#define BYTEWIDTH 8 /* In bits.	 */
347
 
348
#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
349
 
350
#undef MAX
351
#undef MIN
352
#define MAX(a, b) ((a) > (b) ? (a) : (b))
353
#define MIN(a, b) ((a) < (b) ? (a) : (b))
354
 
355
typedef char boolean;
356
#define false 0
357
#define true 1
358
 
359
static int re_match_2_internal ();
360
 
361
/* These are the command codes that appear in compiled regular
362
   expressions.	 Some opcodes are followed by argument bytes.  A
363
   command code can specify any interpretation whatsoever for its
364
   arguments.  Zero bytes may appear in the compiled regular expression.  */
365
 
366
typedef enum
367
{
368
  no_op = 0,
369
 
370
  /* Succeed right away--no more backtracking.	*/
371
  succeed,
372
 
373
	/* Followed by one byte giving n, then by n literal bytes.  */
374
  exactn,
375
 
376
	/* Matches any (more or less) character.  */
377
  anychar,
378
 
379
	/* Matches any one char belonging to specified set.  First
380
	   following byte is number of bitmap bytes.  Then come bytes
381
	   for a bitmap saying which chars are in.  Bits in each byte
382
	   are ordered low-bit-first.  A character is in the set if its
383
	   bit is 1.  A character too large to have a bit in the map is
384
	   automatically not in the set.  */
385
  charset,
386
 
387
	/* Same parameters as charset, but match any character that is
388
	   not one of those specified.	*/
389
  charset_not,
390
 
391
	/* Start remembering the text that is matched, for storing in a
392
	   register.  Followed by one byte with the register number, in
393
	   the range 0 to one less than the pattern buffer's re_nsub
394
	   field.  Then followed by one byte with the number of groups
395
	   inner to this one.  (This last has to be part of the
396
	   start_memory only because we need it in the on_failure_jump
397
	   of re_match_2.)  */
398
  start_memory,
399
 
400
	/* Stop remembering the text that is matched and store it in a
401
	   memory register.  Followed by one byte with the register
402
	   number, in the range 0 to one less than `re_nsub' in the
403
	   pattern buffer, and one byte with the number of inner groups,
404
	   just like `start_memory'.  (We need the number of inner
405
	   groups here because we don't have any easy way of finding the
406
	   corresponding start_memory when we're at a stop_memory.)  */
407
  stop_memory,
408
 
409
	/* Match a duplicate of something remembered. Followed by one
410
	   byte containing the register number.	 */
411
  duplicate,
412
 
413
	/* Fail unless at beginning of line.  */
414
  begline,
415
 
416
	/* Fail unless at end of line.	*/
417
  endline,
418
 
419
	/* Succeeds if at beginning of buffer (if emacs) or at beginning
420
	   of string to be matched (if not).  */
421
  begbuf,
422
 
423
	/* Analogously, for end of buffer/string.  */
424
  endbuf,
425
 
426
	/* Followed by two byte relative address to which to jump.  */
427
  jump,
428
 
429
	/* Same as jump, but marks the end of an alternative.  */
430
  jump_past_alt,
431
 
432
	/* Followed by two-byte relative address of place to resume at
433
	   in case of failure.	*/
434
  on_failure_jump,
435
 
436
	/* Like on_failure_jump, but pushes a placeholder instead of the
437
	   current string position when executed.  */
438
  on_failure_keep_string_jump,
439
 
440
	/* Throw away latest failure point and then jump to following
441
	   two-byte relative address.  */
442
  pop_failure_jump,
443
 
444
	/* Change to pop_failure_jump if know won't have to backtrack to
445
	   match; otherwise change to jump.  This is used to jump
446
	   back to the beginning of a repeat.  If what follows this jump
447
	   clearly won't match what the repeat does, such that we can be
448
	   sure that there is no use backtracking out of repetitions
449
	   already matched, then we change it to a pop_failure_jump.
450
	   Followed by two-byte address.  */
451
  maybe_pop_jump,
452
 
453
	/* Jump to following two-byte address, and push a dummy failure
454
	   point. This failure point will be thrown away if an attempt
455
	   is made to use it for a failure.  A `+' construct makes this
456
	   before the first repeat.  Also used as an intermediary kind
457
	   of jump when compiling an alternative.  */
458
  dummy_failure_jump,
459
 
460
	/* Push a dummy failure point and continue.  Used at the end of
461
	   alternatives.  */
462
  push_dummy_failure,
463
 
464
	/* Followed by two-byte relative address and two-byte number n.
465
	   After matching N times, jump to the address upon failure.  */
466
  succeed_n,
467
 
468
	/* Followed by two-byte relative address, and two-byte number n.
469
	   Jump to the address N times, then fail.  */
470
  jump_n,
471
 
472
	/* Set the following two-byte relative address to the
473
	   subsequent two-byte number.	The address *includes* the two
474
	   bytes of number.  */
475
  set_number_at,
476
 
477
  wordchar,	/* Matches any word-constituent character.  */
478
  notwordchar,	/* Matches any char that is not a word-constituent.  */
479
 
480
  wordbeg,	/* Succeeds if at word beginning.  */
481
  wordend,	/* Succeeds if at word end.  */
482
 
483
  wordbound,	/* Succeeds if at a word boundary.  */
484
  notwordbound	/* Succeeds if not at a word boundary.	*/
485
 
486
#ifdef emacs
487
  ,before_dot,	/* Succeeds if before point.  */
488
  at_dot,	/* Succeeds if at point.  */
489
  after_dot,	/* Succeeds if after point.  */
490
 
491
	/* Matches any character whose syntax is specified.  Followed by
492
	   a byte which contains a syntax code, e.g., Sword.  */
493
  syntaxspec,
494
 
495
	/* Matches any character whose syntax is not that specified.  */
496
  notsyntaxspec,
497
 
498
  /* Matches any character whose category-set contains the specified
499
     category.	The operator is followed by a byte which contains a
500
     category code (mnemonic ASCII character).	*/
501
  categoryspec,
502
 
503
  /* Matches any character whose category-set does not contain the
504
     specified category.  The operator is followed by a byte which
505
     contains the category code (mnemonic ASCII character).  */
506
  notcategoryspec
507
#endif /* emacs */
508
} re_opcode_t;
509
 
510
/* Common operations on the compiled pattern.  */
511
 
512
/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
513
 
514
#define STORE_NUMBER(destination, number)				\
515
  do {									\
516
    (destination)[0] = (number) & 0377;					\
517
    (destination)[1] = (number) >> 8;					\
518
  } while (0)
519
 
520
/* Same as STORE_NUMBER, except increment DESTINATION to
521
   the byte after where the number is stored.  Therefore, DESTINATION
522
   must be an lvalue.  */
523
 
524
#define STORE_NUMBER_AND_INCR(destination, number)			\
525
  do {									\
526
    STORE_NUMBER (destination, number);					\
527
    (destination) += 2;							\
528
  } while (0)
529
 
530
/* Put into DESTINATION a number stored in two contiguous bytes starting
531
   at SOURCE.  */
532
 
533
#define EXTRACT_NUMBER(destination, source)				\
534
  do {									\
535
    (destination) = *(source) & 0377;					\
536
    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
537
  } while (0)
538
 
539
#ifdef DEBUG
540
static void
541
extract_number (dest, source)
542
    int *dest;
543
    unsigned char *source;
544
{
545
  int temp = SIGN_EXTEND_CHAR (*(source + 1));
546
  *dest = *source & 0377;
547
  *dest += temp << 8;
548
}
549
 
550
#ifndef EXTRACT_MACROS /* To debug the macros.	*/
551
#undef EXTRACT_NUMBER
552
#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
553
#endif /* not EXTRACT_MACROS */
554
 
555
#endif /* DEBUG */
556
 
557
/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
558
   SOURCE must be an lvalue.  */
559
 
560
#define EXTRACT_NUMBER_AND_INCR(destination, source)			\
561
  do {									\
562
    EXTRACT_NUMBER (destination, source);				\
563
    (source) += 2;							\
564
  } while (0)
565
 
566
#ifdef DEBUG
567
static void
568
extract_number_and_incr (destination, source)
569
    int *destination;
570
    unsigned char **source;
571
{
572
  extract_number (destination, *source);
573
  *source += 2;
574
}
575
 
576
#ifndef EXTRACT_MACROS
577
#undef EXTRACT_NUMBER_AND_INCR
578
#define EXTRACT_NUMBER_AND_INCR(dest, src) \
579
  extract_number_and_incr (&dest, &src)
580
#endif /* not EXTRACT_MACROS */
581
 
582
#endif /* DEBUG */
583
 
584
/* Store a multibyte character in three contiguous bytes starting
585
   DESTINATION, and increment DESTINATION to the byte after where the
586
   character is stored.	 Therefore, DESTINATION must be an lvalue.  */
587
 
588
#define STORE_CHARACTER_AND_INCR(destination, character)	\
589
  do {								\
590
    (destination)[0] = (character) & 0377;			\
591
    (destination)[1] = ((character) >> 8) & 0377;		\
592
    (destination)[2] = (character) >> 16;			\
593
    (destination) += 3;						\
594
  } while (0)
595
 
596
/* Put into DESTINATION a character stored in three contiguous bytes
597
   starting at SOURCE.	*/
598
 
599
#define EXTRACT_CHARACTER(destination, source)	\
600
  do {						\
601
    (destination) = ((source)[0]		\
602
		     | ((source)[1] << 8)	\
603
		     | ((source)[2] << 16));	\
604
  } while (0)
605
 
606
 
607
/* Macros for charset. */
608
 
609
/* Size of bitmap of charset P in bytes.  P is a start of charset,
610
   i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not.  */
611
#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
612
 
613
/* Nonzero if charset P has range table.  */
614
#define CHARSET_RANGE_TABLE_EXISTS_P(p)	 ((p)[1] & 0x80)
615
 
616
/* Return the address of range table of charset P.  But not the start
617
   of table itself, but the before where the number of ranges is
618
   stored.  `2 +' means to skip re_opcode_t and size of bitmap.	 */
619
#define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])
620
 
621
/* Test if C is listed in the bitmap of charset P.  */
622
#define CHARSET_LOOKUP_BITMAP(p, c)				\
623
  ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH			\
624
   && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
625
 
626
/* Return the address of end of RANGE_TABLE.  COUNT is number of
627
   ranges (which is a pair of (start, end)) in the RANGE_TABLE.	 `* 2'
628
   is start of range and end of range.	`* 3' is size of each start
629
   and end.  */
630
#define CHARSET_RANGE_TABLE_END(range_table, count)	\
631
  ((range_table) + (count) * 2 * 3)
632
 
633
/* Test if C is in RANGE_TABLE.	 A flag NOT is negated if C is in.
634
   COUNT is number of ranges in RANGE_TABLE.  */
635
#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count)	\
636
  do									\
637
    {									\
638
      int range_start, range_end;					\
639
      unsigned char *p;							\
640
      unsigned char *range_table_end					\
641
	= CHARSET_RANGE_TABLE_END ((range_table), (count));		\
642
									\
643
      for (p = (range_table); p < range_table_end; p += 2 * 3)		\
644
	{								\
645
	  EXTRACT_CHARACTER (range_start, p);				\
646
	  EXTRACT_CHARACTER (range_end, p + 3);				\
647
									\
648
	  if (range_start <= (c) && (c) <= range_end)			\
649
	    {								\
650
	      (not) = !(not);						\
651
	      break;							\
652
	    }								\
653
	}								\
654
    }									\
655
  while (0)
656
 
657
/* Test if C is in range table of CHARSET.  The flag NOT is negated if
658
   C is listed in it.  */
659
#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset)			\
660
  do									\
661
    {									\
662
      /* Number of ranges in range table. */				\
663
      int count;							\
664
      unsigned char *range_table = CHARSET_RANGE_TABLE (charset);	\
665
									\
666
      EXTRACT_NUMBER_AND_INCR (count, range_table);			\
667
      CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count);	\
668
    }									\
669
  while (0)
670
 
671
/* If DEBUG is defined, Regex prints many voluminous messages about what
672
   it is doing (if the variable `debug' is nonzero).  If linked with the
673
   main program in `iregex.c', you can enter patterns and strings
674
   interactively.  And if linked with the main program in `main.c' and
675
   the other test files, you can run the already-written tests.	 */
676
 
677
#ifdef DEBUG
678
 
679
/* We use standard I/O for debugging.  */
680
#include <stdio.h>
681
 
682
/* It is useful to test things that ``must'' be true when debugging.  */
683
#include <assert.h>
684
 
685
static int debug = 0;
686
 
687
#define DEBUG_STATEMENT(e) e
688
#define DEBUG_PRINT1(x) if (debug) printf (x)
689
#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
690
#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
691
#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
692
#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)				\
693
  if (debug) print_partial_compiled_pattern (s, e)
694
#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
695
  if (debug) print_double_string (w, s1, sz1, s2, sz2)
696
 
697
 
698
/* Print the fastmap in human-readable form.  */
699
 
700
void
701
print_fastmap (fastmap)
702
    char *fastmap;
703
{
704
  unsigned was_a_range = 0;
705
  unsigned i = 0;
706
 
707
  while (i < (1 << BYTEWIDTH))
708
    {
709
      if (fastmap[i++])
710
	{
711
	  was_a_range = 0;
712
	  putchar (i - 1);
713
	  while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
714
	    {
715
	      was_a_range = 1;
716
	      i++;
717
	    }
718
	  if (was_a_range)
719
	    {
720
	      printf ("-");
721
	      putchar (i - 1);
722
	    }
723
	}
724
    }
725
  putchar ('\n');
726
}
727
 
728
 
729
/* Print a compiled pattern string in human-readable form, starting at
730
   the START pointer into it and ending just before the pointer END.  */
731
 
732
void
733
print_partial_compiled_pattern (start, end)
734
    unsigned char *start;
735
    unsigned char *end;
736
{
737
  int mcnt, mcnt2;
738
  unsigned char *p = start;
739
  unsigned char *pend = end;
740
 
741
  if (start == NULL)
742
    {
743
      printf ("(null)\n");
744
      return;
745
    }
746
 
747
  /* Loop over pattern commands.  */
748
  while (p < pend)
749
    {
750
      printf ("%d:\t", p - start);
751
 
752
      switch ((re_opcode_t) *p++)
753
	{
754
	case no_op:
755
	  printf ("/no_op");
756
	  break;
757
 
758
	case exactn:
759
	  mcnt = *p++;
760
	  printf ("/exactn/%d", mcnt);
761
	  do
762
	    {
763
	      putchar ('/');
764
	      putchar (*p++);
765
	    }
766
	  while (--mcnt);
767
	  break;
768
 
769
	case start_memory:
770
	  mcnt = *p++;
771
	  printf ("/start_memory/%d/%d", mcnt, *p++);
772
	  break;
773
 
774
	case stop_memory:
775
	  mcnt = *p++;
776
	  printf ("/stop_memory/%d/%d", mcnt, *p++);
777
	  break;
778
 
779
	case duplicate:
780
	  printf ("/duplicate/%d", *p++);
781
	  break;
782
 
783
	case anychar:
784
	  printf ("/anychar");
785
	  break;
786
 
787
	case charset:
788
	case charset_not:
789
	  {
790
	    register int c, last = -100;
791
	    register int in_range = 0;
792
 
793
	    printf ("/charset [%s",
794
		    (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
795
 
796
	    assert (p + *p < pend);
797
 
798
	    for (c = 0; c < 256; c++)
799
	      if (c / 8 < *p
800
		  && (p[1 + (c/8)] & (1 << (c % 8))))
801
		{
802
		  /* Are we starting a range?  */
803
		  if (last + 1 == c && ! in_range)
804
		    {
805
		      putchar ('-');
806
		      in_range = 1;
807
		    }
808
		  /* Have we broken a range?  */
809
		  else if (last + 1 != c && in_range)
810
	      {
811
		      putchar (last);
812
		      in_range = 0;
813
		    }
814
 
815
		  if (! in_range)
816
		    putchar (c);
817
 
818
		  last = c;
819
	      }
820
 
821
	    if (in_range)
822
	      putchar (last);
823
 
824
	    putchar (']');
825
 
826
	    p += 1 + *p;
827
	  }
828
	  break;
829
 
830
	case begline:
831
	  printf ("/begline");
832
	  break;
833
 
834
	case endline:
835
	  printf ("/endline");
836
	  break;
837
 
838
	case on_failure_jump:
839
	  extract_number_and_incr (&mcnt, &p);
840
	  printf ("/on_failure_jump to %d", p + mcnt - start);
841
	  break;
842
 
843
	case on_failure_keep_string_jump:
844
	  extract_number_and_incr (&mcnt, &p);
845
	  printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
846
	  break;
847
 
848
	case dummy_failure_jump:
849
	  extract_number_and_incr (&mcnt, &p);
850
	  printf ("/dummy_failure_jump to %d", p + mcnt - start);
851
	  break;
852
 
853
	case push_dummy_failure:
854
	  printf ("/push_dummy_failure");
855
	  break;
856
 
857
	case maybe_pop_jump:
858
	  extract_number_and_incr (&mcnt, &p);
859
	  printf ("/maybe_pop_jump to %d", p + mcnt - start);
860
	  break;
861
 
862
	case pop_failure_jump:
863
	  extract_number_and_incr (&mcnt, &p);
864
	  printf ("/pop_failure_jump to %d", p + mcnt - start);
865
	  break;
866
 
867
	case jump_past_alt:
868
	  extract_number_and_incr (&mcnt, &p);
869
	  printf ("/jump_past_alt to %d", p + mcnt - start);
870
	  break;
871
 
872
	case jump:
873
	  extract_number_and_incr (&mcnt, &p);
874
	  printf ("/jump to %d", p + mcnt - start);
875
	  break;
876
 
877
	case succeed_n:
878
	  extract_number_and_incr (&mcnt, &p);
879
	  extract_number_and_incr (&mcnt2, &p);
880
	  printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
881
	  break;
882
 
883
	case jump_n:
884
	  extract_number_and_incr (&mcnt, &p);
885
	  extract_number_and_incr (&mcnt2, &p);
886
	  printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
887
	  break;
888
 
889
	case set_number_at:
890
	  extract_number_and_incr (&mcnt, &p);
891
	  extract_number_and_incr (&mcnt2, &p);
892
	  printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
893
	  break;
894
 
895
	case wordbound:
896
	  printf ("/wordbound");
897
	  break;
898
 
899
	case notwordbound:
900
	  printf ("/notwordbound");
901
	  break;
902
 
903
	case wordbeg:
904
	  printf ("/wordbeg");
905
	  break;
906
 
907
	case wordend:
908
	  printf ("/wordend");
909
 
910
#ifdef emacs
911
	case before_dot:
912
	  printf ("/before_dot");
913
	  break;
914
 
915
	case at_dot:
916
	  printf ("/at_dot");
917
	  break;
918
 
919
	case after_dot:
920
	  printf ("/after_dot");
921
	  break;
922
 
923
	case syntaxspec:
924
	  printf ("/syntaxspec");
925
	  mcnt = *p++;
926
	  printf ("/%d", mcnt);
927
	  break;
928
 
929
	case notsyntaxspec:
930
	  printf ("/notsyntaxspec");
931
	  mcnt = *p++;
932
	  printf ("/%d", mcnt);
933
	  break;
934
#endif /* emacs */
935
 
936
	case wordchar:
937
	  printf ("/wordchar");
938
	  break;
939
 
940
	case notwordchar:
941
	  printf ("/notwordchar");
942
	  break;
943
 
944
	case begbuf:
945
	  printf ("/begbuf");
946
	  break;
947
 
948
	case endbuf:
949
	  printf ("/endbuf");
950
	  break;
951
 
952
	default:
953
	  printf ("?%d", *(p-1));
954
	}
955
 
956
      putchar ('\n');
957
    }
958
 
959
  printf ("%d:\tend of pattern.\n", p - start);
960
}
961
 
962
 
963
void
964
print_compiled_pattern (bufp)
965
    struct re_pattern_buffer *bufp;
966
{
967
  unsigned char *buffer = bufp->buffer;
968
 
969
  print_partial_compiled_pattern (buffer, buffer + bufp->used);
970
  printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
971
 
972
  if (bufp->fastmap_accurate && bufp->fastmap)
973
    {
974
      printf ("fastmap: ");
975
      print_fastmap (bufp->fastmap);
976
    }
977
 
978
  printf ("re_nsub: %d\t", bufp->re_nsub);
979
  printf ("regs_alloc: %d\t", bufp->regs_allocated);
980
  printf ("can_be_null: %d\t", bufp->can_be_null);
981
  printf ("newline_anchor: %d\n", bufp->newline_anchor);
982
  printf ("no_sub: %d\t", bufp->no_sub);
983
  printf ("not_bol: %d\t", bufp->not_bol);
984
  printf ("not_eol: %d\t", bufp->not_eol);
985
  printf ("syntax: %d\n", bufp->syntax);
986
  /* Perhaps we should print the translate table?  */
987
}
988
 
989
 
990
void
991
print_double_string (where, string1, size1, string2, size2)
992
    const char *where;
993
    const char *string1;
994
    const char *string2;
995
    int size1;
996
    int size2;
997
{
998
  unsigned this_char;
999
 
1000
  if (where == NULL)
1001
    printf ("(null)");
1002
  else
1003
    {
1004
      if (FIRST_STRING_P (where))
1005
	{
1006
	  for (this_char = where - string1; this_char < size1; this_char++)
1007
	    putchar (string1[this_char]);
1008
 
1009
	  where = string2;
1010
	}
1011
 
1012
      for (this_char = where - string2; this_char < size2; this_char++)
1013
	putchar (string2[this_char]);
1014
    }
1015
}
1016
 
1017
#else /* not DEBUG */
1018
 
1019
#undef assert
1020
#define assert(e)
1021
 
1022
#define DEBUG_STATEMENT(e)
1023
#define DEBUG_PRINT1(x)
1024
#define DEBUG_PRINT2(x1, x2)
1025
#define DEBUG_PRINT3(x1, x2, x3)
1026
#define DEBUG_PRINT4(x1, x2, x3, x4)
1027
#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1028
#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1029
 
1030
#endif /* not DEBUG */
1031
 
1032
/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1033
   also be assigned to arbitrarily: each pattern buffer stores its own
1034
   syntax, so it can be changed between regex compilations.  */
1035
/* This has no initializer because initialized variables in Emacs
1036
   become read-only after dumping.  */
1037
reg_syntax_t re_syntax_options;
1038
 
1039
 
1040
/* Specify the precise syntax of regexps for compilation.  This provides
1041
   for compatibility for various utilities which historically have
1042
   different, incompatible syntaxes.
1043
 
1044
   The argument SYNTAX is a bit mask comprised of the various bits
1045
   defined in regex.h.	We return the old syntax.  */
1046
 
1047
reg_syntax_t
1048
re_set_syntax (syntax)
1049
    reg_syntax_t syntax;
1050
{
1051
  reg_syntax_t ret = re_syntax_options;
1052
 
1053
  re_syntax_options = syntax;
1054
  return ret;
1055
}
1056
 
1057
/* This table gives an error message for each of the error codes listed
1058
   in regex.h.	Obviously the order here has to be same as there.
1059
   POSIX doesn't require that we do anything for REG_NOERROR,
1060
   but why not be nice?	 */
1061
 
1062
static const char *re_error_msgid[] =
1063
  {
1064
    gettext_noop ("Success"),	/* REG_NOERROR */
1065
    gettext_noop ("No match"),	/* REG_NOMATCH */
1066
    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1067
    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1068
    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1069
    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1070
    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1071
    gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
1072
    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1073
    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1074
    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1075
    gettext_noop ("Invalid range end"),	/* REG_ERANGE */
1076
    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1077
    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1078
    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1079
    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1080
    gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1081
  };
1082
 
1083
/* Avoiding alloca during matching, to placate r_alloc.	 */
1084
 
1085
/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1086
   searching and matching functions should not call alloca.  On some
1087
   systems, alloca is implemented in terms of malloc, and if we're
1088
   using the relocating allocator routines, then malloc could cause a
1089
   relocation, which might (if the strings being searched are in the
1090
   ralloc heap) shift the data out from underneath the regexp
1091
   routines.
1092
 
1093
   Here's another reason to avoid allocation: Emacs
1094
   processes input from X in a signal handler; processing X input may
1095
   call malloc; if input arrives while a matching routine is calling
1096
   malloc, then we're scrod.  But Emacs can't just block input while
1097
   calling matching routines; then we don't notice interrupts when
1098
   they come in.  So, Emacs blocks input around all regexp calls
1099
   except the matching calls, which it leaves unprotected, in the
1100
   faith that they will not malloc.  */
1101
 
1102
/* Normally, this is fine.  */
1103
#define MATCH_MAY_ALLOCATE
1104
 
1105
/* When using GNU C, we are not REALLY using the C alloca, no matter
1106
   what config.h may say.  So don't take precautions for it.  */
1107
#ifdef __GNUC__
1108
#undef C_ALLOCA
1109
#endif
1110
 
1111
/* The match routines may not allocate if (1) they would do it with malloc
1112
   and (2) it's not safe for them to use malloc.
1113
   Note that if REL_ALLOC is defined, matching would not use malloc for the
1114
   failure stack, but we would still use it for the register vectors;
1115
   so REL_ALLOC should not affect this.	 */
1116
#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1117
#undef MATCH_MAY_ALLOCATE
1118
#endif
1119
 
1120
 
1121
/* Failure stack declarations and macros; both re_compile_fastmap and
1122
   re_match_2 use a failure stack.  These have to be macros because of
1123
   REGEX_ALLOCATE_STACK.  */
1124
 
1125
 
1126
/* Approximate number of failure points for which to initially allocate space
1127
   when matching.  If this number is exceeded, we allocate more
1128
   space, so it is not a hard limit.  */
1129
#ifndef INIT_FAILURE_ALLOC
1130
#define INIT_FAILURE_ALLOC 20
1131
#endif
1132
 
1133
/* Roughly the maximum number of failure points on the stack.  Would be
1134
   exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1135
   This is a variable only so users of regex can assign to it; we never
1136
   change it ourselves.	 */
1137
#if defined (MATCH_MAY_ALLOCATE)
1138
/* Note that 4400 is enough to cause a crash on Alpha OSF/1,
1139
   whose default stack limit is 2mb.  In order for a larger
1140
   value to work reliably, you have to try to make it accord
1141
   with the process stack limit.  */
1142
int re_max_failures = 40000;
1143
#else
1144
int re_max_failures = 4000;
1145
#endif
1146
 
1147
union fail_stack_elt
1148
{
1149
  unsigned char *pointer;
1150
  int integer;
1151
};
1152
 
1153
typedef union fail_stack_elt fail_stack_elt_t;
1154
 
1155
typedef struct
1156
{
1157
  fail_stack_elt_t *stack;
1158
  unsigned size;
1159
  unsigned avail;			/* Offset of next open position.  */
1160
} fail_stack_type;
1161
 
1162
#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1163
#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1164
#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1165
 
1166
 
1167
/* Define macros to initialize and free the failure stack.
1168
   Do `return -2' if the alloc fails.  */
1169
 
1170
#ifdef MATCH_MAY_ALLOCATE
1171
#define INIT_FAIL_STACK()						\
1172
  do {									\
1173
    fail_stack.stack = (fail_stack_elt_t *)				\
1174
      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE	\
1175
			    * sizeof (fail_stack_elt_t));		\
1176
									\
1177
    if (fail_stack.stack == NULL)					\
1178
      return -2;							\
1179
									\
1180
    fail_stack.size = INIT_FAILURE_ALLOC;				\
1181
    fail_stack.avail = 0;						\
1182
  } while (0)
1183
 
1184
#define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1185
#else
1186
#define INIT_FAIL_STACK()						\
1187
  do {									\
1188
    fail_stack.avail = 0;						\
1189
  } while (0)
1190
 
1191
#define RESET_FAIL_STACK()
1192
#endif
1193
 
1194
 
1195
/* Double the size of FAIL_STACK, up to a limit
1196
   which allows approximately `re_max_failures' items.
1197
 
1198
   Return 1 if succeeds, and 0 if either ran out of memory
1199
   allocating space for it or it was already too large.
1200
 
1201
   REGEX_REALLOCATE_STACK requires `destination' be declared.	*/
1202
 
1203
/* Factor to increase the failure stack size by
1204
   when we increase it.
1205
   This used to be 2, but 2 was too wasteful
1206
   because the old discarded stacks added up to as much space
1207
   were as ultimate, maximum-size stack.  */
1208
#define FAIL_STACK_GROWTH_FACTOR 4
1209
 
1210
#define GROW_FAIL_STACK(fail_stack)					\
1211
  (((fail_stack).size * sizeof (fail_stack_elt_t)			\
1212
    >= re_max_failures * TYPICAL_FAILURE_SIZE)				\
1213
   ? 0									\
1214
   : ((fail_stack).stack						\
1215
      = (fail_stack_elt_t *)						\
1216
	REGEX_REALLOCATE_STACK ((fail_stack).stack,			\
1217
	  (fail_stack).size * sizeof (fail_stack_elt_t),		\
1218
	  MIN (re_max_failures * TYPICAL_FAILURE_SIZE,			\
1219
	       ((fail_stack).size * sizeof (fail_stack_elt_t)		\
1220
		* FAIL_STACK_GROWTH_FACTOR))),				\
1221
									\
1222
      (fail_stack).stack == NULL					\
1223
      ? 0								\
1224
      : ((fail_stack).size						\
1225
	 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE,		\
1226
		 ((fail_stack).size * sizeof (fail_stack_elt_t)		\
1227
		  * FAIL_STACK_GROWTH_FACTOR))				\
1228
	    / sizeof (fail_stack_elt_t)),				\
1229
	 1)))
1230
 
1231
 
1232
/* Push pointer POINTER on FAIL_STACK.
1233
   Return 1 if was able to do so and 0 if ran out of memory allocating
1234
   space to do so.  */
1235
#define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1236
  ((FAIL_STACK_FULL ()							\
1237
    && !GROW_FAIL_STACK (FAIL_STACK))					\
1238
   ? 0									\
1239
   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1240
      1))
1241
 
1242
/* Push a pointer value onto the failure stack.
1243
   Assumes the variable `fail_stack'.  Probably should only
1244
   be called from within `PUSH_FAILURE_POINT'.	*/
1245
#define PUSH_FAILURE_POINTER(item)					\
1246
  fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1247
 
1248
/* This pushes an integer-valued item onto the failure stack.
1249
   Assumes the variable `fail_stack'.  Probably should only
1250
   be called from within `PUSH_FAILURE_POINT'.	*/
1251
#define PUSH_FAILURE_INT(item)					\
1252
  fail_stack.stack[fail_stack.avail++].integer = (item)
1253
 
1254
/* Push a fail_stack_elt_t value onto the failure stack.
1255
   Assumes the variable `fail_stack'.  Probably should only
1256
   be called from within `PUSH_FAILURE_POINT'.	*/
1257
#define PUSH_FAILURE_ELT(item)					\
1258
  fail_stack.stack[fail_stack.avail++] =  (item)
1259
 
1260
/* These three POP... operations complement the three PUSH... operations.
1261
   All assume that `fail_stack' is nonempty.  */
1262
#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1263
#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1264
#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1265
 
1266
/* Used to omit pushing failure point id's when we're not debugging.  */
1267
#ifdef DEBUG
1268
#define DEBUG_PUSH PUSH_FAILURE_INT
1269
#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1270
#else
1271
#define DEBUG_PUSH(item)
1272
#define DEBUG_POP(item_addr)
1273
#endif
1274
 
1275
 
1276
/* Push the information about the state we will need
1277
   if we ever fail back to it.
1278
 
1279
   Requires variables fail_stack, regstart, regend, reg_info, and
1280
   num_regs be declared.  GROW_FAIL_STACK requires `destination' be
1281
   declared.
1282
 
1283
   Does `return FAILURE_CODE' if runs out of memory.  */
1284
 
1285
#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1286
  do {									\
1287
    char *destination;							\
1288
    /* Must be int, so when we don't save any registers, the arithmetic	\
1289
       of 0 + -1 isn't done as unsigned.  */				\
1290
    int this_reg;							\
1291
									\
1292
    DEBUG_STATEMENT (failure_id++);					\
1293
    DEBUG_STATEMENT (nfailure_points_pushed++);				\
1294
    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1295
    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1296
    DEBUG_PRINT2 ("			size: %d\n", (fail_stack).size);\
1297
									\
1298
    DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);		\
1299
    DEBUG_PRINT2 ("	available: %d\n", REMAINING_AVAIL_SLOTS);	\
1300
									\
1301
    /* Ensure we have enough space allocated for what we will push.  */	\
1302
    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1303
      {									\
1304
	if (!GROW_FAIL_STACK (fail_stack))				\
1305
	  return failure_code;						\
1306
									\
1307
	DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1308
		       (fail_stack).size);				\
1309
	DEBUG_PRINT2 ("	 slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1310
      }									\
1311
									\
1312
    /* Push the info, starting with the registers.  */			\
1313
    DEBUG_PRINT1 ("\n");						\
1314
									\
1315
    if (1)								\
1316
      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1317
	   this_reg++)							\
1318
	{								\
1319
	  DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);		\
1320
	  DEBUG_STATEMENT (num_regs_pushed++);				\
1321
									\
1322
	  DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);	\
1323
	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1324
									\
1325
	  DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);		\
1326
	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1327
									\
1328
	  DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);	\
1329
	  DEBUG_PRINT2 (" match_null=%d",				\
1330
			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1331
	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1332
	  DEBUG_PRINT2 (" matched_something=%d",			\
1333
			MATCHED_SOMETHING (reg_info[this_reg]));	\
1334
	  DEBUG_PRINT2 (" ever_matched=%d",				\
1335
			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1336
	  DEBUG_PRINT1 ("\n");						\
1337
	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1338
	}								\
1339
									\
1340
    DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
1341
    PUSH_FAILURE_INT (lowest_active_reg);				\
1342
									\
1343
    DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
1344
    PUSH_FAILURE_INT (highest_active_reg);				\
1345
									\
1346
    DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);		\
1347
    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1348
    PUSH_FAILURE_POINTER (pattern_place);				\
1349
									\
1350
    DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);		\
1351
    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,	\
1352
				 size2);				\
1353
    DEBUG_PRINT1 ("'\n");						\
1354
    PUSH_FAILURE_POINTER (string_place);				\
1355
									\
1356
    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1357
    DEBUG_PUSH (failure_id);						\
1358
  } while (0)
1359
 
1360
/* This is the number of items that are pushed and popped on the stack
1361
   for each register.  */
1362
#define NUM_REG_ITEMS  3
1363
 
1364
/* Individual items aside from the registers.  */
1365
#ifdef DEBUG
1366
#define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1367
#else
1368
#define NUM_NONREG_ITEMS 4
1369
#endif
1370
 
1371
/* Estimate the size of data pushed by a typical failure stack entry.
1372
   An estimate is all we need, because all we use this for
1373
   is to choose a limit for how big to make the failure stack.  */
1374
 
1375
#define TYPICAL_FAILURE_SIZE 20
1376
 
1377
/* This is how many items we actually use for a failure point.
1378
   It depends on the regexp.  */
1379
#define NUM_FAILURE_ITEMS				\
1380
  (((0							\
1381
     ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1382
    * NUM_REG_ITEMS)					\
1383
   + NUM_NONREG_ITEMS)
1384
 
1385
/* How many items can still be added to the stack without overflowing it.  */
1386
#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1387
 
1388
 
1389
/* Pops what PUSH_FAIL_STACK pushes.
1390
 
1391
   We restore into the parameters, all of which should be lvalues:
1392
     STR -- the saved data position.
1393
     PAT -- the saved pattern position.
1394
     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1395
     REGSTART, REGEND -- arrays of string positions.
1396
     REG_INFO -- array of information about each subexpression.
1397
 
1398
   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1399
   `pend', `string1', `size1', `string2', and `size2'.	*/
1400
 
1401
#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1402
{									\
1403
  DEBUG_STATEMENT (fail_stack_elt_t failure_id;)			\
1404
  int this_reg;								\
1405
  const unsigned char *string_temp;					\
1406
									\
1407
  assert (!FAIL_STACK_EMPTY ());					\
1408
									\
1409
  /* Remove failure points and point to how many regs pushed.  */	\
1410
  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1411
  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1412
  DEBUG_PRINT2 ("		     size: %d\n", fail_stack.size);	\
1413
									\
1414
  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1415
									\
1416
  DEBUG_POP (&failure_id);						\
1417
  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1418
									\
1419
  /* If the saved string location is NULL, it came from an		\
1420
     on_failure_keep_string_jump opcode, and we want to throw away the	\
1421
     saved NULL, thus retaining our current position in the string.  */	\
1422
  string_temp = POP_FAILURE_POINTER ();					\
1423
  if (string_temp != NULL)						\
1424
    str = (const char *) string_temp;					\
1425
									\
1426
  DEBUG_PRINT2 ("  Popping string 0x%x: `", str);			\
1427
  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1428
  DEBUG_PRINT1 ("'\n");							\
1429
									\
1430
  pat = (unsigned char *) POP_FAILURE_POINTER ();			\
1431
  DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);			\
1432
  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1433
									\
1434
  /* Restore register info.  */						\
1435
  high_reg = (unsigned) POP_FAILURE_INT ();				\
1436
  DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);		\
1437
									\
1438
  low_reg = (unsigned) POP_FAILURE_INT ();				\
1439
  DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);		\
1440
									\
1441
  if (1)								\
1442
    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1443
      {									\
1444
	DEBUG_PRINT2 ("	   Popping reg: %d\n", this_reg);		\
1445
									\
1446
	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1447
	DEBUG_PRINT2 ("	     info: 0x%x\n", reg_info[this_reg]);	\
1448
									\
1449
	regend[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
1450
	DEBUG_PRINT2 ("	     end: 0x%x\n", regend[this_reg]);		\
1451
									\
1452
	regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
1453
	DEBUG_PRINT2 ("	     start: 0x%x\n", regstart[this_reg]);	\
1454
      }									\
1455
  else									\
1456
    {									\
1457
      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1458
	{								\
1459
	  reg_info[this_reg].word.integer = 0;				\
1460
	  regend[this_reg] = 0;						\
1461
	  regstart[this_reg] = 0;					\
1462
	}								\
1463
      highest_active_reg = high_reg;					\
1464
    }									\
1465
									\
1466
  set_regs_matched_done = 0;						\
1467
  DEBUG_STATEMENT (nfailure_points_popped++);				\
1468
} /* POP_FAILURE_POINT */
1469
 
1470
 
1471
 
1472
/* Structure for per-register (a.k.a. per-group) information.
1473
   Other register information, such as the
1474
   starting and ending positions (which are addresses), and the list of
1475
   inner groups (which is a bits list) are maintained in separate
1476
   variables.
1477
 
1478
   We are making a (strictly speaking) nonportable assumption here: that
1479
   the compiler will pack our bit fields into something that fits into
1480
   the type of `word', i.e., is something that fits into one item on the
1481
   failure stack.  */
1482
 
1483
typedef union
1484
{
1485
  fail_stack_elt_t word;
1486
  struct
1487
  {
1488
      /* This field is one if this group can match the empty string,
1489
	 zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1490
#define MATCH_NULL_UNSET_VALUE 3
1491
    unsigned match_null_string_p : 2;
1492
    unsigned is_active : 1;
1493
    unsigned matched_something : 1;
1494
    unsigned ever_matched_something : 1;
1495
  } bits;
1496
} register_info_type;
1497
 
1498
#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1499
#define IS_ACTIVE(R)  ((R).bits.is_active)
1500
#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1501
#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1502
 
1503
 
1504
/* Call this when have matched a real character; it sets `matched' flags
1505
   for the subexpressions which we are currently inside.  Also records
1506
   that those subexprs have matched.  */
1507
#define SET_REGS_MATCHED()						\
1508
  do									\
1509
    {									\
1510
      if (!set_regs_matched_done)					\
1511
	{								\
1512
	  unsigned r;							\
1513
	  set_regs_matched_done = 1;					\
1514
	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1515
	    {								\
1516
	      MATCHED_SOMETHING (reg_info[r])				\
1517
		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1518
		= 1;							\
1519
	    }								\
1520
	}								\
1521
    }									\
1522
  while (0)
1523
 
1524
/* Registers are set to a sentinel when they haven't yet matched.  */
1525
static char reg_unset_dummy;
1526
#define REG_UNSET_VALUE (&reg_unset_dummy)
1527
#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1528
 
1529
/* Subroutine declarations and macros for regex_compile.  */
1530
 
1531
static void store_op1 (), store_op2 ();
1532
static void insert_op1 (), insert_op2 ();
1533
static boolean at_begline_loc_p (), at_endline_loc_p ();
1534
static boolean group_in_compile_stack ();
1535
static reg_errcode_t compile_range ();
1536
 
1537
/* Fetch the next character in the uncompiled pattern---translating it
1538
   if necessary.  Also cast from a signed character in the constant
1539
   string passed to us by the user to an unsigned char that we can use
1540
   as an array index (in, e.g., `translate').  */
1541
#ifndef PATFETCH
1542
#define PATFETCH(c)							\
1543
  do {if (p == pend) return REG_EEND;					\
1544
    c = (unsigned char) *p++;						\
1545
    if (RE_TRANSLATE_P (translate)) c = RE_TRANSLATE (translate, c);	\
1546
  } while (0)
1547
#endif
1548
 
1549
/* Fetch the next character in the uncompiled pattern, with no
1550
   translation.	 */
1551
#define PATFETCH_RAW(c)							\
1552
  do {if (p == pend) return REG_EEND;					\
1553
    c = (unsigned char) *p++;						\
1554
  } while (0)
1555
 
1556
/* Go backwards one character in the pattern.  */
1557
#define PATUNFETCH p--
1558
 
1559
 
1560
/* If `translate' is non-null, return translate[D], else just D.  We
1561
   cast the subscript to translate because some data is declared as
1562
   `char *', to avoid warnings when a string constant is passed.  But
1563
   when we use a character as a subscript we must make it unsigned.  */
1564
#ifndef TRANSLATE
1565
#define TRANSLATE(d) \
1566
  (RE_TRANSLATE_P (translate) \
1567
   ? (unsigned) RE_TRANSLATE (translate, (unsigned) (d)) : (d))
1568
#endif
1569
 
1570
 
1571
/* Macros for outputting the compiled pattern into `buffer'.  */
1572
 
1573
/* If the buffer isn't allocated when it comes in, use this.  */
1574
#define INIT_BUF_SIZE  32
1575
 
1576
/* Make sure we have at least N more bytes of space in buffer.	*/
1577
#define GET_BUFFER_SPACE(n)						\
1578
    while (b - bufp->buffer + (n) > bufp->allocated)			\
1579
      EXTEND_BUFFER ()
1580
 
1581
/* Make sure we have one more byte of buffer space and then add C to it.  */
1582
#define BUF_PUSH(c)							\
1583
  do {									\
1584
    GET_BUFFER_SPACE (1);						\
1585
    *b++ = (unsigned char) (c);						\
1586
  } while (0)
1587
 
1588
 
1589
/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1590
#define BUF_PUSH_2(c1, c2)						\
1591
  do {									\
1592
    GET_BUFFER_SPACE (2);						\
1593
    *b++ = (unsigned char) (c1);					\
1594
    *b++ = (unsigned char) (c2);					\
1595
  } while (0)
1596
 
1597
 
1598
/* As with BUF_PUSH_2, except for three bytes.	*/
1599
#define BUF_PUSH_3(c1, c2, c3)						\
1600
  do {									\
1601
    GET_BUFFER_SPACE (3);						\
1602
    *b++ = (unsigned char) (c1);					\
1603
    *b++ = (unsigned char) (c2);					\
1604
    *b++ = (unsigned char) (c3);					\
1605
  } while (0)
1606
 
1607
 
1608
/* Store a jump with opcode OP at LOC to location TO.  We store a
1609
   relative address offset by the three bytes the jump itself occupies.	 */
1610
#define STORE_JUMP(op, loc, to) \
1611
  store_op1 (op, loc, (to) - (loc) - 3)
1612
 
1613
/* Likewise, for a two-argument jump.  */
1614
#define STORE_JUMP2(op, loc, to, arg) \
1615
  store_op2 (op, loc, (to) - (loc) - 3, arg)
1616
 
1617
/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.	 */
1618
#define INSERT_JUMP(op, loc, to) \
1619
  insert_op1 (op, loc, (to) - (loc) - 3, b)
1620
 
1621
/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1622
#define INSERT_JUMP2(op, loc, to, arg) \
1623
  insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1624
 
1625
 
1626
/* This is not an arbitrary limit: the arguments which represent offsets
1627
   into the pattern are two bytes long.	 So if 2^16 bytes turns out to
1628
   be too small, many things would have to change.  */
1629
#define MAX_BUF_SIZE (1L << 16)
1630
 
1631
 
1632
/* Extend the buffer by twice its current size via realloc and
1633
   reset the pointers that pointed into the old block to point to the
1634
   correct places in the new one.  If extending the buffer results in it
1635
   being larger than MAX_BUF_SIZE, then flag memory exhausted.	*/
1636
#define EXTEND_BUFFER()							\
1637
  do {									\
1638
    unsigned char *old_buffer = bufp->buffer;				\
1639
    if (bufp->allocated == MAX_BUF_SIZE)				\
1640
      return REG_ESIZE;							\
1641
    bufp->allocated <<= 1;						\
1642
    if (bufp->allocated > MAX_BUF_SIZE)					\
1643
      bufp->allocated = MAX_BUF_SIZE;					\
1644
    bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1645
    if (bufp->buffer == NULL)						\
1646
      return REG_ESPACE;						\
1647
    /* If the buffer moved, move all the pointers into it.  */		\
1648
    if (old_buffer != bufp->buffer)					\
1649
      {									\
1650
	b = (b - old_buffer) + bufp->buffer;				\
1651
	begalt = (begalt - old_buffer) + bufp->buffer;			\
1652
	if (fixup_alt_jump)						\
1653
	  fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1654
	if (laststart)							\
1655
	  laststart = (laststart - old_buffer) + bufp->buffer;		\
1656
	if (pending_exact)						\
1657
	  pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
1658
      }									\
1659
  } while (0)
1660
 
1661
 
1662
/* Since we have one byte reserved for the register number argument to
1663
   {start,stop}_memory, the maximum number of groups we can report
1664
   things about is what fits in that byte.  */
1665
#define MAX_REGNUM 255
1666
 
1667
/* But patterns can have more than `MAX_REGNUM' registers.  We just
1668
   ignore the excess.  */
1669
typedef unsigned regnum_t;
1670
 
1671
 
1672
/* Macros for the compile stack.  */
1673
 
1674
/* Since offsets can go either forwards or backwards, this type needs to
1675
   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.	 */
1676
typedef int pattern_offset_t;
1677
 
1678
typedef struct
1679
{
1680
  pattern_offset_t begalt_offset;
1681
  pattern_offset_t fixup_alt_jump;
1682
  pattern_offset_t inner_group_offset;
1683
  pattern_offset_t laststart_offset;
1684
  regnum_t regnum;
1685
} compile_stack_elt_t;
1686
 
1687
 
1688
typedef struct
1689
{
1690
  compile_stack_elt_t *stack;
1691
  unsigned size;
1692
  unsigned avail;			/* Offset of next open position.  */
1693
} compile_stack_type;
1694
 
1695
 
1696
#define INIT_COMPILE_STACK_SIZE 32
1697
 
1698
#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
1699
#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
1700
 
1701
/* The next available element.	*/
1702
#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1703
 
1704
 
1705
/* Structure to manage work area for range table.  */
1706
struct range_table_work_area
1707
{
1708
  int *table;			/* actual work area.  */
1709
  int allocated;		/* allocated size for work area in bytes.  */
1710
  int used;			/* actually used size in words.	 */
1711
};
1712
 
1713
/* Make sure that WORK_AREA can hold more N multibyte characters.  */
1714
#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n)			  \
1715
  do {									  \
1716
    if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated)  \
1717
      {									  \
1718
	(work_area).allocated += 16 * sizeof (int);			  \
1719
	if ((work_area).table)						  \
1720
	  (work_area).table						  \
1721
	    = (int *) realloc ((work_area).table, (work_area).allocated); \
1722
	else								  \
1723
	  (work_area).table						  \
1724
	    = (int *) malloc ((work_area).allocated);			  \
1725
	if ((work_area).table == 0)					  \
1726
	  FREE_STACK_RETURN (REG_ESPACE);				  \
1727
      }									  \
1728
  } while (0)
1729
 
1730
/* Set a range (RANGE_START, RANGE_END) to WORK_AREA.  */
1731
#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end)	\
1732
  do {									\
1733
    EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2);			\
1734
    (work_area).table[(work_area).used++] = (range_start);		\
1735
    (work_area).table[(work_area).used++] = (range_end);		\
1736
  } while (0)
1737
 
1738
/* Free allocated memory for WORK_AREA.	 */
1739
#define FREE_RANGE_TABLE_WORK_AREA(work_area)	\
1740
  do {						\
1741
    if ((work_area).table)			\
1742
      free ((work_area).table);			\
1743
  } while (0)
1744
 
1745
#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
1746
#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1747
#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1748
 
1749
 
1750
/* Set the bit for character C in a list.  */
1751
#define SET_LIST_BIT(c)				      \
1752
  (b[((unsigned char) (c)) / BYTEWIDTH]		      \
1753
   |= 1 << (((unsigned char) c) % BYTEWIDTH))
1754
 
1755
 
1756
/* Get the next unsigned number in the uncompiled pattern.  */
1757
#define GET_UNSIGNED_NUMBER(num)					\
1758
  { if (p != pend)							\
1759
     {									\
1760
       PATFETCH (c);							\
1761
       while (ISDIGIT (c))						\
1762
	 {								\
1763
	   if (num < 0)							\
1764
	      num = 0;							\
1765
	   num = num * 10 + c - '0';					\
1766
	   if (p == pend)						\
1767
	      break;							\
1768
	   PATFETCH (c);						\
1769
	 }								\
1770
       }								\
1771
    }
1772
 
1773
#define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
1774
 
1775
#define IS_CHAR_CLASS(string)						\
1776
   (STREQ (string, "alpha") || STREQ (string, "upper")			\
1777
    || STREQ (string, "lower") || STREQ (string, "digit")		\
1778
    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
1779
    || STREQ (string, "space") || STREQ (string, "print")		\
1780
    || STREQ (string, "punct") || STREQ (string, "graph")		\
1781
    || STREQ (string, "cntrl") || STREQ (string, "blank"))
1782
 
1783
#ifndef MATCH_MAY_ALLOCATE
1784
 
1785
/* If we cannot allocate large objects within re_match_2_internal,
1786
   we make the fail stack and register vectors global.
1787
   The fail stack, we grow to the maximum size when a regexp
1788
   is compiled.
1789
   The register vectors, we adjust in size each time we
1790
   compile a regexp, according to the number of registers it needs.  */
1791
 
1792
static fail_stack_type fail_stack;
1793
 
1794
/* Size with which the following vectors are currently allocated.
1795
   That is so we can make them bigger as needed,
1796
   but never make them smaller.	 */
1797
static int regs_allocated_size;
1798
 
1799
static const char **	 regstart, **	  regend;
1800
static const char ** old_regstart, ** old_regend;
1801
static const char **best_regstart, **best_regend;
1802
static register_info_type *reg_info;
1803
static const char **reg_dummy;
1804
static register_info_type *reg_info_dummy;
1805
 
1806
/* Make the register vectors big enough for NUM_REGS registers,
1807
   but don't make them smaller.	 */
1808
 
1809
static
1810
regex_grow_registers (num_regs)
1811
     int num_regs;
1812
{
1813
  if (num_regs > regs_allocated_size)
1814
    {
1815
      RETALLOC_IF (regstart,	 num_regs, const char *);
1816
      RETALLOC_IF (regend,	 num_regs, const char *);
1817
      RETALLOC_IF (old_regstart, num_regs, const char *);
1818
      RETALLOC_IF (old_regend,	 num_regs, const char *);
1819
      RETALLOC_IF (best_regstart, num_regs, const char *);
1820
      RETALLOC_IF (best_regend,	 num_regs, const char *);
1821
      RETALLOC_IF (reg_info,	 num_regs, register_info_type);
1822
      RETALLOC_IF (reg_dummy,	 num_regs, const char *);
1823
      RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1824
 
1825
      regs_allocated_size = num_regs;
1826
    }
1827
}
1828
 
1829
#endif /* not MATCH_MAY_ALLOCATE */
1830
 
1831
/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1832
   Returns one of error codes defined in `regex.h', or zero for success.
1833
 
1834
   Assumes the `allocated' (and perhaps `buffer') and `translate'
1835
   fields are set in BUFP on entry.
1836
 
1837
   If it succeeds, results are put in BUFP (if it returns an error, the
1838
   contents of BUFP are undefined):
1839
     `buffer' is the compiled pattern;
1840
     `syntax' is set to SYNTAX;
1841
     `used' is set to the length of the compiled pattern;
1842
     `fastmap_accurate' is zero;
1843
     `re_nsub' is the number of subexpressions in PATTERN;
1844
     `not_bol' and `not_eol' are zero;
1845
 
1846
   The `fastmap' and `newline_anchor' fields are neither
1847
   examined nor set.  */
1848
 
1849
/* Return, freeing storage we allocated.  */
1850
#define FREE_STACK_RETURN(value)		\
1851
  do {							\
1852
    FREE_RANGE_TABLE_WORK_AREA (range_table_work);	\
1853
    free (compile_stack.stack);				\
1854
    return value;					\
1855
  } while (0)
1856
 
1857
static reg_errcode_t
1858
regex_compile (pattern, size, syntax, bufp)
1859
     const char *pattern;
1860
     int size;
1861
     reg_syntax_t syntax;
1862
     struct re_pattern_buffer *bufp;
1863
{
1864
  /* We fetch characters from PATTERN here.  Even though PATTERN is
1865
     `char *' (i.e., signed), we declare these variables as unsigned, so
1866
     they can be reliably used as array indices.  */
1867
  register unsigned int c, c1;
1868
 
1869
  /* A random temporary spot in PATTERN.  */
1870
  const char *p1;
1871
 
1872
  /* Points to the end of the buffer, where we should append.  */
1873
  register unsigned char *b;
1874
 
1875
  /* Keeps track of unclosed groups.  */
1876
  compile_stack_type compile_stack;
1877
 
1878
  /* Points to the current (ending) position in the pattern.  */
1879
#ifdef AIX
1880
  /* `const' makes AIX compiler fail.  */
1881
  char *p = pattern;
1882
#else
1883
  const char *p = pattern;
1884
#endif
1885
  const char *pend = pattern + size;
1886
 
1887
  /* How to translate the characters in the pattern.  */
1888
  RE_TRANSLATE_TYPE translate = bufp->translate;
1889
 
1890
  /* Address of the count-byte of the most recently inserted `exactn'
1891
     command.  This makes it possible to tell if a new exact-match
1892
     character can be added to that command or if the character requires
1893
     a new `exactn' command.  */
1894
  unsigned char *pending_exact = 0;
1895
 
1896
  /* Address of start of the most recently finished expression.
1897
     This tells, e.g., postfix * where to find the start of its
1898
     operand.  Reset at the beginning of groups and alternatives.  */
1899
  unsigned char *laststart = 0;
1900
 
1901
  /* Address of beginning of regexp, or inside of last group.  */
1902
  unsigned char *begalt;
1903
 
1904
  /* Place in the uncompiled pattern (i.e., the {) to
1905
     which to go back if the interval is invalid.  */
1906
  const char *beg_interval;
1907
 
1908
  /* Address of the place where a forward jump should go to the end of
1909
     the containing expression.	 Each alternative of an `or' -- except the
1910
     last -- ends with a forward jump of this sort.  */
1911
  unsigned char *fixup_alt_jump = 0;
1912
 
1913
  /* Counts open-groups as they are encountered.  Remembered for the
1914
     matching close-group on the compile stack, so the same register
1915
     number is put in the stop_memory as the start_memory.  */
1916
  regnum_t regnum = 0;
1917
 
1918
  /* Work area for range table of charset.  */
1919
  struct range_table_work_area range_table_work;
1920
 
1921
#ifdef DEBUG
1922
  DEBUG_PRINT1 ("\nCompiling pattern: ");
1923
  if (debug)
1924
    {
1925
      unsigned debug_count;
1926
 
1927
      for (debug_count = 0; debug_count < size; debug_count++)
1928
	putchar (pattern[debug_count]);
1929
      putchar ('\n');
1930
    }
1931
#endif /* DEBUG */
1932
 
1933
  /* Initialize the compile stack.  */
1934
  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1935
  if (compile_stack.stack == NULL)
1936
    return REG_ESPACE;
1937
 
1938
  compile_stack.size = INIT_COMPILE_STACK_SIZE;
1939
  compile_stack.avail = 0;
1940
 
1941
  range_table_work.table = 0;
1942
  range_table_work.allocated = 0;
1943
 
1944
  /* Initialize the pattern buffer.  */
1945
  bufp->syntax = syntax;
1946
  bufp->fastmap_accurate = 0;
1947
  bufp->not_bol = bufp->not_eol = 0;
1948
 
1949
  /* Set `used' to zero, so that if we return an error, the pattern
1950
     printer (for debugging) will think there's no pattern.  We reset it
1951
     at the end.  */
1952
  bufp->used = 0;
1953
 
1954
  /* Always count groups, whether or not bufp->no_sub is set.  */
1955
  bufp->re_nsub = 0;
1956
 
1957
#ifdef emacs
1958
  /* bufp->multibyte is set before regex_compile is called, so don't alter
1959
     it. */
1960
#else  /* not emacs */
1961
  /* Nothing is recognized as a multibyte character.  */
1962
  bufp->multibyte = 0;
1963
#endif
1964
 
1965
#if !defined (emacs) && !defined (SYNTAX_TABLE)
1966
  /* Initialize the syntax table.  */
1967
   init_syntax_once ();
1968
#endif
1969
 
1970
  if (bufp->allocated == 0)
1971
    {
1972
      if (bufp->buffer)
1973
	{ /* If zero allocated, but buffer is non-null, try to realloc
1974
	     enough space.  This loses if buffer's address is bogus, but
1975
	     that is the user's responsibility.	 */
1976
	  RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1977
	}
1978
      else
1979
	{ /* Caller did not allocate a buffer.	Do it for them.	 */
1980
	  bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1981
	}
1982
      if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1983
 
1984
      bufp->allocated = INIT_BUF_SIZE;
1985
    }
1986
 
1987
  begalt = b = bufp->buffer;
1988
 
1989
  /* Loop through the uncompiled pattern until we're at the end.  */
1990
  while (p != pend)
1991
    {
1992
      PATFETCH (c);
1993
 
1994
      switch (c)
1995
	{
1996
	case '^':
1997
	  {
1998
	    if (   /* If at start of pattern, it's an operator.	 */
1999
		   p == pattern + 1
2000
		   /* If context independent, it's an operator.	 */
2001
		|| syntax & RE_CONTEXT_INDEP_ANCHORS
2002
		   /* Otherwise, depends on what's come before.	 */
2003
		|| at_begline_loc_p (pattern, p, syntax))
2004
	      BUF_PUSH (begline);
2005
	    else
2006
	      goto normal_char;
2007
	  }
2008
	  break;
2009
 
2010
 
2011
	case '$':
2012
	  {
2013
	    if (   /* If at end of pattern, it's an operator.  */
2014
		   p == pend
2015
		   /* If context independent, it's an operator.	 */
2016
		|| syntax & RE_CONTEXT_INDEP_ANCHORS
2017
		   /* Otherwise, depends on what's next.  */
2018
		|| at_endline_loc_p (p, pend, syntax))
2019
	       BUF_PUSH (endline);
2020
	     else
2021
	       goto normal_char;
2022
	   }
2023
	   break;
2024
 
2025
 
2026
	case '+':
2027
	case '?':
2028
	  if ((syntax & RE_BK_PLUS_QM)
2029
	      || (syntax & RE_LIMITED_OPS))
2030
	    goto normal_char;
2031
	handle_plus:
2032
	case '*':
2033
	  /* If there is no previous pattern... */
2034
	  if (!laststart)
2035
	    {
2036
	      if (syntax & RE_CONTEXT_INVALID_OPS)
2037
		FREE_STACK_RETURN (REG_BADRPT);
2038
	      else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2039
		goto normal_char;
2040
	    }
2041
 
2042
	  {
2043
	    /* Are we optimizing this jump?  */
2044
	    boolean keep_string_p = false;
2045
 
2046
	    /* 1 means zero (many) matches is allowed.	*/
2047
	    char zero_times_ok = 0, many_times_ok = 0;
2048
 
2049
	    /* If there is a sequence of repetition chars, collapse it
2050
	       down to just one (the right one).  We can't combine
2051
	       interval operators with these because of, e.g., `a{2}*',
2052
	       which should only match an even number of `a's.	*/
2053
 
2054
	    for (;;)
2055
	      {
2056
		zero_times_ok |= c != '+';
2057
		many_times_ok |= c != '?';
2058
 
2059
		if (p == pend)
2060
		  break;
2061
 
2062
		PATFETCH (c);
2063
 
2064
		if (c == '*'
2065
		    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2066
		  ;
2067
 
2068
		else if (syntax & RE_BK_PLUS_QM	 &&  c == '\\')
2069
		  {
2070
		    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2071
 
2072
		    PATFETCH (c1);
2073
		    if (!(c1 == '+' || c1 == '?'))
2074
		      {
2075
			PATUNFETCH;
2076
			PATUNFETCH;
2077
			break;
2078
		      }
2079
 
2080
		    c = c1;
2081
		  }
2082
		else
2083
		  {
2084
		    PATUNFETCH;
2085
		    break;
2086
		  }
2087
 
2088
		/* If we get here, we found another repeat character.  */
2089
	       }
2090
 
2091
	    /* Star, etc. applied to an empty pattern is equivalent
2092
	       to an empty pattern.  */
2093
	    if (!laststart)
2094
	      break;
2095
 
2096
	    /* Now we know whether or not zero matches is allowed
2097
	       and also whether or not two or more matches is allowed.	*/
2098
	    if (many_times_ok)
2099
	      { /* More than one repetition is allowed, so put in at the
2100
		   end a backward relative jump from `b' to before the next
2101
		   jump we're going to put in below (which jumps from
2102
		   laststart to after this jump).
2103
 
2104
		   But if we are at the `*' in the exact sequence `.*\n',
2105
		   insert an unconditional jump backwards to the .,
2106
		   instead of the beginning of the loop.  This way we only
2107
		   push a failure point once, instead of every time
2108
		   through the loop.  */
2109
		assert (p - 1 > pattern);
2110
 
2111
		/* Allocate the space for the jump.  */
2112
		GET_BUFFER_SPACE (3);
2113
 
2114
		/* We know we are not at the first character of the pattern,
2115
		   because laststart was nonzero.  And we've already
2116
		   incremented `p', by the way, to be the character after
2117
		   the `*'.  Do we have to do something analogous here
2118
		   for null bytes, because of RE_DOT_NOT_NULL?	*/
2119
		if (TRANSLATE ((unsigned char)*(p - 2)) == TRANSLATE ('.')
2120
		    && zero_times_ok
2121
		    && p < pend
2122
		    && TRANSLATE ((unsigned char)*p) == TRANSLATE ('\n')
2123
		    && !(syntax & RE_DOT_NEWLINE))
2124
		  { /* We have .*\n.  */
2125
		    STORE_JUMP (jump, b, laststart);
2126
		    keep_string_p = true;
2127
		  }
2128
		else
2129
		  /* Anything else.  */
2130
		  STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2131
 
2132
		/* We've added more stuff to the buffer.  */
2133
		b += 3;
2134
	      }
2135
 
2136
	    /* On failure, jump from laststart to b + 3, which will be the
2137
	       end of the buffer after this jump is inserted.  */
2138
	    GET_BUFFER_SPACE (3);
2139
	    INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2140
				       : on_failure_jump,
2141
			 laststart, b + 3);
2142
	    pending_exact = 0;
2143
	    b += 3;
2144
 
2145
	    if (!zero_times_ok)
2146
	      {
2147
		/* At least one repetition is required, so insert a
2148
		   `dummy_failure_jump' before the initial
2149
		   `on_failure_jump' instruction of the loop. This
2150
		   effects a skip over that instruction the first time
2151
		   we hit that loop.  */
2152
		GET_BUFFER_SPACE (3);
2153
		INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2154
		b += 3;
2155
	      }
2156
	    }
2157
	  break;
2158
 
2159
 
2160
	case '.':
2161
	  laststart = b;
2162
	  BUF_PUSH (anychar);
2163
	  break;
2164
 
2165
 
2166
	case '[':
2167
	  {
2168
	    CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2169
 
2170
	    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2171
 
2172
	    /* Ensure that we have enough space to push a charset: the
2173
	       opcode, the length count, and the bitset; 34 bytes in all.  */
2174
	    GET_BUFFER_SPACE (34);
2175
 
2176
	    laststart = b;
2177
 
2178
	    /* We test `*p == '^' twice, instead of using an if
2179
	       statement, so we only need one BUF_PUSH.	 */
2180
	    BUF_PUSH (*p == '^' ? charset_not : charset);
2181
	    if (*p == '^')
2182
	      p++;
2183
 
2184
	    /* Remember the first position in the bracket expression.  */
2185
	    p1 = p;
2186
 
2187
	    /* Push the number of bytes in the bitmap.	*/
2188
	    BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2189
 
2190
	    /* Clear the whole map.  */
2191
	    bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2192
 
2193
	    /* charset_not matches newline according to a syntax bit.  */
2194
	    if ((re_opcode_t) b[-2] == charset_not
2195
		&& (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2196
	      SET_LIST_BIT ('\n');
2197
 
2198
	    /* Read in characters and ranges, setting map bits.	 */
2199
	    for (;;)
2200
	      {
2201
		int len;
2202
		boolean escaped_char = false;
2203
 
2204
		if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2205
 
2206
		PATFETCH (c);
2207
 
2208
		/* \ might escape characters inside [...] and [^...].  */
2209
		if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2210
		  {
2211
		    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2212
 
2213
		    PATFETCH (c);
2214
		    escaped_char = true;
2215
		  }
2216
		else
2217
		  {
2218
		    /* Could be the end of the bracket expression.	If it's
2219
		       not (i.e., when the bracket expression is `[]' so
2220
		       far), the ']' character bit gets set way below.  */
2221
		    if (c == ']' && p != p1 + 1)
2222
		      break;
2223
		  }
2224
 
2225
		/* If C indicates start of multibyte char, get the
2226
		   actual character code in C, and set the pattern
2227
		   pointer P to the next character boundary.  */
2228
		if (bufp->multibyte && BASE_LEADING_CODE_P (c))
2229
		  {
2230
		    PATUNFETCH;
2231
		    c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2232
		    p += len;
2233
		  }
2234
		/* What should we do for the character which is
2235
		   greater than 0x7F, but not BASE_LEADING_CODE_P?
2236
		   XXX */
2237
 
2238
		/* See if we're at the beginning of a possible character
2239
		   class.  */
2240
 
2241
		else if (!escaped_char &&
2242
			 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2243
		  {
2244
		    /* Leave room for the null.	 */
2245
		    char str[CHAR_CLASS_MAX_LENGTH + 1];
2246
 
2247
		    PATFETCH (c);
2248
		    c1 = 0;
2249
 
2250
		    /* If pattern is `[[:'.  */
2251
		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2252
 
2253
		    for (;;)
2254
		      {
2255
			PATFETCH (c);
2256
			if (c == ':' || c == ']' || p == pend
2257
			    || c1 == CHAR_CLASS_MAX_LENGTH)
2258
			  break;
2259
			str[c1++] = c;
2260
		      }
2261
		    str[c1] = '\0';
2262
 
2263
		    /* If isn't a word bracketed by `[:' and `:]':
2264
		       undo the ending character, the letters, and
2265
		       leave the leading `:' and `[' (but set bits for
2266
		       them).  */
2267
		    if (c == ':' && *p == ']')
2268
		      {
2269
			int ch;
2270
			boolean is_alnum = STREQ (str, "alnum");
2271
			boolean is_alpha = STREQ (str, "alpha");
2272
			boolean is_blank = STREQ (str, "blank");
2273
			boolean is_cntrl = STREQ (str, "cntrl");
2274
			boolean is_digit = STREQ (str, "digit");
2275
			boolean is_graph = STREQ (str, "graph");
2276
			boolean is_lower = STREQ (str, "lower");
2277
			boolean is_print = STREQ (str, "print");
2278
			boolean is_punct = STREQ (str, "punct");
2279
			boolean is_space = STREQ (str, "space");
2280
			boolean is_upper = STREQ (str, "upper");
2281
			boolean is_xdigit = STREQ (str, "xdigit");
2282
 
2283
			if (!IS_CHAR_CLASS (str))
2284
			  FREE_STACK_RETURN (REG_ECTYPE);
2285
 
2286
			/* Throw away the ] at the end of the character
2287
			   class.  */
2288
			PATFETCH (c);
2289
 
2290
			if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2291
 
2292
			for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2293
			  {
2294
			    int translated = TRANSLATE (ch);
2295
			    /* This was split into 3 if's to
2296
			       avoid an arbitrary limit in some compiler.  */
2297
			    if (   (is_alnum  && ISALNUM (ch))
2298
				|| (is_alpha  && ISALPHA (ch))
2299
				|| (is_blank  && ISBLANK (ch))
2300
				|| (is_cntrl  && ISCNTRL (ch)))
2301
			      SET_LIST_BIT (translated);
2302
			    if (   (is_digit  && ISDIGIT (ch))
2303
				|| (is_graph  && ISGRAPH (ch))
2304
				|| (is_lower  && ISLOWER (ch))
2305
				|| (is_print  && ISPRINT (ch)))
2306
			      SET_LIST_BIT (translated);
2307
			    if (   (is_punct  && ISPUNCT (ch))
2308
				|| (is_space  && ISSPACE (ch))
2309
				|| (is_upper  && ISUPPER (ch))
2310
				|| (is_xdigit && ISXDIGIT (ch)))
2311
			      SET_LIST_BIT (translated);
2312
			  }
2313
 
2314
			/* Repeat the loop. */
2315
			continue;
2316
		      }
2317
		    else
2318
		      {
2319
			c1++;
2320
			while (c1--)
2321
			  PATUNFETCH;
2322
			SET_LIST_BIT ('[');
2323
 
2324
			/* Because the `:' may starts the range, we
2325
			   can't simply set bit and repeat the loop.
2326
			   Instead, just set it to C and handle below.	*/
2327
			c = ':';
2328
		      }
2329
		  }
2330
 
2331
		if (p < pend && p[0] == '-' && p[1] != ']')
2332
		  {
2333
 
2334
		    /* Discard the `-'. */
2335
		    PATFETCH (c1);
2336
 
2337
		    /* Fetch the character which ends the range. */
2338
		    PATFETCH (c1);
2339
		    if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
2340
		      {
2341
			PATUNFETCH;
2342
			c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2343
			p += len;
2344
		      }
2345
 
2346
		    if (SINGLE_BYTE_CHAR_P (c)
2347
			&& ! SINGLE_BYTE_CHAR_P (c1))
2348
		      {
2349
			/* Handle a range such as \177-\377 in multibyte mode.
2350
			   Split that into two ranges,,
2351
			   the low one ending at 0237, and the high one
2352
			   starting at ...040.  */
2353
			int c1_base = (c1 & ~0177) | 040;
2354
			SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2355
			c1 = 0237;
2356
		      }
2357
		    else if (!SAME_CHARSET_P (c, c1))
2358
		      FREE_STACK_RETURN (REG_ERANGE);
2359
		  }
2360
		else
2361
		  /* Range from C to C. */
2362
		  c1 = c;
2363
 
2364
		/* Set the range ... */
2365
		if (SINGLE_BYTE_CHAR_P (c))
2366
		  /* ... into bitmap.  */
2367
		  {
2368
		    unsigned this_char;
2369
		    int range_start = c, range_end = c1;
2370
 
2371
		    /* If the start is after the end, the range is empty.  */
2372
		    if (range_start > range_end)
2373
		      {
2374
			if (syntax & RE_NO_EMPTY_RANGES)
2375
			  FREE_STACK_RETURN (REG_ERANGE);
2376
			/* Else, repeat the loop.  */
2377
		      }
2378
		    else
2379
		      {
2380
			for (this_char = range_start; this_char <= range_end;
2381
			     this_char++)
2382
			  SET_LIST_BIT (TRANSLATE (this_char));
2383
		      }
2384
		  }
2385
		else
2386
		  /* ... into range table.  */
2387
		  SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2388
	      }
2389
 
2390
	    /* Discard any (non)matching list bytes that are all 0 at the
2391
	       end of the map.	Decrease the map-length byte too.  */
2392
	    while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2393
	      b[-1]--;
2394
	    b += b[-1];
2395
 
2396
	    /* Build real range table from work area. */
2397
	    if (RANGE_TABLE_WORK_USED (range_table_work))
2398
	      {
2399
		int i;
2400
		int used = RANGE_TABLE_WORK_USED (range_table_work);
2401
 
2402
		/* Allocate space for COUNT + RANGE_TABLE.  Needs two
2403
		   bytes for COUNT and three bytes for each character.	*/
2404
		GET_BUFFER_SPACE (2 + used * 3);
2405
 
2406
		/* Indicate the existence of range table.  */
2407
		laststart[1] |= 0x80;
2408
 
2409
		STORE_NUMBER_AND_INCR (b, used / 2);
2410
		for (i = 0; i < used; i++)
2411
		  STORE_CHARACTER_AND_INCR
2412
		    (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2413
	      }
2414
	  }
2415
	  break;
2416
 
2417
 
2418
	case '(':
2419
	  if (syntax & RE_NO_BK_PARENS)
2420
	    goto handle_open;
2421
	  else
2422
	    goto normal_char;
2423
 
2424
 
2425
	case ')':
2426
	  if (syntax & RE_NO_BK_PARENS)
2427
	    goto handle_close;
2428
	  else
2429
	    goto normal_char;
2430
 
2431
 
2432
	case '\n':
2433
	  if (syntax & RE_NEWLINE_ALT)
2434
	    goto handle_alt;
2435
	  else
2436
	    goto normal_char;
2437
 
2438
 
2439
	case '|':
2440
	  if (syntax & RE_NO_BK_VBAR)
2441
	    goto handle_alt;
2442
	  else
2443
	    goto normal_char;
2444
 
2445
 
2446
	case '{':
2447
	   if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2448
	     goto handle_interval;
2449
	   else
2450
	     goto normal_char;
2451
 
2452
 
2453
	case '\\':
2454
	  if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2455
 
2456
	  /* Do not translate the character after the \, so that we can
2457
	     distinguish, e.g., \B from \b, even if we normally would
2458
	     translate, e.g., B to b.  */
2459
	  PATFETCH_RAW (c);
2460
 
2461
	  switch (c)
2462
	    {
2463
	    case '(':
2464
	      if (syntax & RE_NO_BK_PARENS)
2465
		goto normal_backslash;
2466
 
2467
	    handle_open:
2468
	      bufp->re_nsub++;
2469
	      regnum++;
2470
 
2471
	      if (COMPILE_STACK_FULL)
2472
		{
2473
		  RETALLOC (compile_stack.stack, compile_stack.size << 1,
2474
			    compile_stack_elt_t);
2475
		  if (compile_stack.stack == NULL) return REG_ESPACE;
2476
 
2477
		  compile_stack.size <<= 1;
2478
		}
2479
 
2480
	      /* These are the values to restore when we hit end of this
2481
		 group.	 They are all relative offsets, so that if the
2482
		 whole pattern moves because of realloc, they will still
2483
		 be valid.  */
2484
	      COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2485
	      COMPILE_STACK_TOP.fixup_alt_jump
2486
		= fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2487
	      COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2488
	      COMPILE_STACK_TOP.regnum = regnum;
2489
 
2490
	      /* We will eventually replace the 0 with the number of
2491
		 groups inner to this one.  But do not push a
2492
		 start_memory for groups beyond the last one we can
2493
		 represent in the compiled pattern.  */
2494
	      if (regnum <= MAX_REGNUM)
2495
		{
2496
		  COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2497
		  BUF_PUSH_3 (start_memory, regnum, 0);
2498
		}
2499
 
2500
	      compile_stack.avail++;
2501
 
2502
	      fixup_alt_jump = 0;
2503
	      laststart = 0;
2504
	      begalt = b;
2505
	      /* If we've reached MAX_REGNUM groups, then this open
2506
		 won't actually generate any code, so we'll have to
2507
		 clear pending_exact explicitly.  */
2508
	      pending_exact = 0;
2509
	      break;
2510
 
2511
 
2512
	    case ')':
2513
	      if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2514
 
2515
	      if (COMPILE_STACK_EMPTY)
2516
		if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2517
		  goto normal_backslash;
2518
		else
2519
		  FREE_STACK_RETURN (REG_ERPAREN);
2520
 
2521
	    handle_close:
2522
	      if (fixup_alt_jump)
2523
		{ /* Push a dummy failure point at the end of the
2524
		     alternative for a possible future
2525
		     `pop_failure_jump' to pop.	 See comments at
2526
		     `push_dummy_failure' in `re_match_2'.  */
2527
		  BUF_PUSH (push_dummy_failure);
2528
 
2529
		  /* We allocated space for this jump when we assigned
2530
		     to `fixup_alt_jump', in the `handle_alt' case below.  */
2531
		  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2532
		}
2533
 
2534
	      /* See similar code for backslashed left paren above.  */
2535
	      if (COMPILE_STACK_EMPTY)
2536
		if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2537
		  goto normal_char;
2538
		else
2539
		  FREE_STACK_RETURN (REG_ERPAREN);
2540
 
2541
	      /* Since we just checked for an empty stack above, this
2542
		 ``can't happen''.  */
2543
	      assert (compile_stack.avail != 0);
2544
	      {
2545
		/* We don't just want to restore into `regnum', because
2546
		   later groups should continue to be numbered higher,
2547
		   as in `(ab)c(de)' -- the second group is #2.	 */
2548
		regnum_t this_group_regnum;
2549
 
2550
		compile_stack.avail--;
2551
		begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2552
		fixup_alt_jump
2553
		  = COMPILE_STACK_TOP.fixup_alt_jump
2554
		    ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2555
		    : 0;
2556
		laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2557
		this_group_regnum = COMPILE_STACK_TOP.regnum;
2558
		/* If we've reached MAX_REGNUM groups, then this open
2559
		   won't actually generate any code, so we'll have to
2560
		   clear pending_exact explicitly.  */
2561
		pending_exact = 0;
2562
 
2563
		/* We're at the end of the group, so now we know how many
2564
		   groups were inside this one.	 */
2565
		if (this_group_regnum <= MAX_REGNUM)
2566
		  {
2567
		    unsigned char *inner_group_loc
2568
		      = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2569
 
2570
		    *inner_group_loc = regnum - this_group_regnum;
2571
		    BUF_PUSH_3 (stop_memory, this_group_regnum,
2572
				regnum - this_group_regnum);
2573
		  }
2574
	      }
2575
	      break;
2576
 
2577
 
2578
	    case '|':					/* `\|'.  */
2579
	      if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2580
		goto normal_backslash;
2581
	    handle_alt:
2582
	      if (syntax & RE_LIMITED_OPS)
2583
		goto normal_char;
2584
 
2585
	      /* Insert before the previous alternative a jump which
2586
		 jumps to this alternative if the former fails.	 */
2587
	      GET_BUFFER_SPACE (3);
2588
	      INSERT_JUMP (on_failure_jump, begalt, b + 6);
2589
	      pending_exact = 0;
2590
	      b += 3;
2591
 
2592
	      /* The alternative before this one has a jump after it
2593
		 which gets executed if it gets matched.  Adjust that
2594
		 jump so it will jump to this alternative's analogous
2595
		 jump (put in below, which in turn will jump to the next
2596
		 (if any) alternative's such jump, etc.).  The last such
2597
		 jump jumps to the correct final destination.  A picture:
2598
			  _____ _____
2599
			  |   | |   |
2600
			  |   v |   v
2601
			 a | b	 | c
2602
 
2603
		 If we are at `b', then fixup_alt_jump right now points to a
2604
		 three-byte space after `a'.  We'll put in the jump, set
2605
		 fixup_alt_jump to right after `b', and leave behind three
2606
		 bytes which we'll fill in when we get to after `c'.  */
2607
 
2608
	      if (fixup_alt_jump)
2609
		STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2610
 
2611
	      /* Mark and leave space for a jump after this alternative,
2612
		 to be filled in later either by next alternative or
2613
		 when know we're at the end of a series of alternatives.  */
2614
	      fixup_alt_jump = b;
2615
	      GET_BUFFER_SPACE (3);
2616
	      b += 3;
2617
 
2618
	      laststart = 0;
2619
	      begalt = b;
2620
	      break;
2621
 
2622
 
2623
	    case '{':
2624
	      /* If \{ is a literal.  */
2625
	      if (!(syntax & RE_INTERVALS)
2626
		     /* If we're at `\{' and it's not the open-interval
2627
			operator.  */
2628
		  || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2629
		  || (p - 2 == pattern	&&  p == pend))
2630
		goto normal_backslash;
2631
 
2632
	    handle_interval:
2633
	      {
2634
		/* If got here, then the syntax allows intervals.  */
2635
 
2636
		/* At least (most) this many matches must be made.  */
2637
		int lower_bound = -1, upper_bound = -1;
2638
 
2639
		beg_interval = p - 1;
2640
 
2641
		if (p == pend)
2642
		  {
2643
		    if (syntax & RE_NO_BK_BRACES)
2644
		      goto unfetch_interval;
2645
		    else
2646
		      FREE_STACK_RETURN (REG_EBRACE);
2647
		  }
2648
 
2649
		GET_UNSIGNED_NUMBER (lower_bound);
2650
 
2651
		if (c == ',')
2652
		  {
2653
		    GET_UNSIGNED_NUMBER (upper_bound);
2654
		    if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2655
		  }
2656
		else
2657
		  /* Interval such as `{1}' => match exactly once. */
2658
		  upper_bound = lower_bound;
2659
 
2660
		if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2661
		    || lower_bound > upper_bound)
2662
		  {
2663
		    if (syntax & RE_NO_BK_BRACES)
2664
		      goto unfetch_interval;
2665
		    else
2666
		      FREE_STACK_RETURN (REG_BADBR);
2667
		  }
2668
 
2669
		if (!(syntax & RE_NO_BK_BRACES))
2670
		  {
2671
		    if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2672
 
2673
		    PATFETCH (c);
2674
		  }
2675
 
2676
		if (c != '}')
2677
		  {
2678
		    if (syntax & RE_NO_BK_BRACES)
2679
		      goto unfetch_interval;
2680
		    else
2681
		      FREE_STACK_RETURN (REG_BADBR);
2682
		  }
2683
 
2684
		/* We just parsed a valid interval.  */
2685
 
2686
		/* If it's invalid to have no preceding re.  */
2687
		if (!laststart)
2688
		  {
2689
		    if (syntax & RE_CONTEXT_INVALID_OPS)
2690
		      FREE_STACK_RETURN (REG_BADRPT);
2691
		    else if (syntax & RE_CONTEXT_INDEP_OPS)
2692
		      laststart = b;
2693
		    else
2694
		      goto unfetch_interval;
2695
		  }
2696
 
2697
		/* If the upper bound is zero, don't want to succeed at
2698
		   all; jump from `laststart' to `b + 3', which will be
2699
		   the end of the buffer after we insert the jump.  */
2700
		 if (upper_bound == 0)
2701
		   {
2702
		     GET_BUFFER_SPACE (3);
2703
		     INSERT_JUMP (jump, laststart, b + 3);
2704
		     b += 3;
2705
		   }
2706
 
2707
		 /* Otherwise, we have a nontrivial interval.  When
2708
		    we're all done, the pattern will look like:
2709
		      set_number_at <jump count> <upper bound>
2710
		      set_number_at <succeed_n count> <lower bound>
2711
		      succeed_n <after jump addr> <succeed_n count>
2712
		      <body of loop>
2713
		      jump_n <succeed_n addr> <jump count>
2714
		    (The upper bound and `jump_n' are omitted if
2715
		    `upper_bound' is 1, though.)  */
2716
		 else
2717
		   { /* If the upper bound is > 1, we need to insert
2718
			more at the end of the loop.  */
2719
		     unsigned nbytes = 10 + (upper_bound > 1) * 10;
2720
 
2721
		     GET_BUFFER_SPACE (nbytes);
2722
 
2723
		     /* Initialize lower bound of the `succeed_n', even
2724
			though it will be set during matching by its
2725
			attendant `set_number_at' (inserted next),
2726
			because `re_compile_fastmap' needs to know.
2727
			Jump to the `jump_n' we might insert below.  */
2728
		     INSERT_JUMP2 (succeed_n, laststart,
2729
				   b + 5 + (upper_bound > 1) * 5,
2730
				   lower_bound);
2731
		     b += 5;
2732
 
2733
		     /* Code to initialize the lower bound.  Insert
2734
			before the `succeed_n'.	 The `5' is the last two
2735
			bytes of this `set_number_at', plus 3 bytes of
2736
			the following `succeed_n'.  */
2737
		     insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2738
		     b += 5;
2739
 
2740
		     if (upper_bound > 1)
2741
		       { /* More than one repetition is allowed, so
2742
			    append a backward jump to the `succeed_n'
2743
			    that starts this interval.
2744
 
2745
			    When we've reached this during matching,
2746
			    we'll have matched the interval once, so
2747
			    jump back only `upper_bound - 1' times.  */
2748
			 STORE_JUMP2 (jump_n, b, laststart + 5,
2749
				      upper_bound - 1);
2750
			 b += 5;
2751
 
2752
			 /* The location we want to set is the second
2753
			    parameter of the `jump_n'; that is `b-2' as
2754
			    an absolute address.  `laststart' will be
2755
			    the `set_number_at' we're about to insert;
2756
			    `laststart+3' the number to set, the source
2757
			    for the relative address.  But we are
2758
			    inserting into the middle of the pattern --
2759
			    so everything is getting moved up by 5.
2760
			    Conclusion: (b - 2) - (laststart + 3) + 5,
2761
			    i.e., b - laststart.
2762
 
2763
			    We insert this at the beginning of the loop
2764
			    so that if we fail during matching, we'll
2765
			    reinitialize the bounds.  */
2766
			 insert_op2 (set_number_at, laststart, b - laststart,
2767
				     upper_bound - 1, b);
2768
			 b += 5;
2769
		       }
2770
		   }
2771
		pending_exact = 0;
2772
		beg_interval = NULL;
2773
	      }
2774
	      break;
2775
 
2776
	    unfetch_interval:
2777
	      /* If an invalid interval, match the characters as literals.  */
2778
	       assert (beg_interval);
2779
	       p = beg_interval;
2780
	       beg_interval = NULL;
2781
 
2782
	       /* normal_char and normal_backslash need `c'.  */
2783
	       PATFETCH (c);
2784
 
2785
	       if (!(syntax & RE_NO_BK_BRACES))
2786
		 {
2787
		   if (p > pattern  &&	p[-1] == '\\')
2788
		     goto normal_backslash;
2789
		 }
2790
	       goto normal_char;
2791
 
2792
#ifdef emacs
2793
	    /* There is no way to specify the before_dot and after_dot
2794
	       operators.  rms says this is ok.	 --karl	 */
2795
	    case '=':
2796
	      BUF_PUSH (at_dot);
2797
	      break;
2798
 
2799
	    case 's':
2800
	      laststart = b;
2801
	      PATFETCH (c);
2802
	      BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2803
	      break;
2804
 
2805
	    case 'S':
2806
	      laststart = b;
2807
	      PATFETCH (c);
2808
	      BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2809
	      break;
2810
 
2811
	    case 'c':
2812
	      laststart = b;
2813
	      PATFETCH_RAW (c);
2814
	      BUF_PUSH_2 (categoryspec, c);
2815
	      break;
2816
 
2817
	    case 'C':
2818
	      laststart = b;
2819
	      PATFETCH_RAW (c);
2820
	      BUF_PUSH_2 (notcategoryspec, c);
2821
	      break;
2822
#endif /* emacs */
2823
 
2824
 
2825
	    case 'w':
2826
	      laststart = b;
2827
	      BUF_PUSH (wordchar);
2828
	      break;
2829
 
2830
 
2831
	    case 'W':
2832
	      laststart = b;
2833
	      BUF_PUSH (notwordchar);
2834
	      break;
2835
 
2836
 
2837
	    case '<':
2838
	      BUF_PUSH (wordbeg);
2839
	      break;
2840
 
2841
	    case '>':
2842
	      BUF_PUSH (wordend);
2843
	      break;
2844
 
2845
	    case 'b':
2846
	      BUF_PUSH (wordbound);
2847
	      break;
2848
 
2849
	    case 'B':
2850
	      BUF_PUSH (notwordbound);
2851
	      break;
2852
 
2853
	    case '`':
2854
	      BUF_PUSH (begbuf);
2855
	      break;
2856
 
2857
	    case '\'':
2858
	      BUF_PUSH (endbuf);
2859
	      break;
2860
 
2861
	    case '1': case '2': case '3': case '4': case '5':
2862
	    case '6': case '7': case '8': case '9':
2863
	      if (syntax & RE_NO_BK_REFS)
2864
		goto normal_char;
2865
 
2866
	      c1 = c - '0';
2867
 
2868
	      if (c1 > regnum)
2869
		FREE_STACK_RETURN (REG_ESUBREG);
2870
 
2871
	      /* Can't back reference to a subexpression if inside of it.  */
2872
	      if (group_in_compile_stack (compile_stack, c1))
2873
		goto normal_char;
2874
 
2875
	      laststart = b;
2876
	      BUF_PUSH_2 (duplicate, c1);
2877
	      break;
2878
 
2879
 
2880
	    case '+':
2881
	    case '?':
2882
	      if (syntax & RE_BK_PLUS_QM)
2883
		goto handle_plus;
2884
	      else
2885
		goto normal_backslash;
2886
 
2887
	    default:
2888
	    normal_backslash:
2889
	      /* You might think it would be useful for \ to mean
2890
		 not to translate; but if we don't translate it
2891
		 it will never match anything.	*/
2892
	      c = TRANSLATE (c);
2893
	      goto normal_char;
2894
	    }
2895
	  break;
2896
 
2897
 
2898
	default:
2899
	/* Expects the character in `c'.  */
2900
	normal_char:
2901
	  p1 = p - 1;		/* P1 points the head of C.  */
2902
#ifdef emacs
2903
	  if (bufp->multibyte)
2904
	    {
2905
	      c = STRING_CHAR (p1, pend - p1);
2906
	      c = TRANSLATE (c);
2907
	      /* Set P to the next character boundary.  */
2908
	      p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
2909
	    }
2910
#endif
2911
	      /* If no exactn currently being built.  */
2912
	  if (!pending_exact
2913
 
2914
	      /* If last exactn not at current position.  */
2915
	      || pending_exact + *pending_exact + 1 != b
2916
 
2917
	      /* We have only one byte following the exactn for the count.  */
2918
	      || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)
2919
 
2920
	      /* If followed by a repetition operator.	*/
2921
	      || (p != pend && (*p == '*' || *p == '^'))
2922
	      || ((syntax & RE_BK_PLUS_QM)
2923
		  ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
2924
		  : p != pend && (*p == '+' || *p == '?'))
2925
	      || ((syntax & RE_INTERVALS)
2926
		  && ((syntax & RE_NO_BK_BRACES)
2927
		      ? p != pend && *p == '{'
2928
		      : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
2929
	    {
2930
	      /* Start building a new exactn.  */
2931
 
2932
	      laststart = b;
2933
 
2934
	      BUF_PUSH_2 (exactn, 0);
2935
	      pending_exact = b - 1;
2936
	    }
2937
 
2938
#ifdef emacs
2939
	  if (! SINGLE_BYTE_CHAR_P (c))
2940
	    {
2941
	      unsigned char work[4], *str;
2942
	      int i = CHAR_STRING (c, work, str);
2943
	      int j;
2944
	      for (j = 0; j < i; j++)
2945
		{
2946
		  BUF_PUSH (str[j]);
2947
		  (*pending_exact)++;
2948
		}
2949
	    }
2950
	  else
2951
#endif
2952
	    {
2953
	      BUF_PUSH (c);
2954
	      (*pending_exact)++;
2955
	    }
2956
	  break;
2957
	} /* switch (c) */
2958
    } /* while p != pend */
2959
 
2960
 
2961
  /* Through the pattern now.  */
2962
 
2963
  if (fixup_alt_jump)
2964
    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2965
 
2966
  if (!COMPILE_STACK_EMPTY)
2967
    FREE_STACK_RETURN (REG_EPAREN);
2968
 
2969
  /* If we don't want backtracking, force success
2970
     the first time we reach the end of the compiled pattern.  */
2971
  if (syntax & RE_NO_POSIX_BACKTRACKING)
2972
    BUF_PUSH (succeed);
2973
 
2974
  free (compile_stack.stack);
2975
 
2976
  /* We have succeeded; set the length of the buffer.  */
2977
  bufp->used = b - bufp->buffer;
2978
 
2979
#ifdef DEBUG
2980
  if (debug)
2981
    {
2982
      DEBUG_PRINT1 ("\nCompiled pattern: \n");
2983
      print_compiled_pattern (bufp);
2984
    }
2985
#endif /* DEBUG */
2986
 
2987
#ifndef MATCH_MAY_ALLOCATE
2988
  /* Initialize the failure stack to the largest possible stack.  This
2989
     isn't necessary unless we're trying to avoid calling alloca in
2990
     the search and match routines.  */
2991
  {
2992
    int num_regs = bufp->re_nsub + 1;
2993
 
2994
    if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
2995
      {
2996
	fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
2997
 
2998
#ifdef emacs
2999
	if (! fail_stack.stack)
3000
	  fail_stack.stack
3001
	    = (fail_stack_elt_t *) xmalloc (fail_stack.size
3002
					    * sizeof (fail_stack_elt_t));
3003
	else
3004
	  fail_stack.stack
3005
	    = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
3006
					     (fail_stack.size
3007
					      * sizeof (fail_stack_elt_t)));
3008
#else /* not emacs */
3009
	if (! fail_stack.stack)
3010
	  fail_stack.stack
3011
	    = (fail_stack_elt_t *) malloc (fail_stack.size
3012
					   * sizeof (fail_stack_elt_t));
3013
	else
3014
	  fail_stack.stack
3015
	    = (fail_stack_elt_t *) realloc (fail_stack.stack,
3016
					    (fail_stack.size
3017
					     * sizeof (fail_stack_elt_t)));
3018
#endif /* not emacs */
3019
      }
3020
 
3021
    regex_grow_registers (num_regs);
3022
  }
3023
#endif /* not MATCH_MAY_ALLOCATE */
3024
 
3025
  return REG_NOERROR;
3026
} /* regex_compile */
3027
 
3028
/* Subroutines for `regex_compile'.  */
3029
 
3030
/* Store OP at LOC followed by two-byte integer parameter ARG.	*/
3031
 
3032
static void
3033
store_op1 (op, loc, arg)
3034
    re_opcode_t op;
3035
    unsigned char *loc;
3036
    int arg;
3037
{
3038
  *loc = (unsigned char) op;
3039
  STORE_NUMBER (loc + 1, arg);
3040
}
3041
 
3042
 
3043
/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
3044
 
3045
static void
3046
store_op2 (op, loc, arg1, arg2)
3047
    re_opcode_t op;
3048
    unsigned char *loc;
3049
    int arg1, arg2;
3050
{
3051
  *loc = (unsigned char) op;
3052
  STORE_NUMBER (loc + 1, arg1);
3053
  STORE_NUMBER (loc + 3, arg2);
3054
}
3055
 
3056
 
3057
/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3058
   for OP followed by two-byte integer parameter ARG.  */
3059
 
3060
static void
3061
insert_op1 (op, loc, arg, end)
3062
    re_opcode_t op;
3063
    unsigned char *loc;
3064
    int arg;
3065
    unsigned char *end;
3066
{
3067
  register unsigned char *pfrom = end;
3068
  register unsigned char *pto = end + 3;
3069
 
3070
  while (pfrom != loc)
3071
    *--pto = *--pfrom;
3072
 
3073
  store_op1 (op, loc, arg);
3074
}
3075
 
3076
 
3077
/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
3078
 
3079
static void
3080
insert_op2 (op, loc, arg1, arg2, end)
3081
    re_opcode_t op;
3082
    unsigned char *loc;
3083
    int arg1, arg2;
3084
    unsigned char *end;
3085
{
3086
  register unsigned char *pfrom = end;
3087
  register unsigned char *pto = end + 5;
3088
 
3089
  while (pfrom != loc)
3090
    *--pto = *--pfrom;
3091
 
3092
  store_op2 (op, loc, arg1, arg2);
3093
}
3094
 
3095
 
3096
/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
3097
   after an alternative or a begin-subexpression.  We assume there is at
3098
   least one character before the ^.  */
3099
 
3100
static boolean
3101
at_begline_loc_p (pattern, p, syntax)
3102
    const char *pattern, *p;
3103
    reg_syntax_t syntax;
3104
{
3105
  const char *prev = p - 2;
3106
  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3107
 
3108
  return
3109
       /* After a subexpression?  */
3110
       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3111
       /* After an alternative?	 */
3112
    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3113
}
3114
 
3115
 
3116
/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
3117
   at least one character after the $, i.e., `P < PEND'.  */
3118
 
3119
static boolean
3120
at_endline_loc_p (p, pend, syntax)
3121
    const char *p, *pend;
3122
    int syntax;
3123
{
3124
  const char *next = p;
3125
  boolean next_backslash = *next == '\\';
3126
  const char *next_next = p + 1 < pend ? p + 1 : 0;
3127
 
3128
  return
3129
       /* Before a subexpression?  */
3130
       (syntax & RE_NO_BK_PARENS ? *next == ')'
3131
	: next_backslash && next_next && *next_next == ')')
3132
       /* Before an alternative?  */
3133
    || (syntax & RE_NO_BK_VBAR ? *next == '|'
3134
	: next_backslash && next_next && *next_next == '|');
3135
}
3136
 
3137
 
3138
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3139
   false if it's not.  */
3140
 
3141
static boolean
3142
group_in_compile_stack (compile_stack, regnum)
3143
    compile_stack_type compile_stack;
3144
    regnum_t regnum;
3145
{
3146
  int this_element;
3147
 
3148
  for (this_element = compile_stack.avail - 1;
3149
       this_element >= 0;
3150
       this_element--)
3151
    if (compile_stack.stack[this_element].regnum == regnum)
3152
      return true;
3153
 
3154
  return false;
3155
}
3156
 
3157
/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3158
   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
3159
   characters can start a string that matches the pattern.  This fastmap
3160
   is used by re_search to skip quickly over impossible starting points.
3161
 
3162
   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3163
   area as BUFP->fastmap.
3164
 
3165
   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3166
   the pattern buffer.
3167
 
3168
   Returns 0 if we succeed, -2 if an internal error.   */
3169
 
3170
int
3171
re_compile_fastmap (bufp)
3172
     struct re_pattern_buffer *bufp;
3173
{
3174
  int i, j, k;
3175
#ifdef MATCH_MAY_ALLOCATE
3176
  fail_stack_type fail_stack;
3177
#endif
3178
#ifndef REGEX_MALLOC
3179
  char *destination;
3180
#endif
3181
  /* We don't push any register information onto the failure stack.  */
3182
  unsigned num_regs = 0;
3183
 
3184
  register char *fastmap = bufp->fastmap;
3185
  unsigned char *pattern = bufp->buffer;
3186
  unsigned long size = bufp->used;
3187
  unsigned char *p = pattern;
3188
  register unsigned char *pend = pattern + size;
3189
 
3190
  /* This holds the pointer to the failure stack, when
3191
     it is allocated relocatably.  */
3192
  fail_stack_elt_t *failure_stack_ptr;
3193
 
3194
  /* Assume that each path through the pattern can be null until
3195
     proven otherwise.	We set this false at the bottom of switch
3196
     statement, to which we get only if a particular path doesn't
3197
     match the empty string.  */
3198
  boolean path_can_be_null = true;
3199
 
3200
  /* We aren't doing a `succeed_n' to begin with.  */
3201
  boolean succeed_n_p = false;
3202
 
3203
  /* If all elements for base leading-codes in fastmap is set, this
3204
     flag is set true.	*/
3205
  boolean match_any_multibyte_characters = false;
3206
 
3207
  /* Maximum code of simple (single byte) character. */
3208
  int simple_char_max;
3209
 
3210
  assert (fastmap != NULL && p != NULL);
3211
 
3212
  INIT_FAIL_STACK ();
3213
  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.	*/
3214
  bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
3215
  bufp->can_be_null = 0;
3216
 
3217
  while (1)
3218
    {
3219
      if (p == pend || *p == succeed)
3220
	{
3221
	  /* We have reached the (effective) end of pattern.  */
3222
	  if (!FAIL_STACK_EMPTY ())
3223
	    {
3224
	      bufp->can_be_null |= path_can_be_null;
3225
 
3226
	      /* Reset for next path.  */
3227
	      path_can_be_null = true;
3228
 
3229
	      p = fail_stack.stack[--fail_stack.avail].pointer;
3230
 
3231
	      continue;
3232
	    }
3233
	  else
3234
	    break;
3235
	}
3236
 
3237
      /* We should never be about to go beyond the end of the pattern.	*/
3238
      assert (p < pend);
3239
 
3240
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3241
	{
3242
 
3243
	/* I guess the idea here is to simply not bother with a fastmap
3244
	   if a backreference is used, since it's too hard to figure out
3245
	   the fastmap for the corresponding group.  Setting
3246
	   `can_be_null' stops `re_search_2' from using the fastmap, so
3247
	   that is all we do.  */
3248
	case duplicate:
3249
	  bufp->can_be_null = 1;
3250
	  goto done;
3251
 
3252
 
3253
      /* Following are the cases which match a character.  These end
3254
	 with `break'.	*/
3255
 
3256
	case exactn:
3257
	  fastmap[p[1]] = 1;
3258
	  break;
3259
 
3260
 
3261
#ifndef emacs
3262
	case charset:
3263
	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3264
	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3265
	      fastmap[j] = 1;
3266
	  break;
3267
 
3268
 
3269
	case charset_not:
3270
	  /* Chars beyond end of map must be allowed.  */
3271
	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3272
	    fastmap[j] = 1;
3273
 
3274
	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3275
	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3276
	      fastmap[j] = 1;
3277
	  break;
3278
 
3279
 
3280
	case wordchar:
3281
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3282
	    if (SYNTAX (j) == Sword)
3283
	      fastmap[j] = 1;
3284
	  break;
3285
 
3286
 
3287
	case notwordchar:
3288
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3289
	    if (SYNTAX (j) != Sword)
3290
	      fastmap[j] = 1;
3291
	  break;
3292
#else  /* emacs */
3293
	case charset:
3294
	  for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3295
	       j >= 0; j--)
3296
	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3297
	      fastmap[j] = 1;
3298
 
3299
	  if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3300
	      && match_any_multibyte_characters == false)
3301
	    {
3302
	      /* Set fastmap[I] 1 where I is a base leading code of each
3303
		 multibyte character in the range table. */
3304
	      int c, count;
3305
 
3306
	      /* Make P points the range table. */
3307
	      p += CHARSET_BITMAP_SIZE (&p[-2]);
3308
 
3309
	      /* Extract the number of ranges in range table into
3310
		 COUNT.	 */
3311
	      EXTRACT_NUMBER_AND_INCR (count, p);
3312
	      for (; count > 0; count--, p += 2 * 3) /* XXX */
3313
		{
3314
		  /* Extract the start of each range.  */
3315
		  EXTRACT_CHARACTER (c, p);
3316
		  j = CHAR_CHARSET (c);
3317
		  fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3318
		}
3319
	    }
3320
	  break;
3321
 
3322
 
3323
	case charset_not:
3324
	  /* Chars beyond end of bitmap are possible matches.
3325
	     All the single-byte codes can occur in multibyte buffers.
3326
	     So any that are not listed in the charset
3327
	     are possible matches, even in multibyte buffers.  */
3328
	  simple_char_max = (1 << BYTEWIDTH);
3329
	  for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3330
	       j < simple_char_max; j++)
3331
	    fastmap[j] = 1;
3332
 
3333
	  for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3334
	       j >= 0; j--)
3335
	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3336
	      fastmap[j] = 1;
3337
 
3338
	  if (bufp->multibyte)
3339
	    /* Any character set can possibly contain a character
3340
	       which doesn't match the specified set of characters.  */
3341
	    {
3342
	    set_fastmap_for_multibyte_characters:
3343
	      if (match_any_multibyte_characters == false)
3344
		{
3345
		  for (j = 0x80; j < 0xA0; j++)	/* XXX */
3346
		    if (BASE_LEADING_CODE_P (j))
3347
		      fastmap[j] = 1;
3348
		  match_any_multibyte_characters = true;
3349
		}
3350
	    }
3351
	  break;
3352
 
3353
 
3354
	case wordchar:
3355
	  /* All the single-byte codes can occur in multibyte buffers,
3356
	     and they may have word syntax.  So do consider them.  */
3357
	  simple_char_max = (1 << BYTEWIDTH);
3358
	  for (j = 0; j < simple_char_max; j++)
3359
	    if (SYNTAX (j) == Sword)
3360
	      fastmap[j] = 1;
3361
 
3362
	  if (bufp->multibyte)
3363
	    /* Any character set can possibly contain a character
3364
	       whose syntax is `Sword'.	 */
3365
	    goto set_fastmap_for_multibyte_characters;
3366
	  break;
3367
 
3368
 
3369
	case notwordchar:
3370
	  /* All the single-byte codes can occur in multibyte buffers,
3371
	     and they may not have word syntax.  So do consider them.  */
3372
	  simple_char_max = (1 << BYTEWIDTH);
3373
	  for (j = 0; j < simple_char_max; j++)
3374
	    if (SYNTAX (j) != Sword)
3375
	      fastmap[j] = 1;
3376
 
3377
	  if (bufp->multibyte)
3378
	    /* Any character set can possibly contain a character
3379
	       whose syntax is not `Sword'.  */
3380
	    goto set_fastmap_for_multibyte_characters;
3381
	  break;
3382
#endif
3383
 
3384
	case anychar:
3385
	  {
3386
	    int fastmap_newline = fastmap['\n'];
3387
 
3388
	    /* `.' matches anything, except perhaps newline.
3389
	       Even in a multibyte buffer, it should match any
3390
	       conceivable byte value for the fastmap.  */
3391
	    if (bufp->multibyte)
3392
	      match_any_multibyte_characters = true;
3393
 
3394
	    simple_char_max = (1 << BYTEWIDTH);
3395
	    for (j = 0; j < simple_char_max; j++)
3396
	      fastmap[j] = 1;
3397
 
3398
	    /* ... except perhaps newline.  */
3399
	    if (!(bufp->syntax & RE_DOT_NEWLINE))
3400
	      fastmap['\n'] = fastmap_newline;
3401
 
3402
	    /* Return if we have already set `can_be_null'; if we have,
3403
	       then the fastmap is irrelevant.	Something's wrong here.	 */
3404
	    else if (bufp->can_be_null)
3405
	      goto done;
3406
 
3407
	    /* Otherwise, have to check alternative paths.  */
3408
	    break;
3409
	  }
3410
 
3411
#ifdef emacs
3412
	case wordbound:
3413
	case notwordbound:
3414
	case wordbeg:
3415
	case wordend:
3416
	case notsyntaxspec:
3417
	case syntaxspec:
3418
	  /* This match depends on text properties.  These end with
3419
	     aborting optimizations.  */
3420
	  bufp->can_be_null = 1;
3421
	  goto done;
3422
#if 0
3423
	  k = *p++;
3424
	  simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3425
	  for (j = 0; j < simple_char_max; j++)
3426
	    if (SYNTAX (j) == (enum syntaxcode) k)
3427
	      fastmap[j] = 1;
3428
 
3429
	  if (bufp->multibyte)
3430
	    /* Any character set can possibly contain a character
3431
	       whose syntax is K.  */
3432
	    goto set_fastmap_for_multibyte_characters;
3433
	  break;
3434
 
3435
	case notsyntaxspec:
3436
	  k = *p++;
3437
	  simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3438
	  for (j = 0; j < simple_char_max; j++)
3439
	    if (SYNTAX (j) != (enum syntaxcode) k)
3440
	      fastmap[j] = 1;
3441
 
3442
	  if (bufp->multibyte)
3443
	    /* Any character set can possibly contain a character
3444
	       whose syntax is not K.  */
3445
	    goto set_fastmap_for_multibyte_characters;
3446
	  break;
3447
#endif
3448
 
3449
 
3450
	case categoryspec:
3451
	  k = *p++;
3452
	  simple_char_max = (1 << BYTEWIDTH);
3453
	  for (j = 0; j < simple_char_max; j++)
3454
	    if (CHAR_HAS_CATEGORY (j, k))
3455
	      fastmap[j] = 1;
3456
 
3457
	  if (bufp->multibyte)
3458
	    /* Any character set can possibly contain a character
3459
	       whose category is K.  */
3460
	    goto set_fastmap_for_multibyte_characters;
3461
	  break;
3462
 
3463
 
3464
	case notcategoryspec:
3465
	  k = *p++;
3466
	  simple_char_max = (1 << BYTEWIDTH);
3467
	  for (j = 0; j < simple_char_max; j++)
3468
	    if (!CHAR_HAS_CATEGORY (j, k))
3469
	      fastmap[j] = 1;
3470
 
3471
	  if (bufp->multibyte)
3472
	    /* Any character set can possibly contain a character
3473
	       whose category is not K.	 */
3474
	    goto set_fastmap_for_multibyte_characters;
3475
	  break;
3476
 
3477
      /* All cases after this match the empty string.  These end with
3478
	 `continue'.  */
3479
 
3480
 
3481
	case before_dot:
3482
	case at_dot:
3483
	case after_dot:
3484
	  continue;
3485
#endif /* emacs */
3486
 
3487
 
3488
	case no_op:
3489
	case begline:
3490
	case endline:
3491
	case begbuf:
3492
	case endbuf:
3493
#ifndef emacs
3494
	case wordbound:
3495
	case notwordbound:
3496
	case wordbeg:
3497
	case wordend:
3498
#endif
3499
	case push_dummy_failure:
3500
	  continue;
3501
 
3502
 
3503
	case jump_n:
3504
	case pop_failure_jump:
3505
	case maybe_pop_jump:
3506
	case jump:
3507
	case jump_past_alt:
3508
	case dummy_failure_jump:
3509
	  EXTRACT_NUMBER_AND_INCR (j, p);
3510
	  p += j;
3511
	  if (j > 0)
3512
	    continue;
3513
 
3514
	  /* Jump backward implies we just went through the body of a
3515
	     loop and matched nothing.	Opcode jumped to should be
3516
	     `on_failure_jump' or `succeed_n'.	Just treat it like an
3517
	     ordinary jump.  For a * loop, it has pushed its failure
3518
	     point already; if so, discard that as redundant.  */
3519
	  if ((re_opcode_t) *p != on_failure_jump
3520
	      && (re_opcode_t) *p != succeed_n)
3521
	    continue;
3522
 
3523
	  p++;
3524
	  EXTRACT_NUMBER_AND_INCR (j, p);
3525
	  p += j;
3526
 
3527
	  /* If what's on the stack is where we are now, pop it.  */
3528
	  if (!FAIL_STACK_EMPTY ()
3529
	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3530
	    fail_stack.avail--;
3531
 
3532
	  continue;
3533
 
3534
 
3535
	case on_failure_jump:
3536
	case on_failure_keep_string_jump:
3537
	handle_on_failure_jump:
3538
	  EXTRACT_NUMBER_AND_INCR (j, p);
3539
 
3540
	  /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3541
	     end of the pattern.  We don't want to push such a point,
3542
	     since when we restore it above, entering the switch will
3543
	     increment `p' past the end of the pattern.	 We don't need
3544
	     to push such a point since we obviously won't find any more
3545
	     fastmap entries beyond `pend'.  Such a pattern can match
3546
	     the null string, though.  */
3547
	  if (p + j < pend)
3548
	    {
3549
	      if (!PUSH_PATTERN_OP (p + j, fail_stack))
3550
		{
3551
		  RESET_FAIL_STACK ();
3552
		  return -2;
3553
		}
3554
	    }
3555
	  else
3556
	    bufp->can_be_null = 1;
3557
 
3558
	  if (succeed_n_p)
3559
	    {
3560
	      EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.	*/
3561
	      succeed_n_p = false;
3562
	    }
3563
 
3564
	  continue;
3565
 
3566
 
3567
	case succeed_n:
3568
	  /* Get to the number of times to succeed.  */
3569
	  p += 2;
3570
 
3571
	  /* Increment p past the n for when k != 0.  */
3572
	  EXTRACT_NUMBER_AND_INCR (k, p);
3573
	  if (k == 0)
3574
	    {
3575
	      p -= 4;
3576
	      succeed_n_p = true;  /* Spaghetti code alert.  */
3577
	      goto handle_on_failure_jump;
3578
	    }
3579
	  continue;
3580
 
3581
 
3582
	case set_number_at:
3583
	  p += 4;
3584
	  continue;
3585
 
3586
 
3587
	case start_memory:
3588
	case stop_memory:
3589
	  p += 2;
3590
	  continue;
3591
 
3592
 
3593
	default:
3594
	  abort (); /* We have listed all the cases.  */
3595
	} /* switch *p++ */
3596
 
3597
      /* Getting here means we have found the possible starting
3598
	 characters for one path of the pattern -- and that the empty
3599
	 string does not match.	 We need not follow this path further.
3600
	 Instead, look at the next alternative (remembered on the
3601
	 stack), or quit if no more.  The test at the top of the loop
3602
	 does these things.  */
3603
      path_can_be_null = false;
3604
      p = pend;
3605
    } /* while p */
3606
 
3607
  /* Set `can_be_null' for the last path (also the first path, if the
3608
     pattern is empty).	 */
3609
  bufp->can_be_null |= path_can_be_null;
3610
 
3611
 done:
3612
  RESET_FAIL_STACK ();
3613
  return 0;
3614
} /* re_compile_fastmap */
3615
 
3616
/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3617
   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
3618
   this memory for recording register information.  STARTS and ENDS
3619
   must be allocated using the malloc library routine, and must each
3620
   be at least NUM_REGS * sizeof (regoff_t) bytes long.
3621
 
3622
   If NUM_REGS == 0, then subsequent matches should allocate their own
3623
   register data.
3624
 
3625
   Unless this function is called, the first search or match using
3626
   PATTERN_BUFFER will allocate its own register data, without
3627
   freeing the old data.  */
3628
 
3629
void
3630
re_set_registers (bufp, regs, num_regs, starts, ends)
3631
    struct re_pattern_buffer *bufp;
3632
    struct re_registers *regs;
3633
    unsigned num_regs;
3634
    regoff_t *starts, *ends;
3635
{
3636
  if (num_regs)
3637
    {
3638
      bufp->regs_allocated = REGS_REALLOCATE;
3639
      regs->num_regs = num_regs;
3640
      regs->start = starts;
3641
      regs->end = ends;
3642
    }
3643
  else
3644
    {
3645
      bufp->regs_allocated = REGS_UNALLOCATED;
3646
      regs->num_regs = 0;
3647
      regs->start = regs->end = (regoff_t *) 0;
3648
    }
3649
}
3650
 
3651
/* Searching routines.	*/
3652
 
3653
/* Like re_search_2, below, but only one string is specified, and
3654
   doesn't let you say where to stop matching. */
3655
 
3656
int
3657
re_search (bufp, string, size, startpos, range, regs)
3658
     struct re_pattern_buffer *bufp;
3659
     const char *string;
3660
     int size, startpos, range;
3661
     struct re_registers *regs;
3662
{
3663
  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3664
		      regs, size);
3665
}
3666
 
3667
/* End address of virtual concatenation of string.  */
3668
#define STOP_ADDR_VSTRING(P)				\
3669
  (((P) >= size1 ? string2 + size2 : string1 + size1))
3670
 
3671
/* Address of POS in the concatenation of virtual string. */
3672
#define POS_ADDR_VSTRING(POS)					\
3673
  (((POS) >= size1 ? string2 - size1 : string1) + (POS))
3674
 
3675
/* Using the compiled pattern in BUFP->buffer, first tries to match the
3676
   virtual concatenation of STRING1 and STRING2, starting first at index
3677
   STARTPOS, then at STARTPOS + 1, and so on.
3678
 
3679
   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3680
 
3681
   RANGE is how far to scan while trying to match.  RANGE = 0 means try
3682
   only at STARTPOS; in general, the last start tried is STARTPOS +
3683
   RANGE.
3684
 
3685
   In REGS, return the indices of the virtual concatenation of STRING1
3686
   and STRING2 that matched the entire BUFP->buffer and its contained
3687
   subexpressions.
3688
 
3689
   Do not consider matching one past the index STOP in the virtual
3690
   concatenation of STRING1 and STRING2.
3691
 
3692
   We return either the position in the strings at which the match was
3693
   found, -1 if no match, or -2 if error (such as failure
3694
   stack overflow).  */
3695
 
3696
int
3697
re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3698
     struct re_pattern_buffer *bufp;
3699
     const char *string1, *string2;
3700
     int size1, size2;
3701
     int startpos;
3702
     int range;
3703
     struct re_registers *regs;
3704
     int stop;
3705
{
3706
  int val;
3707
  register char *fastmap = bufp->fastmap;
3708
  register RE_TRANSLATE_TYPE translate = bufp->translate;
3709
  int total_size = size1 + size2;
3710
  int endpos = startpos + range;
3711
  int anchored_start = 0;
3712
 
3713
  /* Nonzero if we have to concern multibyte character.	 */
3714
  int multibyte = bufp->multibyte;
3715
 
3716
  /* Check for out-of-range STARTPOS.  */
3717
  if (startpos < 0 || startpos > total_size)
3718
    return -1;
3719
 
3720
  /* Fix up RANGE if it might eventually take us outside
3721
     the virtual concatenation of STRING1 and STRING2.
3722
     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
3723
  if (endpos < 0)
3724
    range = 0 - startpos;
3725
  else if (endpos > total_size)
3726
    range = total_size - startpos;
3727
 
3728
  /* If the search isn't to be a backwards one, don't waste time in a
3729
     search for a pattern anchored at beginning of buffer.  */
3730
  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3731
    {
3732
      if (startpos > 0)
3733
	return -1;
3734
      else
3735
	range = 0;
3736
    }
3737
 
3738
#ifdef emacs
3739
  /* In a forward search for something that starts with \=.
3740
     don't keep searching past point.  */
3741
  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3742
    {
3743
      range = PT_BYTE - BEGV_BYTE - startpos;
3744
      if (range < 0)
3745
	return -1;
3746
    }
3747
#endif /* emacs */
3748
 
3749
  /* Update the fastmap now if not correct already.  */
3750
  if (fastmap && !bufp->fastmap_accurate)
3751
    if (re_compile_fastmap (bufp) == -2)
3752
      return -2;
3753
 
3754
  /* See whether the pattern is anchored.  */
3755
  if (bufp->buffer[0] == begline)
3756
    anchored_start = 1;
3757
 
3758
#ifdef emacs
3759
  gl_state.object = re_match_object;
3760
  {
3761
    int adjpos = NILP (re_match_object) || BUFFERP (re_match_object);
3762
    int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (startpos + adjpos);
3763
 
3764
    SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
3765
  }
3766
#endif
3767
 
3768
  /* Loop through the string, looking for a place to start matching.  */
3769
  for (;;)
3770
    {
3771
      /* If the pattern is anchored,
3772
	 skip quickly past places we cannot match.
3773
	 We don't bother to treat startpos == 0 specially
3774
	 because that case doesn't repeat.  */
3775
      if (anchored_start && startpos > 0)
3776
	{
3777
	  if (! (bufp->newline_anchor
3778
		 && ((startpos <= size1 ? string1[startpos - 1]
3779
		      : string2[startpos - size1 - 1])
3780
		     == '\n')))
3781
	    goto advance;
3782
	}
3783
 
3784
      /* If a fastmap is supplied, skip quickly over characters that
3785
	 cannot be the start of a match.  If the pattern can match the
3786
	 null string, however, we don't need to skip characters; we want
3787
	 the first null string.	 */
3788
      if (fastmap && startpos < total_size && !bufp->can_be_null)
3789
	{
3790
	  register const char *d;
3791
	  register unsigned int buf_ch;
3792
 
3793
	  d = POS_ADDR_VSTRING (startpos);
3794
 
3795
	  if (range > 0)	/* Searching forwards.	*/
3796
	    {
3797
	      register int lim = 0;
3798
	      int irange = range;
3799
 
3800
	      if (startpos < size1 && startpos + range >= size1)
3801
		lim = range - (size1 - startpos);
3802
 
3803
	      /* Written out as an if-else to avoid testing `translate'
3804
		 inside the loop.  */
3805
	      if (RE_TRANSLATE_P (translate))
3806
		{
3807
		  if (multibyte)
3808
		    while (range > lim)
3809
		      {
3810
			int buf_charlen;
3811
 
3812
			buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
3813
							 buf_charlen);
3814
 
3815
			buf_ch = RE_TRANSLATE (translate, buf_ch);
3816
			if (buf_ch >= 0400
3817
			    || fastmap[buf_ch])
3818
			  break;
3819
 
3820
			range -= buf_charlen;
3821
			d += buf_charlen;
3822
		      }
3823
		  else
3824
		    while (range > lim
3825
			   && !fastmap[(unsigned char)
3826
				       RE_TRANSLATE (translate, (unsigned char) *d)])
3827
		      {
3828
			d++;
3829
			range--;
3830
		      }
3831
		}
3832
	      else
3833
		while (range > lim && !fastmap[(unsigned char) *d])
3834
		  {
3835
		    d++;
3836
		    range--;
3837
		  }
3838
 
3839
	      startpos += irange - range;
3840
	    }
3841
	  else				/* Searching backwards.	 */
3842
	    {
3843
	      int room = (size1 == 0 || startpos >= size1
3844
			  ? size2 + size1 - startpos
3845
			  : size1 - startpos);
3846
 
3847
	      buf_ch = STRING_CHAR (d, room);
3848
	      if (RE_TRANSLATE_P (translate))
3849
		buf_ch = RE_TRANSLATE (translate, buf_ch);
3850
 
3851
	      if (! (buf_ch >= 0400
3852
		     || fastmap[buf_ch]))
3853
		goto advance;
3854
	    }
3855
	}
3856
 
3857
      /* If can't match the null string, and that's all we have left, fail.  */
3858
      if (range >= 0 && startpos == total_size && fastmap
3859
	  && !bufp->can_be_null)
3860
	return -1;
3861
 
3862
      val = re_match_2_internal (bufp, string1, size1, string2, size2,
3863
				 startpos, regs, stop);
3864
#ifndef REGEX_MALLOC
3865
#ifdef C_ALLOCA
3866
      alloca (0);
3867
#endif
3868
#endif
3869
 
3870
      if (val >= 0)
3871
	return startpos;
3872
 
3873
      if (val == -2)
3874
	return -2;
3875
 
3876
    advance:
3877
      if (!range)
3878
	break;
3879
      else if (range > 0)
3880
	{
3881
	  /* Update STARTPOS to the next character boundary.  */
3882
	  if (multibyte)
3883
	    {
3884
	      const unsigned char *p
3885
		= (const unsigned char *) POS_ADDR_VSTRING (startpos);
3886
	      const unsigned char *pend
3887
		= (const unsigned char *) STOP_ADDR_VSTRING (startpos);
3888
	      int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3889
 
3890
	      range -= len;
3891
	      if (range < 0)
3892
		break;
3893
	      startpos += len;
3894
	    }
3895
	  else
3896
	    {
3897
	      range--;
3898
	      startpos++;
3899
	    }
3900
	}
3901
      else
3902
	{
3903
	  range++;
3904
	  startpos--;
3905
 
3906
	  /* Update STARTPOS to the previous character boundary.  */
3907
	  if (multibyte)
3908
	    {
3909
	      const unsigned char *p
3910
		= (const unsigned char *) POS_ADDR_VSTRING (startpos);
3911
	      int len = 0;
3912
 
3913
	      /* Find the head of multibyte form.  */
3914
	      while (!CHAR_HEAD_P (*p))
3915
		p--, len++;
3916
 
3917
	      /* Adjust it. */
3918
#if 0				/* XXX */
3919
	      if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3920
		;
3921
	      else
3922
#endif
3923
		{
3924
		  range += len;
3925
		  if (range > 0)
3926
		    break;
3927
 
3928
		  startpos -= len;
3929
		}
3930
	    }
3931
	}
3932
    }
3933
  return -1;
3934
} /* re_search_2 */
3935
 
3936
/* Declarations and macros for re_match_2.  */
3937
 
3938
static int bcmp_translate ();
3939
static boolean alt_match_null_string_p (),
3940
	       common_op_match_null_string_p (),
3941
	       group_match_null_string_p ();
3942
 
3943
/* This converts PTR, a pointer into one of the search strings `string1'
3944
   and `string2' into an offset from the beginning of that string.  */
3945
#define POINTER_TO_OFFSET(ptr)			\
3946
  (FIRST_STRING_P (ptr)				\
3947
   ? ((regoff_t) ((ptr) - string1))		\
3948
   : ((regoff_t) ((ptr) - string2 + size1)))
3949
 
3950
/* Macros for dealing with the split strings in re_match_2.  */
3951
 
3952
#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
3953
 
3954
/* Call before fetching a character with *d.  This switches over to
3955
   string2 if necessary.  */
3956
#define PREFETCH()							\
3957
  while (d == dend)							\
3958
    {									\
3959
      /* End of string2 => fail.  */					\
3960
      if (dend == end_match_2)						\
3961
	goto fail;							\
3962
      /* End of string1 => advance to string2.	*/			\
3963
      d = string2;							\
3964
      dend = end_match_2;						\
3965
    }
3966
 
3967
 
3968
/* Test if at very beginning or at very end of the virtual concatenation
3969
   of `string1' and `string2'.	If only one string, it's `string2'.  */
3970
#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3971
#define AT_STRINGS_END(d) ((d) == end2)
3972
 
3973
 
3974
/* Test if D points to a character which is word-constituent.  We have
3975
   two special cases to check for: if past the end of string1, look at
3976
   the first character in string2; and if before the beginning of
3977
   string2, look at the last character in string1.  */
3978
#define WORDCHAR_P(d)							\
3979
  (SYNTAX ((d) == end1 ? *string2					\
3980
	   : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
3981
   == Sword)
3982
 
3983
/* Disabled due to a compiler bug -- see comment at case wordbound */
3984
 
3985
/* The comment at case wordbound is following one, but we don't use
3986
   AT_WORD_BOUNDARY anymore to support multibyte form.
3987
 
3988
   The DEC Alpha C compiler 3.x generates incorrect code for the
3989
   test	 WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
3990
   AT_WORD_BOUNDARY, so this code is disabled.	Expanding the
3991
   macro and introducing temporary variables works around the bug.  */
3992
 
3993
#if 0
3994
/* Test if the character before D and the one at D differ with respect
3995
   to being word-constituent.  */
3996
#define AT_WORD_BOUNDARY(d)						\
3997
  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
3998
   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3999
#endif
4000
 
4001
/* Free everything we malloc.  */
4002
#ifdef MATCH_MAY_ALLOCATE
4003
#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4004
#define FREE_VARIABLES()						\
4005
  do {									\
4006
    REGEX_FREE_STACK (fail_stack.stack);				\
4007
    FREE_VAR (regstart);						\
4008
    FREE_VAR (regend);							\
4009
    FREE_VAR (old_regstart);						\
4010
    FREE_VAR (old_regend);						\
4011
    FREE_VAR (best_regstart);						\
4012
    FREE_VAR (best_regend);						\
4013
    FREE_VAR (reg_info);						\
4014
    FREE_VAR (reg_dummy);						\
4015
    FREE_VAR (reg_info_dummy);						\
4016
  } while (0)
4017
#else
4018
#define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning.  */
4019
#endif /* not MATCH_MAY_ALLOCATE */
4020
 
4021
/* These values must meet several constraints.	They must not be valid
4022
   register values; since we have a limit of 255 registers (because
4023
   we use only one byte in the pattern for the register number), we can
4024
   use numbers larger than 255.	 They must differ by 1, because of
4025
   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
4026
   be larger than the value for the highest register, so we do not try
4027
   to actually save any registers when none are active.	 */
4028
#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
4029
#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
4030
 
4031
/* Matching routines.  */
4032
 
4033
#ifndef emacs	/* Emacs never uses this.  */
4034
/* re_match is like re_match_2 except it takes only a single string.  */
4035
 
4036
int
4037
re_match (bufp, string, size, pos, regs)
4038
     struct re_pattern_buffer *bufp;
4039
     const char *string;
4040
     int size, pos;
4041
     struct re_registers *regs;
4042
{
4043
  int result = re_match_2_internal (bufp, NULL, 0, string, size,
4044
				    pos, regs, size);
4045
#ifndef REGEX_MALLOC	/* CVS */
4046
#ifdef C_ALLOCA		/* CVS */
4047
  alloca (0);
4048
#endif			/* CVS */
4049
#endif			/* CVS */
4050
  return result;
4051
}
4052
#endif /* not emacs */
4053
 
4054
#ifdef emacs
4055
/* In Emacs, this is the string or buffer in which we
4056
   are matching.  It is used for looking up syntax properties.	*/
4057
Lisp_Object re_match_object;
4058
#endif
4059
 
4060
/* re_match_2 matches the compiled pattern in BUFP against the
4061
   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4062
   and SIZE2, respectively).  We start matching at POS, and stop
4063
   matching at STOP.
4064
 
4065
   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4066
   store offsets for the substring each group matched in REGS.	See the
4067
   documentation for exactly how many groups we fill.
4068
 
4069
   We return -1 if no match, -2 if an internal error (such as the
4070
   failure stack overflowing).	Otherwise, we return the length of the
4071
   matched substring.  */
4072
 
4073
int
4074
re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4075
     struct re_pattern_buffer *bufp;
4076
     const char *string1, *string2;
4077
     int size1, size2;
4078
     int pos;
4079
     struct re_registers *regs;
4080
     int stop;
4081
{
4082
  int result;
4083
 
4084
#ifdef emacs
4085
  int charpos;
4086
  int adjpos = NILP (re_match_object) || BUFFERP (re_match_object);
4087
  gl_state.object = re_match_object;
4088
  charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos + adjpos);
4089
  SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4090
#endif
4091
 
4092
  result = re_match_2_internal (bufp, string1, size1, string2, size2,
4093
				pos, regs, stop);
4094
#ifndef REGEX_MALLOC	/* CVS */
4095
#ifdef C_ALLOCA		/* CVS */
4096
  alloca (0);
4097
#endif			/* CVS */
4098
#endif			/* CVS */
4099
  return result;
4100
}
4101
 
4102
/* This is a separate function so that we can force an alloca cleanup
4103
   afterwards.	*/
4104
static int
4105
re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4106
     struct re_pattern_buffer *bufp;
4107
     const char *string1, *string2;
4108
     int size1, size2;
4109
     int pos;
4110
     struct re_registers *regs;
4111
     int stop;
4112
{
4113
  /* General temporaries.  */
4114
  int mcnt;
4115
  unsigned char *p1;
4116
 
4117
  /* Just past the end of the corresponding string.  */
4118
  const char *end1, *end2;
4119
 
4120
  /* Pointers into string1 and string2, just past the last characters in
4121
     each to consider matching.	 */
4122
  const char *end_match_1, *end_match_2;
4123
 
4124
  /* Where we are in the data, and the end of the current string.  */
4125
  const char *d, *dend;
4126
 
4127
  /* Where we are in the pattern, and the end of the pattern.  */
4128
  unsigned char *p = bufp->buffer;
4129
  register unsigned char *pend = p + bufp->used;
4130
 
4131
  /* Mark the opcode just after a start_memory, so we can test for an
4132
     empty subpattern when we get to the stop_memory.  */
4133
  unsigned char *just_past_start_mem = 0;
4134
 
4135
  /* We use this to map every character in the string.	*/
4136
  RE_TRANSLATE_TYPE translate = bufp->translate;
4137
 
4138
  /* Nonzero if we have to concern multibyte character.	 */
4139
  int multibyte = bufp->multibyte;
4140
 
4141
  /* Failure point stack.  Each place that can handle a failure further
4142
     down the line pushes a failure point on this stack.  It consists of
4143
     restart, regend, and reg_info for all registers corresponding to
4144
     the subexpressions we're currently inside, plus the number of such
4145
     registers, and, finally, two char *'s.  The first char * is where
4146
     to resume scanning the pattern; the second one is where to resume
4147
     scanning the strings.  If the latter is zero, the failure point is
4148
     a ``dummy''; if a failure happens and the failure point is a dummy,
4149
     it gets discarded and the next next one is tried.	*/
4150
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.	 */
4151
  fail_stack_type fail_stack;
4152
#endif
4153
#ifdef DEBUG
4154
  static unsigned failure_id = 0;
4155
  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4156
#endif
4157
 
4158
  /* This holds the pointer to the failure stack, when
4159
     it is allocated relocatably.  */
4160
  fail_stack_elt_t *failure_stack_ptr;
4161
 
4162
  /* We fill all the registers internally, independent of what we
4163
     return, for use in backreferences.	 The number here includes
4164
     an element for register zero.  */
4165
  unsigned num_regs = bufp->re_nsub + 1;
4166
 
4167
  /* The currently active registers.  */
4168
  unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4169
  unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4170
 
4171
  /* Information on the contents of registers. These are pointers into
4172
     the input strings; they record just what was matched (on this
4173
     attempt) by a subexpression part of the pattern, that is, the
4174
     regnum-th regstart pointer points to where in the pattern we began
4175
     matching and the regnum-th regend points to right after where we
4176
     stopped matching the regnum-th subexpression.  (The zeroth register
4177
     keeps track of what the whole pattern matches.)  */
4178
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
4179
  const char **regstart, **regend;
4180
#endif
4181
 
4182
  /* If a group that's operated upon by a repetition operator fails to
4183
     match anything, then the register for its start will need to be
4184
     restored because it will have been set to wherever in the string we
4185
     are when we last see its open-group operator.  Similarly for a
4186
     register's end.  */
4187
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
4188
  const char **old_regstart, **old_regend;
4189
#endif
4190
 
4191
  /* The is_active field of reg_info helps us keep track of which (possibly
4192
     nested) subexpressions we are currently in. The matched_something
4193
     field of reg_info[reg_num] helps us tell whether or not we have
4194
     matched any of the pattern so far this time through the reg_num-th
4195
     subexpression.  These two fields get reset each time through any
4196
     loop their register is in.	 */
4197
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.	 */
4198
  register_info_type *reg_info;
4199
#endif
4200
 
4201
  /* The following record the register info as found in the above
4202
     variables when we find a match better than any we've seen before.
4203
     This happens as we backtrack through the failure points, which in
4204
     turn happens only if we have not yet matched the entire string. */
4205
  unsigned best_regs_set = false;
4206
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
4207
  const char **best_regstart, **best_regend;
4208
#endif
4209
 
4210
  /* Logically, this is `best_regend[0]'.  But we don't want to have to
4211
     allocate space for that if we're not allocating space for anything
4212
     else (see below).	Also, we never need info about register 0 for
4213
     any of the other register vectors, and it seems rather a kludge to
4214
     treat `best_regend' differently than the rest.  So we keep track of
4215
     the end of the best match so far in a separate variable.  We
4216
     initialize this to NULL so that when we backtrack the first time
4217
     and need to test it, it's not garbage.  */
4218
  const char *match_end = NULL;
4219
 
4220
  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
4221
  int set_regs_matched_done = 0;
4222
 
4223
  /* Used when we pop values we don't care about.  */
4224
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
4225
  const char **reg_dummy;
4226
  register_info_type *reg_info_dummy;
4227
#endif
4228
 
4229
#ifdef DEBUG
4230
  /* Counts the total number of registers pushed.  */
4231
  unsigned num_regs_pushed = 0;
4232
#endif
4233
 
4234
  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4235
 
4236
  INIT_FAIL_STACK ();
4237
 
4238
#ifdef MATCH_MAY_ALLOCATE
4239
  /* Do not bother to initialize all the register variables if there are
4240
     no groups in the pattern, as it takes a fair amount of time.  If
4241
     there are groups, we include space for register 0 (the whole
4242
     pattern), even though we never use it, since it simplifies the
4243
     array indexing.  We should fix this.  */
4244
  if (bufp->re_nsub)
4245
    {
4246
      regstart = REGEX_TALLOC (num_regs, const char *);
4247
      regend = REGEX_TALLOC (num_regs, const char *);
4248
      old_regstart = REGEX_TALLOC (num_regs, const char *);
4249
      old_regend = REGEX_TALLOC (num_regs, const char *);
4250
      best_regstart = REGEX_TALLOC (num_regs, const char *);
4251
      best_regend = REGEX_TALLOC (num_regs, const char *);
4252
      reg_info = REGEX_TALLOC (num_regs, register_info_type);
4253
      reg_dummy = REGEX_TALLOC (num_regs, const char *);
4254
      reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4255
 
4256
      if (!(regstart && regend && old_regstart && old_regend && reg_info
4257
	    && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4258
	{
4259
	  FREE_VARIABLES ();
4260
	  return -2;
4261
	}
4262
    }
4263
  else
4264
    {
4265
      /* We must initialize all our variables to NULL, so that
4266
	 `FREE_VARIABLES' doesn't try to free them.  */
4267
      regstart = regend = old_regstart = old_regend = best_regstart
4268
	= best_regend = reg_dummy = NULL;
4269
      reg_info = reg_info_dummy = (register_info_type *) NULL;
4270
    }
4271
#endif /* MATCH_MAY_ALLOCATE */
4272
 
4273
  /* The starting position is bogus.  */
4274
  if (pos < 0 || pos > size1 + size2)
4275
    {
4276
      FREE_VARIABLES ();
4277
      return -1;
4278
    }
4279
 
4280
  /* Initialize subexpression text positions to -1 to mark ones that no
4281
     start_memory/stop_memory has been seen for. Also initialize the
4282
     register information struct.  */
4283
  for (mcnt = 1; mcnt < num_regs; mcnt++)
4284
    {
4285
      regstart[mcnt] = regend[mcnt]
4286
	= old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
4287
 
4288
      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4289
      IS_ACTIVE (reg_info[mcnt]) = 0;
4290
      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4291
      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4292
    }
4293
 
4294
  /* We move `string1' into `string2' if the latter's empty -- but not if
4295
     `string1' is null.	 */
4296
  if (size2 == 0 && string1 != NULL)
4297
    {
4298
      string2 = string1;
4299
      size2 = size1;
4300
      string1 = 0;
4301
      size1 = 0;
4302
    }
4303
  end1 = string1 + size1;
4304
  end2 = string2 + size2;
4305
 
4306
  /* Compute where to stop matching, within the two strings.  */
4307
  if (stop <= size1)
4308
    {
4309
      end_match_1 = string1 + stop;
4310
      end_match_2 = string2;
4311
    }
4312
  else
4313
    {
4314
      end_match_1 = end1;
4315
      end_match_2 = string2 + stop - size1;
4316
    }
4317
 
4318
  /* `p' scans through the pattern as `d' scans through the data.
4319
     `dend' is the end of the input string that `d' points within.  `d'
4320
     is advanced into the following input string whenever necessary, but
4321
     this happens before fetching; therefore, at the beginning of the
4322
     loop, `d' can be pointing at the end of a string, but it cannot
4323
     equal `string2'.  */
4324
  if (size1 > 0 && pos <= size1)
4325
    {
4326
      d = string1 + pos;
4327
      dend = end_match_1;
4328
    }
4329
  else
4330
    {
4331
      d = string2 + pos - size1;
4332
      dend = end_match_2;
4333
    }
4334
 
4335
  DEBUG_PRINT1 ("The compiled pattern is: ");
4336
  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4337
  DEBUG_PRINT1 ("The string to match is: `");
4338
  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4339
  DEBUG_PRINT1 ("'\n");
4340
 
4341
  /* This loops over pattern commands.	It exits by returning from the
4342
     function if the match is complete, or it drops through if the match
4343
     fails at this starting point in the input data.  */
4344
  for (;;)
4345
    {
4346
      DEBUG_PRINT2 ("\n0x%x: ", p);
4347
 
4348
      if (p == pend)
4349
	{ /* End of pattern means we might have succeeded.  */
4350
	  DEBUG_PRINT1 ("end of pattern ... ");
4351
 
4352
	  /* If we haven't matched the entire string, and we want the
4353
	     longest match, try backtracking.  */
4354
	  if (d != end_match_2)
4355
	    {
4356
	      /* 1 if this match ends in the same string (string1 or string2)
4357
		 as the best previous match.  */
4358
	      boolean same_str_p = (FIRST_STRING_P (match_end)
4359
				    == MATCHING_IN_FIRST_STRING);
4360
	      /* 1 if this match is the best seen so far.  */
4361
	      boolean best_match_p;
4362
 
4363
	      /* AIX compiler got confused when this was combined
4364
		 with the previous declaration.	 */
4365
	      if (same_str_p)
4366
		best_match_p = d > match_end;
4367
	      else
4368
		best_match_p = !MATCHING_IN_FIRST_STRING;
4369
 
4370
	      DEBUG_PRINT1 ("backtracking.\n");
4371
 
4372
	      if (!FAIL_STACK_EMPTY ())
4373
		{ /* More failure points to try.  */
4374
 
4375
		  /* If exceeds best match so far, save it.  */
4376
		  if (!best_regs_set || best_match_p)
4377
		    {
4378
		      best_regs_set = true;
4379
		      match_end = d;
4380
 
4381
		      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4382
 
4383
		      for (mcnt = 1; mcnt < num_regs; mcnt++)
4384
			{
4385
			  best_regstart[mcnt] = regstart[mcnt];
4386
			  best_regend[mcnt] = regend[mcnt];
4387
			}
4388
		    }
4389
		  goto fail;
4390
		}
4391
 
4392
	      /* If no failure points, don't restore garbage.  And if
4393
		 last match is real best match, don't restore second
4394
		 best one. */
4395
	      else if (best_regs_set && !best_match_p)
4396
		{
4397
		restore_best_regs:
4398
		  /* Restore best match.  It may happen that `dend ==
4399
		     end_match_1' while the restored d is in string2.
4400
		     For example, the pattern `x.*y.*z' against the
4401
		     strings `x-' and `y-z-', if the two strings are
4402
		     not consecutive in memory.	 */
4403
		  DEBUG_PRINT1 ("Restoring best registers.\n");
4404
 
4405
		  d = match_end;
4406
		  dend = ((d >= string1 && d <= end1)
4407
			   ? end_match_1 : end_match_2);
4408
 
4409
		  for (mcnt = 1; mcnt < num_regs; mcnt++)
4410
		    {
4411
		      regstart[mcnt] = best_regstart[mcnt];
4412
		      regend[mcnt] = best_regend[mcnt];
4413
		    }
4414
		}
4415
	    } /* d != end_match_2 */
4416
 
4417
	succeed_label:
4418
	  DEBUG_PRINT1 ("Accepting match.\n");
4419
 
4420
	  /* If caller wants register contents data back, do it.  */
4421
	  if (regs && !bufp->no_sub)
4422
	    {
4423
	      /* Have the register data arrays been allocated?	*/
4424
	      if (bufp->regs_allocated == REGS_UNALLOCATED)
4425
		{ /* No.  So allocate them with malloc.	 We need one
4426
		     extra element beyond `num_regs' for the `-1' marker
4427
		     GNU code uses.  */
4428
		  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4429
		  regs->start = TALLOC (regs->num_regs, regoff_t);
4430
		  regs->end = TALLOC (regs->num_regs, regoff_t);
4431
		  if (regs->start == NULL || regs->end == NULL)
4432
		    {
4433
		      FREE_VARIABLES ();
4434
		      return -2;
4435
		    }
4436
		  bufp->regs_allocated = REGS_REALLOCATE;
4437
		}
4438
	      else if (bufp->regs_allocated == REGS_REALLOCATE)
4439
		{ /* Yes.  If we need more elements than were already
4440
		     allocated, reallocate them.  If we need fewer, just
4441
		     leave it alone.  */
4442
		  if (regs->num_regs < num_regs + 1)
4443
		    {
4444
		      regs->num_regs = num_regs + 1;
4445
		      RETALLOC (regs->start, regs->num_regs, regoff_t);
4446
		      RETALLOC (regs->end, regs->num_regs, regoff_t);
4447
		      if (regs->start == NULL || regs->end == NULL)
4448
			{
4449
			  FREE_VARIABLES ();
4450
			  return -2;
4451
			}
4452
		    }
4453
		}
4454
	      else
4455
		{
4456
		  /* These braces fend off a "empty body in an else-statement"
4457
		     warning under GCC when assert expands to nothing.	*/
4458
		  assert (bufp->regs_allocated == REGS_FIXED);
4459
		}
4460
 
4461
	      /* Convert the pointer data in `regstart' and `regend' to
4462
		 indices.  Register zero has to be set differently,
4463
		 since we haven't kept track of any info for it.  */
4464
	      if (regs->num_regs > 0)
4465
		{
4466
		  regs->start[0] = pos;
4467
		  regs->end[0] = (MATCHING_IN_FIRST_STRING
4468
				  ? ((regoff_t) (d - string1))
4469
				  : ((regoff_t) (d - string2 + size1)));
4470
		}
4471
 
4472
	      /* Go through the first `min (num_regs, regs->num_regs)'
4473
		 registers, since that is all we initialized.  */
4474
	      for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4475
		{
4476
		  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4477
		    regs->start[mcnt] = regs->end[mcnt] = -1;
4478
		  else
4479
		    {
4480
		      regs->start[mcnt]
4481
			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4482
		      regs->end[mcnt]
4483
			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4484
		    }
4485
		}
4486
 
4487
	      /* If the regs structure we return has more elements than
4488
		 were in the pattern, set the extra elements to -1.  If
4489
		 we (re)allocated the registers, this is the case,
4490
		 because we always allocate enough to have at least one
4491
		 -1 at the end.	 */
4492
	      for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4493
		regs->start[mcnt] = regs->end[mcnt] = -1;
4494
	    } /* regs && !bufp->no_sub */
4495
 
4496
	  DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4497
			nfailure_points_pushed, nfailure_points_popped,
4498
			nfailure_points_pushed - nfailure_points_popped);
4499
	  DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4500
 
4501
	  mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4502
			    ? string1
4503
			    : string2 - size1);
4504
 
4505
	  DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4506
 
4507
	  FREE_VARIABLES ();
4508
	  return mcnt;
4509
	}
4510
 
4511
      /* Otherwise match next pattern command.	*/
4512
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4513
	{
4514
	/* Ignore these.  Used to ignore the n of succeed_n's which
4515
	   currently have n == 0.  */
4516
	case no_op:
4517
	  DEBUG_PRINT1 ("EXECUTING no_op.\n");
4518
	  break;
4519
 
4520
	case succeed:
4521
	  DEBUG_PRINT1 ("EXECUTING succeed.\n");
4522
	  goto succeed_label;
4523
 
4524
	/* Match the next n pattern characters exactly.	 The following
4525
	   byte in the pattern defines n, and the n bytes after that
4526
	   are the characters to match.	 */
4527
	case exactn:
4528
	  mcnt = *p++;
4529
	  DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4530
 
4531
	  /* This is written out as an if-else so we don't waste time
4532
	     testing `translate' inside the loop.  */
4533
	  if (RE_TRANSLATE_P (translate))
4534
	    {
4535
#ifdef emacs
4536
	      if (multibyte)
4537
		do
4538
		  {
4539
		    int pat_charlen, buf_charlen;
4540
		    unsigned int pat_ch, buf_ch;
4541
 
4542
		    PREFETCH ();
4543
		    pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
4544
		    buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4545
 
4546
		    if (RE_TRANSLATE (translate, buf_ch)
4547
			!= pat_ch)
4548
		      goto fail;
4549
 
4550
		    p += pat_charlen;
4551
		    d += buf_charlen;
4552
		    mcnt -= pat_charlen;
4553
		  }
4554
		while (mcnt > 0);
4555
	      else
4556
#endif /* not emacs */
4557
		do
4558
		  {
4559
		    PREFETCH ();
4560
		    if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d)
4561
			!= (unsigned char) *p++)
4562
		      goto fail;
4563
		    d++;
4564
		  }
4565
		while (--mcnt);
4566
	    }
4567
	  else
4568
	    {
4569
	      do
4570
		{
4571
		  PREFETCH ();
4572
		  if (*d++ != (char) *p++) goto fail;
4573
		}
4574
	      while (--mcnt);
4575
	    }
4576
	  SET_REGS_MATCHED ();
4577
	  break;
4578
 
4579
 
4580
	/* Match any character except possibly a newline or a null.  */
4581
	case anychar:
4582
	  {
4583
	    int buf_charlen;
4584
	    unsigned int buf_ch;
4585
 
4586
	    DEBUG_PRINT1 ("EXECUTING anychar.\n");
4587
 
4588
	    PREFETCH ();
4589
 
4590
#ifdef emacs
4591
	    if (multibyte)
4592
	      buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4593
	    else
4594
#endif /* not emacs */
4595
	      {
4596
		buf_ch = (unsigned char) *d;
4597
		buf_charlen = 1;
4598
	      }
4599
 
4600
	    buf_ch = TRANSLATE (buf_ch);
4601
 
4602
	    if ((!(bufp->syntax & RE_DOT_NEWLINE)
4603
		 && buf_ch == '\n')
4604
		|| ((bufp->syntax & RE_DOT_NOT_NULL)
4605
		    && buf_ch == '\000'))
4606
	      goto fail;
4607
 
4608
	    SET_REGS_MATCHED ();
4609
	    DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
4610
	    d += buf_charlen;
4611
	  }
4612
	  break;
4613
 
4614
 
4615
	case charset:
4616
	case charset_not:
4617
	  {
4618
	    register unsigned int c;
4619
	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
4620
	    int len;
4621
 
4622
	    /* Start of actual range_table, or end of bitmap if there is no
4623
	       range table.  */
4624
	    unsigned char *range_table;
4625
 
4626
	    /* Nonzero if there is range table.	 */
4627
	    int range_table_exists;
4628
 
4629
	    /* Number of ranges of range table.	 Not in bytes.	*/
4630
	    int count;
4631
 
4632
	    DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4633
 
4634
	    PREFETCH ();
4635
	    c = (unsigned char) *d;
4636
 
4637
	    range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap.  */
4638
	    range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4639
	    if (range_table_exists)
4640
	      EXTRACT_NUMBER_AND_INCR (count, range_table);
4641
	    else
4642
	      count = 0;
4643
 
4644
	    if (multibyte && BASE_LEADING_CODE_P (c))
4645
	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
4646
 
4647
	    if (SINGLE_BYTE_CHAR_P (c))
4648
	      {			/* Lookup bitmap.  */
4649
		c = TRANSLATE (c); /* The character to match.  */
4650
		len = 1;
4651
 
4652
		/* Cast to `unsigned' instead of `unsigned char' in
4653
		   case the bit list is a full 32 bytes long.  */
4654
		if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
4655
		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4656
	      not = !not;
4657
	      }
4658
	    else if (range_table_exists)
4659
	      CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
4660
 
4661
	    p = CHARSET_RANGE_TABLE_END (range_table, count);
4662
 
4663
	    if (!not) goto fail;
4664
 
4665
	    SET_REGS_MATCHED ();
4666
	    d += len;
4667
	    break;
4668
	  }
4669
 
4670
 
4671
	/* The beginning of a group is represented by start_memory.
4672
	   The arguments are the register number in the next byte, and the
4673
	   number of groups inner to this one in the next.  The text
4674
	   matched within the group is recorded (in the internal
4675
	   registers data structure) under the register number.	 */
4676
	case start_memory:
4677
	  DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4678
 
4679
	  /* Find out if this group can match the empty string.	 */
4680
	  p1 = p;		/* To send to group_match_null_string_p.  */
4681
 
4682
	  if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4683
	    REG_MATCH_NULL_STRING_P (reg_info[*p])
4684
	      = group_match_null_string_p (&p1, pend, reg_info);
4685
 
4686
	  /* Save the position in the string where we were the last time
4687
	     we were at this open-group operator in case the group is
4688
	     operated upon by a repetition operator, e.g., with `(a*)*b'
4689
	     against `ab'; then we want to ignore where we are now in
4690
	     the string in case this attempt to match fails.  */
4691
	  old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4692
			     ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4693
			     : regstart[*p];
4694
	  DEBUG_PRINT2 ("  old_regstart: %d\n",
4695
			 POINTER_TO_OFFSET (old_regstart[*p]));
4696
 
4697
	  regstart[*p] = d;
4698
	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4699
 
4700
	  IS_ACTIVE (reg_info[*p]) = 1;
4701
	  MATCHED_SOMETHING (reg_info[*p]) = 0;
4702
 
4703
	  /* Clear this whenever we change the register activity status.  */
4704
	  set_regs_matched_done = 0;
4705
 
4706
	  /* This is the new highest active register.  */
4707
	  highest_active_reg = *p;
4708
 
4709
	  /* If nothing was active before, this is the new lowest active
4710
	     register.	*/
4711
	  if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4712
	    lowest_active_reg = *p;
4713
 
4714
	  /* Move past the register number and inner group count.  */
4715
	  p += 2;
4716
	  just_past_start_mem = p;
4717
 
4718
	  break;
4719
 
4720
 
4721
	/* The stop_memory opcode represents the end of a group.  Its
4722
	   arguments are the same as start_memory's: the register
4723
	   number, and the number of inner groups.  */
4724
	case stop_memory:
4725
	  DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4726
 
4727
	  /* We need to save the string position the last time we were at
4728
	     this close-group operator in case the group is operated
4729
	     upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4730
	     against `aba'; then we want to ignore where we are now in
4731
	     the string in case this attempt to match fails.  */
4732
	  old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4733
			   ? REG_UNSET (regend[*p]) ? d : regend[*p]
4734
			   : regend[*p];
4735
	  DEBUG_PRINT2 ("      old_regend: %d\n",
4736
			 POINTER_TO_OFFSET (old_regend[*p]));
4737
 
4738
	  regend[*p] = d;
4739
	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4740
 
4741
	  /* This register isn't active anymore.  */
4742
	  IS_ACTIVE (reg_info[*p]) = 0;
4743
 
4744
	  /* Clear this whenever we change the register activity status.  */
4745
	  set_regs_matched_done = 0;
4746
 
4747
	  /* If this was the only register active, nothing is active
4748
	     anymore.  */
4749
	  if (lowest_active_reg == highest_active_reg)
4750
	    {
4751
	      lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4752
	      highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4753
	    }
4754
	  else
4755
	    { /* We must scan for the new highest active register, since
4756
		 it isn't necessarily one less than now: consider
4757
		 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
4758
		 new highest active register is 1.  */
4759
	      unsigned char r = *p - 1;
4760
	      while (r > 0 && !IS_ACTIVE (reg_info[r]))
4761
		r--;
4762
 
4763
	      /* If we end up at register zero, that means that we saved
4764
		 the registers as the result of an `on_failure_jump', not
4765
		 a `start_memory', and we jumped to past the innermost
4766
		 `stop_memory'.	 For example, in ((.)*) we save
4767
		 registers 1 and 2 as a result of the *, but when we pop
4768
		 back to the second ), we are at the stop_memory 1.
4769
		 Thus, nothing is active.  */
4770
	      if (r == 0)
4771
		{
4772
		  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4773
		  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4774
		}
4775
	      else
4776
		highest_active_reg = r;
4777
	    }
4778
 
4779
	  /* If just failed to match something this time around with a
4780
	     group that's operated on by a repetition operator, try to
4781
	     force exit from the ``loop'', and restore the register
4782
	     information for this group that we had before trying this
4783
	     last match.  */
4784
	  if ((!MATCHED_SOMETHING (reg_info[*p])
4785
	       || just_past_start_mem == p - 1)
4786
	      && (p + 2) < pend)
4787
	    {
4788
	      boolean is_a_jump_n = false;
4789
 
4790
	      p1 = p + 2;
4791
	      mcnt = 0;
4792
	      switch ((re_opcode_t) *p1++)
4793
		{
4794
		  case jump_n:
4795
		    is_a_jump_n = true;
4796
		  case pop_failure_jump:
4797
		  case maybe_pop_jump:
4798
		  case jump:
4799
		  case dummy_failure_jump:
4800
		    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4801
		    if (is_a_jump_n)
4802
		      p1 += 2;
4803
		    break;
4804
 
4805
		  default:
4806
		    /* do nothing */ ;
4807
		}
4808
	      p1 += mcnt;
4809
 
4810
	      /* If the next operation is a jump backwards in the pattern
4811
		 to an on_failure_jump right before the start_memory
4812
		 corresponding to this stop_memory, exit from the loop
4813
		 by forcing a failure after pushing on the stack the
4814
		 on_failure_jump's jump in the pattern, and d.	*/
4815
	      if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4816
		  && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4817
		{
4818
		  /* If this group ever matched anything, then restore
4819
		     what its registers were before trying this last
4820
		     failed match, e.g., with `(a*)*b' against `ab' for
4821
		     regstart[1], and, e.g., with `((a*)*(b*)*)*'
4822
		     against `aba' for regend[3].
4823
 
4824
		     Also restore the registers for inner groups for,
4825
		     e.g., `((a*)(b*))*' against `aba' (register 3 would
4826
		     otherwise get trashed).  */
4827
 
4828
		  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4829
		    {
4830
		      unsigned r;
4831
 
4832
		      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4833
 
4834
		      /* Restore this and inner groups' (if any) registers.  */
4835
		      for (r = *p; r < *p + *(p + 1); r++)
4836
			{
4837
			  regstart[r] = old_regstart[r];
4838
 
4839
			  /* xx why this test?	*/
4840
			  if (old_regend[r] >= regstart[r])
4841
			    regend[r] = old_regend[r];
4842
			}
4843
		    }
4844
		  p1++;
4845
		  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4846
		  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4847
 
4848
		  goto fail;
4849
		}
4850
	    }
4851
 
4852
	  /* Move past the register number and the inner group count.  */
4853
	  p += 2;
4854
	  break;
4855
 
4856
 
4857
	/* \<digit> has been turned into a `duplicate' command which is
4858
	   followed by the numeric value of <digit> as the register number.  */
4859
	case duplicate:
4860
	  {
4861
	    register const char *d2, *dend2;
4862
	    int regno = *p++;	/* Get which register to match against.	 */
4863
	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4864
 
4865
	    /* Can't back reference a group which we've never matched.	*/
4866
	    if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4867
	      goto fail;
4868
 
4869
	    /* Where in input to try to start matching.	 */
4870
	    d2 = regstart[regno];
4871
 
4872
	    /* Where to stop matching; if both the place to start and
4873
	       the place to stop matching are in the same string, then
4874
	       set to the place to stop, otherwise, for now have to use
4875
	       the end of the first string.  */
4876
 
4877
	    dend2 = ((FIRST_STRING_P (regstart[regno])
4878
		      == FIRST_STRING_P (regend[regno]))
4879
		     ? regend[regno] : end_match_1);
4880
	    for (;;)
4881
	      {
4882
		/* If necessary, advance to next segment in register
4883
		   contents.  */
4884
		while (d2 == dend2)
4885
		  {
4886
		    if (dend2 == end_match_2) break;
4887
		    if (dend2 == regend[regno]) break;
4888
 
4889
		    /* End of string1 => advance to string2. */
4890
		    d2 = string2;
4891
		    dend2 = regend[regno];
4892
		  }
4893
		/* At end of register contents => success */
4894
		if (d2 == dend2) break;
4895
 
4896
		/* If necessary, advance to next segment in data.  */
4897
		PREFETCH ();
4898
 
4899
		/* How many characters left in this segment to match.  */
4900
		mcnt = dend - d;
4901
 
4902
		/* Want how many consecutive characters we can match in
4903
		   one shot, so, if necessary, adjust the count.  */
4904
		if (mcnt > dend2 - d2)
4905
		  mcnt = dend2 - d2;
4906
 
4907
		/* Compare that many; failure if mismatch, else move
4908
		   past them.  */
4909
		if (RE_TRANSLATE_P (translate)
4910
		    ? bcmp_translate (d, d2, mcnt, translate)
4911
		    : bcmp (d, d2, mcnt))
4912
		  goto fail;
4913
		d += mcnt, d2 += mcnt;
4914
 
4915
		/* Do this because we've match some characters.	 */
4916
		SET_REGS_MATCHED ();
4917
	      }
4918
	  }
4919
	  break;
4920
 
4921
 
4922
	/* begline matches the empty string at the beginning of the string
4923
	   (unless `not_bol' is set in `bufp'), and, if
4924
	   `newline_anchor' is set, after newlines.  */
4925
	case begline:
4926
	  DEBUG_PRINT1 ("EXECUTING begline.\n");
4927
 
4928
	  if (AT_STRINGS_BEG (d))
4929
	    {
4930
	      if (!bufp->not_bol) break;
4931
	    }
4932
	  else if (d[-1] == '\n' && bufp->newline_anchor)
4933
	    {
4934
	      break;
4935
	    }
4936
	  /* In all other cases, we fail.  */
4937
	  goto fail;
4938
 
4939
 
4940
	/* endline is the dual of begline.  */
4941
	case endline:
4942
	  DEBUG_PRINT1 ("EXECUTING endline.\n");
4943
 
4944
	  if (AT_STRINGS_END (d))
4945
	    {
4946
	      if (!bufp->not_eol) break;
4947
	    }
4948
 
4949
	  /* We have to ``prefetch'' the next character.  */
4950
	  else if ((d == end1 ? *string2 : *d) == '\n'
4951
		   && bufp->newline_anchor)
4952
	    {
4953
	      break;
4954
	    }
4955
	  goto fail;
4956
 
4957
 
4958
	/* Match at the very beginning of the data.  */
4959
	case begbuf:
4960
	  DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4961
	  if (AT_STRINGS_BEG (d))
4962
	    break;
4963
	  goto fail;
4964
 
4965
 
4966
	/* Match at the very end of the data.  */
4967
	case endbuf:
4968
	  DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4969
	  if (AT_STRINGS_END (d))
4970
	    break;
4971
	  goto fail;
4972
 
4973
 
4974
	/* on_failure_keep_string_jump is used to optimize `.*\n'.  It
4975
	   pushes NULL as the value for the string on the stack.  Then
4976
	   `pop_failure_point' will keep the current value for the
4977
	   string, instead of restoring it.  To see why, consider
4978
	   matching `foo\nbar' against `.*\n'.	The .* matches the foo;
4979
	   then the . fails against the \n.  But the next thing we want
4980
	   to do is match the \n against the \n; if we restored the
4981
	   string value, we would be back at the foo.
4982
 
4983
	   Because this is used only in specific cases, we don't need to
4984
	   check all the things that `on_failure_jump' does, to make
4985
	   sure the right things get saved on the stack.  Hence we don't
4986
	   share its code.  The only reason to push anything on the
4987
	   stack at all is that otherwise we would have to change
4988
	   `anychar's code to do something besides goto fail in this
4989
	   case; that seems worse than this.  */
4990
	case on_failure_keep_string_jump:
4991
	  DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4992
 
4993
	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
4994
	  DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4995
 
4996
	  PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4997
	  break;
4998
 
4999
 
5000
	/* Uses of on_failure_jump:
5001
 
5002
	   Each alternative starts with an on_failure_jump that points
5003
	   to the beginning of the next alternative.  Each alternative
5004
	   except the last ends with a jump that in effect jumps past
5005
	   the rest of the alternatives.  (They really jump to the
5006
	   ending jump of the following alternative, because tensioning
5007
	   these jumps is a hassle.)
5008
 
5009
	   Repeats start with an on_failure_jump that points past both
5010
	   the repetition text and either the following jump or
5011
	   pop_failure_jump back to this on_failure_jump.  */
5012
	case on_failure_jump:
5013
	on_failure:
5014
	  DEBUG_PRINT1 ("EXECUTING on_failure_jump");
5015
 
5016
#if defined (WINDOWSNT) && defined (emacs)
5017
	  QUIT;
5018
#endif
5019
 
5020
	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
5021
	  DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
5022
 
5023
	  /* If this on_failure_jump comes right before a group (i.e.,
5024
	     the original * applied to a group), save the information
5025
	     for that group and all inner ones, so that if we fail back
5026
	     to this point, the group's information will be correct.
5027
	     For example, in \(a*\)*\1, we need the preceding group,
5028
	     and in \(zz\(a*\)b*\)\2, we need the inner group.	*/
5029
 
5030
	  /* We can't use `p' to check ahead because we push
5031
	     a failure point to `p + mcnt' after we do this.  */
5032
	  p1 = p;
5033
 
5034
	  /* We need to skip no_op's before we look for the
5035
	     start_memory in case this on_failure_jump is happening as
5036
	     the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
5037
	     against aba.  */
5038
	  while (p1 < pend && (re_opcode_t) *p1 == no_op)
5039
	    p1++;
5040
 
5041
	  if (p1 < pend && (re_opcode_t) *p1 == start_memory)
5042
	    {
5043
	      /* We have a new highest active register now.  This will
5044
		 get reset at the start_memory we are about to get to,
5045
		 but we will have saved all the registers relevant to
5046
		 this repetition op, as described above.  */
5047
	      highest_active_reg = *(p1 + 1) + *(p1 + 2);
5048
	      if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
5049
		lowest_active_reg = *(p1 + 1);
5050
	    }
5051
 
5052
	  DEBUG_PRINT1 (":\n");
5053
	  PUSH_FAILURE_POINT (p + mcnt, d, -2);
5054
	  break;
5055
 
5056
 
5057
	/* A smart repeat ends with `maybe_pop_jump'.
5058
	   We change it to either `pop_failure_jump' or `jump'.	 */
5059
	case maybe_pop_jump:
5060
#if defined (WINDOWSNT) && defined (emacs)
5061
	  QUIT;
5062
#endif
5063
	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
5064
	  DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
5065
	  {
5066
	    register unsigned char *p2 = p;
5067
 
5068
	    /* Compare the beginning of the repeat with what in the
5069
	       pattern follows its end. If we can establish that there
5070
	       is nothing that they would both match, i.e., that we
5071
	       would have to backtrack because of (as in, e.g., `a*a')
5072
	       then we can change to pop_failure_jump, because we'll
5073
	       never have to backtrack.
5074
 
5075
	       This is not true in the case of alternatives: in
5076
	       `(a|ab)*' we do need to backtrack to the `ab' alternative
5077
	       (e.g., if the string was `ab').	But instead of trying to
5078
	       detect that here, the alternative has put on a dummy
5079
	       failure point which is what we will end up popping.  */
5080
 
5081
	    /* Skip over open/close-group commands.
5082
	       If what follows this loop is a ...+ construct,
5083
	       look at what begins its body, since we will have to
5084
	       match at least one of that.  */
5085
	    while (1)
5086
	      {
5087
		if (p2 + 2 < pend
5088
		    && ((re_opcode_t) *p2 == stop_memory
5089
			|| (re_opcode_t) *p2 == start_memory))
5090
		  p2 += 3;
5091
		else if (p2 + 6 < pend
5092
			 && (re_opcode_t) *p2 == dummy_failure_jump)
5093
		  p2 += 6;
5094
		else
5095
		  break;
5096
	      }
5097
 
5098
	    p1 = p + mcnt;
5099
	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5100
	       to the `maybe_finalize_jump' of this case.  Examine what
5101
	       follows.	 */
5102
 
5103
	    /* If we're at the end of the pattern, we can change.  */
5104
	    if (p2 == pend)
5105
	      {
5106
		/* Consider what happens when matching ":\(.*\)"
5107
		   against ":/".  I don't really understand this code
5108
		   yet.	 */
5109
		p[-3] = (unsigned char) pop_failure_jump;
5110
		DEBUG_PRINT1
5111
		  ("  End of pattern: change to `pop_failure_jump'.\n");
5112
	      }
5113
 
5114
	    else if ((re_opcode_t) *p2 == exactn
5115
		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
5116
	      {
5117
		register unsigned int c
5118
		  = *p2 == (unsigned char) endline ? '\n' : p2[2];
5119
 
5120
		if ((re_opcode_t) p1[3] == exactn)
5121
		  {
5122
		    if (!(multibyte /* && (c != '\n') */
5123
			  && BASE_LEADING_CODE_P (c))
5124
			? c != p1[5]
5125
			: (STRING_CHAR (&p2[2], pend - &p2[2])
5126
			   != STRING_CHAR (&p1[5], pend - &p1[5])))
5127
		  {
5128
		    p[-3] = (unsigned char) pop_failure_jump;
5129
		    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
5130
				  c, p1[5]);
5131
		  }
5132
		  }
5133
 
5134
		else if ((re_opcode_t) p1[3] == charset
5135
			 || (re_opcode_t) p1[3] == charset_not)
5136
		  {
5137
		    int not = (re_opcode_t) p1[3] == charset_not;
5138
 
5139
		    if (multibyte /* && (c != '\n') */
5140
			&& BASE_LEADING_CODE_P (c))
5141
		      c = STRING_CHAR (&p2[2], pend - &p2[2]);
5142
 
5143
		    /* Test if C is listed in charset (or charset_not)
5144
		       at `&p1[3]'.  */
5145
		    if (SINGLE_BYTE_CHAR_P (c))
5146
		      {
5147
			if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
5148
			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5149
		      not = !not;
5150
		      }
5151
		    else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
5152
		      CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);
5153
 
5154
		    /* `not' is equal to 1 if c would match, which means
5155
			that we can't change to pop_failure_jump.  */
5156
		    if (!not)
5157
		      {
5158
			p[-3] = (unsigned char) pop_failure_jump;
5159
			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
5160
		      }
5161
		  }
5162
	      }
5163
	    else if ((re_opcode_t) *p2 == charset)
5164
	      {
5165
		if ((re_opcode_t) p1[3] == exactn)
5166
		  {
5167
		    register unsigned int c = p1[5];
5168
		    int not = 0;
5169
 
5170
		    if (multibyte && BASE_LEADING_CODE_P (c))
5171
		      c = STRING_CHAR (&p1[5], pend - &p1[5]);
5172
 
5173
		    /* Test if C is listed in charset at `p2'.	*/
5174
		    if (SINGLE_BYTE_CHAR_P (c))
5175
		      {
5176
			if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
5177
			    && (p2[2 + c / BYTEWIDTH]
5178
				& (1 << (c % BYTEWIDTH))))
5179
			  not = !not;
5180
		      }
5181
		    else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
5182
		      CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);
5183
 
5184
		    if (!not)
5185
		  {
5186
		    p[-3] = (unsigned char) pop_failure_jump;
5187
			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
5188
		      }
5189
		  }
5190
 
5191
		/* It is hard to list up all the character in charset
5192
		   P2 if it includes multibyte character.  Give up in
5193
		   such case.  */
5194
		else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
5195
		  {
5196
		    /* Now, we are sure that P2 has no range table.
5197
		       So, for the size of bitmap in P2, `p2[1]' is
5198
		       enough.	But P1 may have range table, so the
5199
		       size of bitmap table of P1 is extracted by
5200
		       using macro `CHARSET_BITMAP_SIZE'.
5201
 
5202
		       Since we know that all the character listed in
5203
		       P2 is ASCII, it is enough to test only bitmap
5204
		       table of P1.  */
5205
 
5206
		    if ((re_opcode_t) p1[3] == charset_not)
5207
		  {
5208
		    int idx;
5209
			/* We win if the charset_not inside the loop lists
5210
			   every character listed in the charset after.	 */
5211
		    for (idx = 0; idx < (int) p2[1]; idx++)
5212
		      if (! (p2[2 + idx] == 0
5213
				 || (idx < CHARSET_BITMAP_SIZE (&p1[3])
5214
				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
5215
			break;
5216
 
5217
		    if (idx == p2[1])
5218
		      {
5219
			p[-3] = (unsigned char) pop_failure_jump;
5220
			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
5221
		      }
5222
		  }
5223
		else if ((re_opcode_t) p1[3] == charset)
5224
		  {
5225
		    int idx;
5226
		    /* We win if the charset inside the loop
5227
		       has no overlap with the one after the loop.  */
5228
		    for (idx = 0;
5229
			     (idx < (int) p2[1]
5230
			      && idx < CHARSET_BITMAP_SIZE (&p1[3]));
5231
			 idx++)
5232
		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
5233
			break;
5234
 
5235
			if (idx == p2[1]
5236
			    || idx == CHARSET_BITMAP_SIZE (&p1[3]))
5237
		      {
5238
			p[-3] = (unsigned char) pop_failure_jump;
5239
			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
5240
		      }
5241
		  }
5242
	      }
5243
	  }
5244
	  }
5245
	  p -= 2;		/* Point at relative address again.  */
5246
	  if ((re_opcode_t) p[-1] != pop_failure_jump)
5247
	    {
5248
	      p[-1] = (unsigned char) jump;
5249
	      DEBUG_PRINT1 ("  Match => jump.\n");
5250
	      goto unconditional_jump;
5251
	    }
5252
	/* Note fall through.  */
5253
 
5254
 
5255
	/* The end of a simple repeat has a pop_failure_jump back to
5256
	   its matching on_failure_jump, where the latter will push a
5257
	   failure point.  The pop_failure_jump takes off failure
5258
	   points put on by this pop_failure_jump's matching
5259
	   on_failure_jump; we got through the pattern to here from the
5260
	   matching on_failure_jump, so didn't fail.  */
5261
	case pop_failure_jump:
5262
	  {
5263
	    /* We need to pass separate storage for the lowest and
5264
	       highest registers, even though we don't care about the
5265
	       actual values.  Otherwise, we will restore only one
5266
	       register from the stack, since lowest will == highest in
5267
	       `pop_failure_point'.  */
5268
	    unsigned dummy_low_reg, dummy_high_reg;
5269
	    unsigned char *pdummy;
5270
	    const char *sdummy;
5271
 
5272
	    DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
5273
	    POP_FAILURE_POINT (sdummy, pdummy,
5274
			       dummy_low_reg, dummy_high_reg,
5275
			       reg_dummy, reg_dummy, reg_info_dummy);
5276
	  }
5277
	  /* Note fall through.	 */
5278
 
5279
 
5280
	/* Unconditionally jump (without popping any failure points).  */
5281
	case jump:
5282
	unconditional_jump:
5283
#if defined (WINDOWSNT) && defined (emacs)
5284
	  QUIT;
5285
#endif
5286
	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
5287
	  DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5288
	  p += mcnt;				/* Do the jump.	 */
5289
	  DEBUG_PRINT2 ("(to 0x%x).\n", p);
5290
	  break;
5291
 
5292
 
5293
	/* We need this opcode so we can detect where alternatives end
5294
	   in `group_match_null_string_p' et al.  */
5295
	case jump_past_alt:
5296
	  DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
5297
	  goto unconditional_jump;
5298
 
5299
 
5300
	/* Normally, the on_failure_jump pushes a failure point, which
5301
	   then gets popped at pop_failure_jump.  We will end up at
5302
	   pop_failure_jump, also, and with a pattern of, say, `a+', we
5303
	   are skipping over the on_failure_jump, so we have to push
5304
	   something meaningless for pop_failure_jump to pop.  */
5305
	case dummy_failure_jump:
5306
	  DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
5307
	  /* It doesn't matter what we push for the string here.  What
5308
	     the code at `fail' tests is the value for the pattern.  */
5309
	  PUSH_FAILURE_POINT (0, 0, -2);
5310
	  goto unconditional_jump;
5311
 
5312
 
5313
	/* At the end of an alternative, we need to push a dummy failure
5314
	   point in case we are followed by a `pop_failure_jump', because
5315
	   we don't want the failure point for the alternative to be
5316
	   popped.  For example, matching `(a|ab)*' against `aab'
5317
	   requires that we match the `ab' alternative.	 */
5318
	case push_dummy_failure:
5319
	  DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
5320
	  /* See comments just above at `dummy_failure_jump' about the
5321
	     two zeroes.  */
5322
	  PUSH_FAILURE_POINT (0, 0, -2);
5323
	  break;
5324
 
5325
	/* Have to succeed matching what follows at least n times.
5326
	   After that, handle like `on_failure_jump'.  */
5327
	case succeed_n:
5328
	  EXTRACT_NUMBER (mcnt, p + 2);
5329
	  DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5330
 
5331
	  assert (mcnt >= 0);
5332
	  /* Originally, this is how many times we HAVE to succeed.  */
5333
	  if (mcnt > 0)
5334
	    {
5335
	       mcnt--;
5336
	       p += 2;
5337
	       STORE_NUMBER_AND_INCR (p, mcnt);
5338
	       DEBUG_PRINT3 ("	Setting 0x%x to %d.\n", p, mcnt);
5339
	    }
5340
	  else if (mcnt == 0)
5341
	    {
5342
	      DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
5343
	      p[2] = (unsigned char) no_op;
5344
	      p[3] = (unsigned char) no_op;
5345
	      goto on_failure;
5346
	    }
5347
	  break;
5348
 
5349
	case jump_n:
5350
	  EXTRACT_NUMBER (mcnt, p + 2);
5351
	  DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5352
 
5353
	  /* Originally, this is how many times we CAN jump.  */
5354
	  if (mcnt)
5355
	    {
5356
	       mcnt--;
5357
	       STORE_NUMBER (p + 2, mcnt);
5358
	       goto unconditional_jump;
5359
	    }
5360
	  /* If don't have to jump any more, skip over the rest of command.  */
5361
	  else
5362
	    p += 4;
5363
	  break;
5364
 
5365
	case set_number_at:
5366
	  {
5367
	    DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5368
 
5369
	    EXTRACT_NUMBER_AND_INCR (mcnt, p);
5370
	    p1 = p + mcnt;
5371
	    EXTRACT_NUMBER_AND_INCR (mcnt, p);
5372
	    DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
5373
	    STORE_NUMBER (p1, mcnt);
5374
	    break;
5375
	  }
5376
 
5377
	case wordbound:
5378
	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5379
 
5380
	  /* We SUCCEED in one of the following cases: */
5381
 
5382
	  /* Case 1: D is at the beginning or the end of string.  */
5383
	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5384
	    break;
5385
	  else
5386
	    {
5387
	      /* C1 is the character before D, S1 is the syntax of C1, C2
5388
		 is the character at D, and S2 is the syntax of C2.  */
5389
	      int c1, c2, s1, s2;
5390
	      int pos1 = PTR_TO_OFFSET (d - 1);
5391
	      int charpos;
5392
 
5393
	      GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5394
	      GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5395
#ifdef emacs
5396
	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5397
	      UPDATE_SYNTAX_TABLE (charpos);
5398
#endif
5399
	      s1 = SYNTAX (c1);
5400
#ifdef emacs
5401
	      UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5402
#endif
5403
	      s2 = SYNTAX (c2);
5404
 
5405
	      if (/* Case 2: Only one of S1 and S2 is Sword.  */
5406
		  ((s1 == Sword) != (s2 == Sword))
5407
		  /* Case 3: Both of S1 and S2 are Sword, and macro
5408
		     WORD_BOUNDARY_P (C1, C2) returns nonzero.	*/
5409
		  || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5410
	    break;
5411
	}
5412
	  goto fail;
5413
 
5414
      case notwordbound:
5415
	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5416
 
5417
	  /* We FAIL in one of the following cases: */
5418
 
5419
	  /* Case 1: D is at the beginning or the end of string.  */
5420
	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5421
	    goto fail;
5422
	  else
5423
	    {
5424
	      /* C1 is the character before D, S1 is the syntax of C1, C2
5425
		 is the character at D, and S2 is the syntax of C2.  */
5426
	      int c1, c2, s1, s2;
5427
	      int pos1 = PTR_TO_OFFSET (d - 1);
5428
	      int charpos;
5429
 
5430
	      GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5431
	      GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5432
#ifdef emacs
5433
	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5434
	      UPDATE_SYNTAX_TABLE (charpos);
5435
#endif
5436
	      s1 = SYNTAX (c1);
5437
#ifdef emacs
5438
	      UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5439
#endif
5440
	      s2 = SYNTAX (c2);
5441
 
5442
	      if (/* Case 2: Only one of S1 and S2 is Sword.  */
5443
		  ((s1 == Sword) != (s2 == Sword))
5444
		  /* Case 3: Both of S1 and S2 are Sword, and macro
5445
		     WORD_BOUNDARY_P (C1, C2) returns nonzero.	*/
5446
		  || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5447
	    goto fail;
5448
	}
5449
	  break;
5450
 
5451
	case wordbeg:
5452
	  DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5453
 
5454
	  /* We FAIL in one of the following cases: */
5455
 
5456
	  /* Case 1: D is at the end of string.	 */
5457
	  if (AT_STRINGS_END (d))
5458
	  goto fail;
5459
	  else
5460
	    {
5461
	      /* C1 is the character before D, S1 is the syntax of C1, C2
5462
		 is the character at D, and S2 is the syntax of C2.  */
5463
	      int c1, c2, s1, s2;
5464
	      int pos1 = PTR_TO_OFFSET (d);
5465
	      int charpos;
5466
 
5467
	      GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5468
#ifdef emacs
5469
	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5470
	      UPDATE_SYNTAX_TABLE (charpos);
5471
#endif
5472
	      s2 = SYNTAX (c2);
5473
 
5474
	      /* Case 2: S2 is not Sword. */
5475
	      if (s2 != Sword)
5476
		goto fail;
5477
 
5478
	      /* Case 3: D is not at the beginning of string ... */
5479
	      if (!AT_STRINGS_BEG (d))
5480
		{
5481
		  GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5482
#ifdef emacs
5483
		  UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5484
#endif
5485
		  s1 = SYNTAX (c1);
5486
 
5487
		  /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5488
		     returns 0.	 */
5489
		  if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5490
		    goto fail;
5491
		}
5492
	    }
5493
	  break;
5494
 
5495
	case wordend:
5496
	  DEBUG_PRINT1 ("EXECUTING wordend.\n");
5497
 
5498
	  /* We FAIL in one of the following cases: */
5499
 
5500
	  /* Case 1: D is at the beginning of string.  */
5501
	  if (AT_STRINGS_BEG (d))
5502
	    goto fail;
5503
	  else
5504
	    {
5505
	      /* C1 is the character before D, S1 is the syntax of C1, C2
5506
		 is the character at D, and S2 is the syntax of C2.  */
5507
	      int c1, c2, s1, s2;
5508
	      int pos1 = PTR_TO_OFFSET (d);
5509
	      int charpos;
5510
 
5511
	      GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5512
#ifdef emacs
5513
	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1 - 1);
5514
	      UPDATE_SYNTAX_TABLE (charpos);
5515
#endif
5516
	      s1 = SYNTAX (c1);
5517
 
5518
	      /* Case 2: S1 is not Sword.  */
5519
	      if (s1 != Sword)
5520
		goto fail;
5521
 
5522
	      /* Case 3: D is not at the end of string ... */
5523
	      if (!AT_STRINGS_END (d))
5524
		{
5525
		  GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5526
#ifdef emacs
5527
		  UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5528
#endif
5529
		  s2 = SYNTAX (c2);
5530
 
5531
		  /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5532
		     returns 0.	 */
5533
		  if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5534
	  goto fail;
5535
		}
5536
	    }
5537
	  break;
5538
 
5539
#ifdef emacs
5540
	case before_dot:
5541
	  DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5542
	  if (PTR_BYTE_POS ((unsigned char *) d) >= PT_BYTE)
5543
	    goto fail;
5544
	  break;
5545
 
5546
	case at_dot:
5547
	  DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5548
	  if (PTR_BYTE_POS ((unsigned char *) d) != PT_BYTE)
5549
	    goto fail;
5550
	  break;
5551
 
5552
	case after_dot:
5553
	  DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5554
	  if (PTR_BYTE_POS ((unsigned char *) d) <= PT_BYTE)
5555
	    goto fail;
5556
	  break;
5557
 
5558
	case syntaxspec:
5559
	  DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5560
	  mcnt = *p++;
5561
	  goto matchsyntax;
5562
 
5563
	case wordchar:
5564
	  DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5565
	  mcnt = (int) Sword;
5566
	matchsyntax:
5567
	  PREFETCH ();
5568
#ifdef emacs
5569
	  {
5570
	    int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
5571
	    UPDATE_SYNTAX_TABLE (pos1);
5572
	  }
5573
#endif
5574
	  {
5575
	    int c, len;
5576
 
5577
	    if (multibyte)
5578
	      /* we must concern about multibyte form, ... */
5579
	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5580
	    else
5581
	      /* everything should be handled as ASCII, even though it
5582
		 looks like multibyte form.  */
5583
	      c = *d, len = 1;
5584
 
5585
	    if (SYNTAX (c) != (enum syntaxcode) mcnt)
5586
	    goto fail;
5587
	    d += len;
5588
	  }
5589
	  SET_REGS_MATCHED ();
5590
	  break;
5591
 
5592
	case notsyntaxspec:
5593
	  DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5594
	  mcnt = *p++;
5595
	  goto matchnotsyntax;
5596
 
5597
	case notwordchar:
5598
	  DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5599
	  mcnt = (int) Sword;
5600
	matchnotsyntax:
5601
	  PREFETCH ();
5602
#ifdef emacs
5603
	  {
5604
	    int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
5605
	    UPDATE_SYNTAX_TABLE (pos1);
5606
	  }
5607
#endif
5608
	  {
5609
	    int c, len;
5610
 
5611
	    if (multibyte)
5612
	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5613
	    else
5614
	      c = *d, len = 1;
5615
 
5616
	    if (SYNTAX (c) == (enum syntaxcode) mcnt)
5617
	    goto fail;
5618
	    d += len;
5619
	  }
5620
	  SET_REGS_MATCHED ();
5621
	  break;
5622
 
5623
	case categoryspec:
5624
	  DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
5625
	  mcnt = *p++;
5626
	  PREFETCH ();
5627
	  {
5628
	    int c, len;
5629
 
5630
	    if (multibyte)
5631
	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5632
	    else
5633
	      c = *d, len = 1;
5634
 
5635
	    if (!CHAR_HAS_CATEGORY (c, mcnt))
5636
	      goto fail;
5637
	    d += len;
5638
	  }
5639
	  SET_REGS_MATCHED ();
5640
	  break;
5641
 
5642
	case notcategoryspec:
5643
	  DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
5644
	  mcnt = *p++;
5645
	  PREFETCH ();
5646
	  {
5647
	    int c, len;
5648
 
5649
	    if (multibyte)
5650
	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5651
	    else
5652
	      c = *d, len = 1;
5653
 
5654
	    if (CHAR_HAS_CATEGORY (c, mcnt))
5655
	      goto fail;
5656
	    d += len;
5657
	  }
5658
	  SET_REGS_MATCHED ();
5659
          break;
5660
 
5661
#else /* not emacs */
5662
	case wordchar:
5663
          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5664
	  PREFETCH ();
5665
          if (!WORDCHAR_P (d))
5666
            goto fail;
5667
	  SET_REGS_MATCHED ();
5668
          d++;
5669
	  break;
5670
 
5671
	case notwordchar:
5672
          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5673
	  PREFETCH ();
5674
	  if (WORDCHAR_P (d))
5675
            goto fail;
5676
          SET_REGS_MATCHED ();
5677
          d++;
5678
	  break;
5679
#endif /* not emacs */
5680
 
5681
        default:
5682
          abort ();
5683
	}
5684
      continue;  /* Successfully executed one pattern command; keep going.  */
5685
 
5686
 
5687
    /* We goto here if a matching operation fails. */
5688
    fail:
5689
#if defined (WINDOWSNT) && defined (emacs)
5690
      QUIT;
5691
#endif
5692
      if (!FAIL_STACK_EMPTY ())
5693
	{ /* A restart point is known.  Restore to that state.  */
5694
          DEBUG_PRINT1 ("\nFAIL:\n");
5695
          POP_FAILURE_POINT (d, p,
5696
                             lowest_active_reg, highest_active_reg,
5697
                             regstart, regend, reg_info);
5698
 
5699
          /* If this failure point is a dummy, try the next one.  */
5700
          if (!p)
5701
	    goto fail;
5702
 
5703
          /* If we failed to the end of the pattern, don't examine *p.  */
5704
	  assert (p <= pend);
5705
          if (p < pend)
5706
            {
5707
              boolean is_a_jump_n = false;
5708
 
5709
              /* If failed to a backwards jump that's part of a repetition
5710
                 loop, need to pop this failure point and use the next one.  */
5711
              switch ((re_opcode_t) *p)
5712
                {
5713
                case jump_n:
5714
                  is_a_jump_n = true;
5715
                case maybe_pop_jump:
5716
                case pop_failure_jump:
5717
                case jump:
5718
                  p1 = p + 1;
5719
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5720
                  p1 += mcnt;
5721
 
5722
                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5723
                      || (!is_a_jump_n
5724
                          && (re_opcode_t) *p1 == on_failure_jump))
5725
                    goto fail;
5726
                  break;
5727
                default:
5728
                  /* do nothing */ ;
5729
                }
5730
            }
5731
 
5732
          if (d >= string1 && d <= end1)
5733
	    dend = end_match_1;
5734
        }
5735
      else
5736
        break;   /* Matching at this starting point really fails.  */
5737
    } /* for (;;) */
5738
 
5739
  if (best_regs_set)
5740
    goto restore_best_regs;
5741
 
5742
  FREE_VARIABLES ();
5743
 
5744
  return -1;         			/* Failure to match.  */
5745
} /* re_match_2 */
5746
 
5747
/* Subroutine definitions for re_match_2.  */
5748
 
5749
 
5750
/* We are passed P pointing to a register number after a start_memory.
5751
 
5752
   Return true if the pattern up to the corresponding stop_memory can
5753
   match the empty string, and false otherwise.
5754
 
5755
   If we find the matching stop_memory, sets P to point to one past its number.
5756
   Otherwise, sets P to an undefined byte less than or equal to END.
5757
 
5758
   We don't handle duplicates properly (yet).  */
5759
 
5760
static boolean
5761
group_match_null_string_p (p, end, reg_info)
5762
    unsigned char **p, *end;
5763
    register_info_type *reg_info;
5764
{
5765
  int mcnt;
5766
  /* Point to after the args to the start_memory.  */
5767
  unsigned char *p1 = *p + 2;
5768
 
5769
  while (p1 < end)
5770
    {
5771
      /* Skip over opcodes that can match nothing, and return true or
5772
	 false, as appropriate, when we get to one that can't, or to the
5773
         matching stop_memory.  */
5774
 
5775
      switch ((re_opcode_t) *p1)
5776
        {
5777
        /* Could be either a loop or a series of alternatives.  */
5778
        case on_failure_jump:
5779
          p1++;
5780
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5781
 
5782
          /* If the next operation is not a jump backwards in the
5783
	     pattern.  */
5784
 
5785
	  if (mcnt >= 0)
5786
	    {
5787
              /* Go through the on_failure_jumps of the alternatives,
5788
                 seeing if any of the alternatives cannot match nothing.
5789
                 The last alternative starts with only a jump,
5790
                 whereas the rest start with on_failure_jump and end
5791
                 with a jump, e.g., here is the pattern for `a|b|c':
5792
 
5793
                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5794
                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5795
                 /exactn/1/c
5796
 
5797
                 So, we have to first go through the first (n-1)
5798
                 alternatives and then deal with the last one separately.  */
5799
 
5800
 
5801
              /* Deal with the first (n-1) alternatives, which start
5802
                 with an on_failure_jump (see above) that jumps to right
5803
                 past a jump_past_alt.  */
5804
 
5805
              while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5806
                {
5807
                  /* `mcnt' holds how many bytes long the alternative
5808
                     is, including the ending `jump_past_alt' and
5809
                     its number.  */
5810
 
5811
                  if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5812
				                      reg_info))
5813
                    return false;
5814
 
5815
                  /* Move to right after this alternative, including the
5816
		     jump_past_alt.  */
5817
                  p1 += mcnt;
5818
 
5819
                  /* Break if it's the beginning of an n-th alternative
5820
                     that doesn't begin with an on_failure_jump.  */
5821
                  if ((re_opcode_t) *p1 != on_failure_jump)
5822
                    break;
5823
 
5824
		  /* Still have to check that it's not an n-th
5825
		     alternative that starts with an on_failure_jump.  */
5826
		  p1++;
5827
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5828
                  if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5829
                    {
5830
		      /* Get to the beginning of the n-th alternative.  */
5831
                      p1 -= 3;
5832
                      break;
5833
                    }
5834
                }
5835
 
5836
              /* Deal with the last alternative: go back and get number
5837
                 of the `jump_past_alt' just before it.  `mcnt' contains
5838
                 the length of the alternative.  */
5839
              EXTRACT_NUMBER (mcnt, p1 - 2);
5840
 
5841
              if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5842
                return false;
5843
 
5844
              p1 += mcnt;	/* Get past the n-th alternative.  */
5845
            } /* if mcnt > 0 */
5846
          break;
5847
 
5848
 
5849
        case stop_memory:
5850
	  assert (p1[1] == **p);
5851
          *p = p1 + 2;
5852
          return true;
5853
 
5854
 
5855
        default:
5856
          if (!common_op_match_null_string_p (&p1, end, reg_info))
5857
            return false;
5858
        }
5859
    } /* while p1 < end */
5860
 
5861
  return false;
5862
} /* group_match_null_string_p */
5863
 
5864
 
5865
/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5866
   It expects P to be the first byte of a single alternative and END one
5867
   byte past the last. The alternative can contain groups.  */
5868
 
5869
static boolean
5870
alt_match_null_string_p (p, end, reg_info)
5871
    unsigned char *p, *end;
5872
    register_info_type *reg_info;
5873
{
5874
  int mcnt;
5875
  unsigned char *p1 = p;
5876
 
5877
  while (p1 < end)
5878
    {
5879
      /* Skip over opcodes that can match nothing, and break when we get
5880
         to one that can't.  */
5881
 
5882
      switch ((re_opcode_t) *p1)
5883
        {
5884
	/* It's a loop.  */
5885
        case on_failure_jump:
5886
          p1++;
5887
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5888
          p1 += mcnt;
5889
          break;
5890
 
5891
	default:
5892
          if (!common_op_match_null_string_p (&p1, end, reg_info))
5893
            return false;
5894
        }
5895
    }  /* while p1 < end */
5896
 
5897
  return true;
5898
} /* alt_match_null_string_p */
5899
 
5900
 
5901
/* Deals with the ops common to group_match_null_string_p and
5902
   alt_match_null_string_p.
5903
 
5904
   Sets P to one after the op and its arguments, if any.  */
5905
 
5906
static boolean
5907
common_op_match_null_string_p (p, end, reg_info)
5908
    unsigned char **p, *end;
5909
    register_info_type *reg_info;
5910
{
5911
  int mcnt;
5912
  boolean ret;
5913
  int reg_no;
5914
  unsigned char *p1 = *p;
5915
 
5916
  switch ((re_opcode_t) *p1++)
5917
    {
5918
    case no_op:
5919
    case begline:
5920
    case endline:
5921
    case begbuf:
5922
    case endbuf:
5923
    case wordbeg:
5924
    case wordend:
5925
    case wordbound:
5926
    case notwordbound:
5927
#ifdef emacs
5928
    case before_dot:
5929
    case at_dot:
5930
    case after_dot:
5931
#endif
5932
      break;
5933
 
5934
    case start_memory:
5935
      reg_no = *p1;
5936
      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5937
      ret = group_match_null_string_p (&p1, end, reg_info);
5938
 
5939
      /* Have to set this here in case we're checking a group which
5940
         contains a group and a back reference to it.  */
5941
 
5942
      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5943
        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5944
 
5945
      if (!ret)
5946
        return false;
5947
      break;
5948
 
5949
    /* If this is an optimized succeed_n for zero times, make the jump.  */
5950
    case jump:
5951
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5952
      if (mcnt >= 0)
5953
        p1 += mcnt;
5954
      else
5955
        return false;
5956
      break;
5957
 
5958
    case succeed_n:
5959
      /* Get to the number of times to succeed.  */
5960
      p1 += 2;
5961
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5962
 
5963
      if (mcnt == 0)
5964
        {
5965
          p1 -= 4;
5966
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5967
          p1 += mcnt;
5968
        }
5969
      else
5970
        return false;
5971
      break;
5972
 
5973
    case duplicate:
5974
      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5975
        return false;
5976
      break;
5977
 
5978
    case set_number_at:
5979
      p1 += 4;
5980
 
5981
    default:
5982
      /* All other opcodes mean we cannot match the empty string.  */
5983
      return false;
5984
  }
5985
 
5986
  *p = p1;
5987
  return true;
5988
} /* common_op_match_null_string_p */
5989
 
5990
 
5991
/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5992
   bytes; nonzero otherwise.  */
5993
 
5994
static int
5995
bcmp_translate (s1, s2, len, translate)
5996
     unsigned char *s1, *s2;
5997
     register int len;
5998
     RE_TRANSLATE_TYPE translate;
5999
{
6000
  register unsigned char *p1 = s1, *p2 = s2;
6001
  unsigned char *p1_end = s1 + len;
6002
  unsigned char *p2_end = s2 + len;
6003
 
6004
  while (p1 != p1_end && p2 != p2_end)
6005
    {
6006
      int p1_charlen, p2_charlen;
6007
      int p1_ch, p2_ch;
6008
 
6009
      p1_ch = STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6010
      p2_ch = STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6011
 
6012
      if (RE_TRANSLATE (translate, p1_ch)
6013
	  != RE_TRANSLATE (translate, p2_ch))
6014
	return 1;
6015
 
6016
      p1 += p1_charlen, p2 += p2_charlen;
6017
    }
6018
 
6019
  if (p1 != p1_end || p2 != p2_end)
6020
    return 1;
6021
 
6022
  return 0;
6023
}
6024
 
6025
/* Entry points for GNU code.  */
6026
 
6027
/* re_compile_pattern is the GNU regular expression compiler: it
6028
   compiles PATTERN (of length SIZE) and puts the result in BUFP.
6029
   Returns 0 if the pattern was valid, otherwise an error string.
6030
 
6031
   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6032
   are set in BUFP on entry.
6033
 
6034
   We call regex_compile to do the actual compilation.  */
6035
 
6036
const char *
6037
re_compile_pattern (pattern, length, bufp)
6038
     const char *pattern;
6039
     int length;
6040
     struct re_pattern_buffer *bufp;
6041
{
6042
  reg_errcode_t ret;
6043
 
6044
  /* GNU code is written to assume at least RE_NREGS registers will be set
6045
     (and at least one extra will be -1).  */
6046
  bufp->regs_allocated = REGS_UNALLOCATED;
6047
 
6048
  /* And GNU code determines whether or not to get register information
6049
     by passing null for the REGS argument to re_match, etc., not by
6050
     setting no_sub.  */
6051
  bufp->no_sub = 0;
6052
 
6053
  /* Match anchors at newline.  */
6054
  bufp->newline_anchor = 1;
6055
 
6056
  ret = regex_compile (pattern, length, re_syntax_options, bufp);
6057
 
6058
  if (!ret)
6059
    return NULL;
6060
  return gettext (re_error_msgid[(int) ret]);
6061
}
6062
 
6063
/* Entry points compatible with 4.2 BSD regex library.  We don't define
6064
   them unless specifically requested.  */
6065
 
6066
#if defined (_REGEX_RE_COMP) || defined (_LIBC)
6067
 
6068
/* BSD has one and only one pattern buffer.  */
6069
static struct re_pattern_buffer re_comp_buf;
6070
 
6071
char *
6072
#ifdef _LIBC
6073
/* Make these definitions weak in libc, so POSIX programs can redefine
6074
   these names if they don't use our functions, and still use
6075
   regcomp/regexec below without link errors.  */
6076
weak_function
6077
#endif
6078
re_comp (s)
6079
    const char *s;
6080
{
6081
  reg_errcode_t ret;
6082
 
6083
  if (!s)
6084
    {
6085
      if (!re_comp_buf.buffer)
6086
	return gettext ("No previous regular expression");
6087
      return 0;
6088
    }
6089
 
6090
  if (!re_comp_buf.buffer)
6091
    {
6092
      re_comp_buf.buffer = (unsigned char *) malloc (200);
6093
      if (re_comp_buf.buffer == NULL)
6094
        /* CVS: Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
6095
        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6096
      re_comp_buf.allocated = 200;
6097
 
6098
      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6099
      if (re_comp_buf.fastmap == NULL)
6100
	/* CVS: Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
6101
	return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6102
    }
6103
 
6104
  /* Since `re_exec' always passes NULL for the `regs' argument, we
6105
     don't need to initialize the pattern buffer fields which affect it.  */
6106
 
6107
  /* Match anchors at newlines.  */
6108
  re_comp_buf.newline_anchor = 1;
6109
 
6110
  ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6111
 
6112
  if (!ret)
6113
    return NULL;
6114
 
6115
  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
6116
  return (char *) gettext (re_error_msgid[(int) ret]);
6117
}
6118
 
6119
 
6120
int
6121
#ifdef _LIBC
6122
weak_function
6123
#endif
6124
re_exec (s)
6125
    const char *s;
6126
{
6127
  const int len = strlen (s);
6128
  return
6129
 
6130
}
6131
#endif /* _REGEX_RE_COMP */
6132
 
6133
/* POSIX.2 functions.  Don't define these for Emacs.  */
6134
 
6135
#ifndef emacs
6136
 
6137
/* regcomp takes a regular expression as a string and compiles it.
6138
 
6139
   PREG is a regex_t *.  We do not expect any fields to be initialized,
6140
   since POSIX says we shouldn't.  Thus, we set
6141
 
6142
     `buffer' to the compiled pattern;
6143
     `used' to the length of the compiled pattern;
6144
     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6145
       REG_EXTENDED bit in CFLAGS is set; otherwise, to
6146
       RE_SYNTAX_POSIX_BASIC;
6147
     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
6148
     `fastmap' and `fastmap_accurate' to zero;
6149
     `re_nsub' to the number of subexpressions in PATTERN.
6150
 
6151
   PATTERN is the address of the pattern string.
6152
 
6153
   CFLAGS is a series of bits which affect compilation.
6154
 
6155
     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6156
     use POSIX basic syntax.
6157
 
6158
     If REG_NEWLINE is set, then . and [^...] don't match newline.
6159
     Also, regexec will try a match beginning after every newline.
6160
 
6161
     If REG_ICASE is set, then we considers upper- and lowercase
6162
     versions of letters to be equivalent when matching.
6163
 
6164
     If REG_NOSUB is set, then when PREG is passed to regexec, that
6165
     routine will report only success or failure, and nothing about the
6166
     registers.
6167
 
6168
   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
6169
   the return codes and their meanings.)  */
6170
 
6171
int
6172
regcomp (preg, pattern, cflags)
6173
    regex_t *preg;
6174
    const char *pattern;
6175
    int cflags;
6176
{
6177
  reg_errcode_t ret;
6178
  unsigned syntax
6179
    = (cflags & REG_EXTENDED) ?
6180
      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6181
 
6182
  /* regex_compile will allocate the space for the compiled pattern.  */
6183
  preg->buffer = 0;
6184
  preg->allocated = 0;
6185
  preg->used = 0;
6186
 
6187
  /* Don't bother to use a fastmap when searching.  This simplifies the
6188
     REG_NEWLINE case: if we used a fastmap, we'd have to put all the
6189
     characters after newlines into the fastmap.  This way, we just try
6190
     every character.  */
6191
  preg->fastmap = 0;
6192
 
6193
  if (cflags & REG_ICASE)
6194
    {
6195
      unsigned i;
6196
 
6197
      preg->translate
6198
	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6199
				      * sizeof (*(RE_TRANSLATE_TYPE)0));
6200
      if (preg->translate == NULL)
6201
        return (int) REG_ESPACE;
6202
 
6203
      /* Map uppercase characters to corresponding lowercase ones.  */
6204
      for (i = 0; i < CHAR_SET_SIZE; i++)
6205
        preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
6206
    }
6207
  else
6208
    preg->translate = NULL;
6209
 
6210
  /* If REG_NEWLINE is set, newlines are treated differently.  */
6211
  if (cflags & REG_NEWLINE)
6212
    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
6213
      syntax &= ~RE_DOT_NEWLINE;
6214
      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6215
      /* It also changes the matching behavior.  */
6216
      preg->newline_anchor = 1;
6217
    }
6218
  else
6219
    preg->newline_anchor = 0;
6220
 
6221
  preg->no_sub = !!(cflags & REG_NOSUB);
6222
 
6223
  /* POSIX says a null character in the pattern terminates it, so we
6224
     can use strlen here in compiling the pattern.  */
6225
  ret = regex_compile (pattern, strlen (pattern), syntax, preg);
6226
 
6227
  /* POSIX doesn't distinguish between an unmatched open-group and an
6228
     unmatched close-group: both are REG_EPAREN.  */
6229
  if (ret == REG_ERPAREN) ret = REG_EPAREN;
6230
 
6231
  return (int) ret;
6232
}
6233
 
6234
 
6235
/* regexec searches for a given pattern, specified by PREG, in the
6236
   string STRING.
6237
 
6238
   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6239
   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
6240
   least NMATCH elements, and we set them to the offsets of the
6241
   corresponding matched substrings.
6242
 
6243
   EFLAGS specifies `execution flags' which affect matching: if
6244
   REG_NOTBOL is set, then ^ does not match at the beginning of the
6245
   string; if REG_NOTEOL is set, then $ does not match at the end.
6246
 
6247
   We return 0 if we find a match and REG_NOMATCH if not.  */
6248
 
6249
int
6250
regexec (preg, string, nmatch, pmatch, eflags)
6251
    const regex_t *preg;
6252
    const char *string;
6253
    size_t nmatch;
6254
    regmatch_t pmatch[];
6255
    int eflags;
6256
{
6257
  int ret;
6258
  struct re_registers regs;
6259
  regex_t private_preg;
6260
  int len = strlen (string);
6261
  boolean want_reg_info = !preg->no_sub && nmatch > 0;
6262
 
6263
  private_preg = *preg;
6264
 
6265
  private_preg.not_bol = !!(eflags & REG_NOTBOL);
6266
  private_preg.not_eol = !!(eflags & REG_NOTEOL);
6267
 
6268
  /* The user has told us exactly how many registers to return
6269
     information about, via `nmatch'.  We have to pass that on to the
6270
     matching routines.  */
6271
  private_preg.regs_allocated = REGS_FIXED;
6272
 
6273
  if (want_reg_info)
6274
    {
6275
      regs.num_regs = nmatch;
6276
      regs.start = TALLOC (nmatch, regoff_t);
6277
      regs.end = TALLOC (nmatch, regoff_t);
6278
      if (regs.start == NULL || regs.end == NULL)
6279
        return (int) REG_NOMATCH;
6280
    }
6281
 
6282
  /* Perform the searching operation.  */
6283
  ret = re_search (&private_preg, string, len,
6284
                   /* start: */ 0, /* range: */ len,
6285
                   want_reg_info ? &regs : (struct re_registers *) 0);
6286
 
6287
  /* Copy the register information to the POSIX structure.  */
6288
  if (want_reg_info)
6289
    {
6290
      if (ret >= 0)
6291
        {
6292
          unsigned r;
6293
 
6294
          for (r = 0; r < nmatch; r++)
6295
            {
6296
              pmatch[r].rm_so = regs.start[r];
6297
              pmatch[r].rm_eo = regs.end[r];
6298
            }
6299
        }
6300
 
6301
      /* If we needed the temporary register info, free the space now.  */
6302
      free (regs.start);
6303
      free (regs.end);
6304
    }
6305
 
6306
  /* We want zero return to mean success, unlike `re_search'.  */
6307
  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6308
}
6309
 
6310
 
6311
/* Returns a message corresponding to an error code, ERRCODE, returned
6312
   from either regcomp or regexec.   We don't use PREG here.  */
6313
 
6314
size_t
6315
regerror (errcode, preg, errbuf, errbuf_size)
6316
    int errcode;
6317
    const regex_t *preg;
6318
    char *errbuf;
6319
    size_t errbuf_size;
6320
{
6321
  const char *msg;
6322
  size_t msg_size;
6323
 
6324
  if (errcode < 0
6325
      || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6326
    /* Only error codes returned by the rest of the code should be passed
6327
       to this routine.  If we are given anything else, or if other regex
6328
       code generates an invalid error code, then the program has a bug.
6329
       Dump core so we can fix it.  */
6330
    abort ();
6331
 
6332
  msg = gettext (re_error_msgid[errcode]);
6333
 
6334
  msg_size = strlen (msg) + 1; /* Includes the null.  */
6335
 
6336
  if (errbuf_size != 0)
6337
    {
6338
      if (msg_size > errbuf_size)
6339
        {
6340
          strncpy (errbuf, msg, errbuf_size - 1);
6341
          errbuf[errbuf_size - 1] = 0;
6342
        }
6343
      else
6344
        strcpy (errbuf, msg);
6345
    }
6346
 
6347
  return msg_size;
6348
}
6349
 
6350
 
6351
/* Free dynamically allocated space used by PREG.  */
6352
 
6353
void
6354
regfree (preg)
6355
    regex_t *preg;
6356
{
6357
  if (preg->buffer != NULL)
6358
    free (preg->buffer);
6359
  preg->buffer = NULL;
6360
 
6361
  preg->allocated = 0;
6362
  preg->used = 0;
6363
 
6364
  if (preg->fastmap != NULL)
6365
    free (preg->fastmap);
6366
  preg->fastmap = NULL;
6367
  preg->fastmap_accurate = 0;
6368
 
6369
  if (preg->translate != NULL)
6370
    free (preg->translate);
6371
  preg->translate = NULL;
6372
}
6373
 
6374
#endif /* not emacs  */