2 |
- |
1 |
/* Copyright (C) 1997, 1998, 1999 Aladdin Enterprises. All rights reserved.
|
|
|
2 |
|
|
|
3 |
This software is provided AS-IS with no warranty, either express or
|
|
|
4 |
implied.
|
|
|
5 |
|
|
|
6 |
This software is distributed under license and may not be copied,
|
|
|
7 |
modified or distributed except as expressly authorized under the terms
|
|
|
8 |
of the license contained in the file LICENSE in this distribution.
|
|
|
9 |
|
|
|
10 |
For more information about licensing, please refer to
|
|
|
11 |
http://www.ghostscript.com/licensing/. For information on
|
|
|
12 |
commercial licensing, go to http://www.artifex.com/licensing/ or
|
|
|
13 |
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
|
|
|
14 |
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
|
|
|
15 |
*/
|
|
|
16 |
|
|
|
17 |
/* $Id: gsalphac.c,v 1.8 2005/03/14 18:08:36 dan Exp $ */
|
|
|
18 |
/* Alpha-compositing implementation */
|
|
|
19 |
#include "memory_.h"
|
|
|
20 |
#include "gx.h"
|
|
|
21 |
#include "gserrors.h"
|
|
|
22 |
#include "gsalphac.h"
|
|
|
23 |
#include "gsiparam.h" /* for gs_image_alpha_t */
|
|
|
24 |
#include "gsutil.h" /* for gs_next_ids */
|
|
|
25 |
#include "gxalpha.h"
|
|
|
26 |
#include "gxcomp.h"
|
|
|
27 |
#include "gxdevice.h"
|
|
|
28 |
#include "gxgetbit.h"
|
|
|
29 |
#include "gxlum.h"
|
|
|
30 |
|
|
|
31 |
/* ---------------- Internal definitions ---------------- */
|
|
|
32 |
|
|
|
33 |
/* Define the parameters for a compositing operation. */
|
|
|
34 |
typedef struct gs_composite_params_s {
|
|
|
35 |
gs_composite_op_t cop;
|
|
|
36 |
float delta; /* only for dissolve */
|
|
|
37 |
uint source_alpha; /* only if !psource->alpha */
|
|
|
38 |
uint source_values[4]; /* only if !psource->data */
|
|
|
39 |
} gs_composite_params_t;
|
|
|
40 |
|
|
|
41 |
/* Define the source or destination for a compositing operation. */
|
|
|
42 |
#define pixel_row_fields(elt_type)\
|
|
|
43 |
elt_type *data;\
|
|
|
44 |
int bits_per_value; /* 1, 2, 4, 8, 12, 16 */\
|
|
|
45 |
int initial_x;\
|
|
|
46 |
gs_image_alpha_t alpha
|
|
|
47 |
typedef struct pixel_row_s {
|
|
|
48 |
pixel_row_fields(byte);
|
|
|
49 |
} pixel_row_t;
|
|
|
50 |
typedef struct const_pixel_row_s {
|
|
|
51 |
pixel_row_fields(const byte);
|
|
|
52 |
} const_pixel_row_t;
|
|
|
53 |
|
|
|
54 |
/*
|
|
|
55 |
* Composite two arrays of (premultiplied) pixel values. Legal values of
|
|
|
56 |
* values_per_pixel are 1-4, not including alpha. Note that if pdest->alpha
|
|
|
57 |
* is "none", the alpha value for all destination pixels will be taken as
|
|
|
58 |
* unity, and any operation that could generate alpha values other than
|
|
|
59 |
* unity will return an error. "Could generate" means that there are
|
|
|
60 |
* possible values of the source and destination alpha values for which the
|
|
|
61 |
* result has non-unity alpha: the error check does not scan the actual
|
|
|
62 |
* alpha data to test whether there are any actual values that would
|
|
|
63 |
* generate a non-unity alpha result.
|
|
|
64 |
*/
|
|
|
65 |
int composite_values(const pixel_row_t * pdest,
|
|
|
66 |
const const_pixel_row_t * psource,
|
|
|
67 |
int values_per_pixel, uint num_pixels,
|
|
|
68 |
const gs_composite_params_t * pcp);
|
|
|
69 |
|
|
|
70 |
/* ---------------- Alpha-compositing objects ---------------- */
|
|
|
71 |
|
|
|
72 |
/*
|
|
|
73 |
* Define which operations can generate non-unity alpha values in 3 of the 4
|
|
|
74 |
* cases of source and destination not having unity alphas. (This is always
|
|
|
75 |
* possible in the fourth case, both S & D non-unity, except for CLEAR.) We
|
|
|
76 |
* do this with a bit mask indexed by the operation, counting from the LSB.
|
|
|
77 |
* The name indicates whether S and/or D has non-unity alphas.
|
|
|
78 |
*/
|
|
|
79 |
#define alpha_out_notS_notD\
|
|
|
80 |
(1<<composite_Dissolve)
|
|
|
81 |
#define _alpha_out_either\
|
|
|
82 |
(alpha_out_notS_notD|(1<<composite_Satop)|(1<<composite_Datop)|\
|
|
|
83 |
(1<<composite_Xor)|(1<<composite_PlusD)|(1<<composite_PlusL))
|
|
|
84 |
#define alpha_out_S_notD\
|
|
|
85 |
(_alpha_out_either|(1<<composite_Copy)|(1<<composite_Sover)|\
|
|
|
86 |
(1<<composite_Din)|(1<<composite_Dout))
|
|
|
87 |
#define alpha_out_notS_D\
|
|
|
88 |
(_alpha_out_either|(1<<composite_Sin)|(1<<composite_Sout)|\
|
|
|
89 |
(1<<composite_Dover)|(1<<composite_Highlight))
|
|
|
90 |
|
|
|
91 |
/* ------ Object definition and creation ------ */
|
|
|
92 |
|
|
|
93 |
/* Define alpha-compositing objects. */
|
|
|
94 |
private composite_create_default_compositor_proc(c_alpha_create_default_compositor);
|
|
|
95 |
private composite_equal_proc(c_alpha_equal);
|
|
|
96 |
private composite_write_proc(c_alpha_write);
|
|
|
97 |
private composite_read_proc(c_alpha_read);
|
|
|
98 |
const gs_composite_type_t gs_composite_alpha_type =
|
|
|
99 |
{
|
|
|
100 |
GX_COMPOSITOR_ALPHA,
|
|
|
101 |
{
|
|
|
102 |
c_alpha_create_default_compositor,
|
|
|
103 |
c_alpha_equal,
|
|
|
104 |
c_alpha_write,
|
|
|
105 |
c_alpha_read,
|
|
|
106 |
gx_default_composite_clist_write_update,
|
|
|
107 |
gx_default_composite_clist_read_update
|
|
|
108 |
}
|
|
|
109 |
};
|
|
|
110 |
typedef struct gs_composite_alpha_s {
|
|
|
111 |
gs_composite_common;
|
|
|
112 |
gs_composite_alpha_params_t params;
|
|
|
113 |
} gs_composite_alpha_t;
|
|
|
114 |
|
|
|
115 |
gs_private_st_simple(st_composite_alpha, gs_composite_alpha_t,
|
|
|
116 |
"gs_composite_alpha_t");
|
|
|
117 |
|
|
|
118 |
/* Create an alpha-compositing object. */
|
|
|
119 |
int
|
|
|
120 |
gs_create_composite_alpha(gs_composite_t ** ppcte,
|
|
|
121 |
const gs_composite_alpha_params_t * params, gs_memory_t * mem)
|
|
|
122 |
{
|
|
|
123 |
gs_composite_alpha_t *pcte;
|
|
|
124 |
|
|
|
125 |
rc_alloc_struct_0(pcte, gs_composite_alpha_t, &st_composite_alpha,
|
|
|
126 |
mem, return_error(gs_error_VMerror),
|
|
|
127 |
"gs_create_composite_alpha");
|
|
|
128 |
pcte->type = &gs_composite_alpha_type;
|
|
|
129 |
pcte->id = gs_next_ids(mem, 1);
|
|
|
130 |
pcte->params = *params;
|
|
|
131 |
*ppcte = (gs_composite_t *) pcte;
|
|
|
132 |
return 0;
|
|
|
133 |
}
|
|
|
134 |
|
|
|
135 |
/* ------ Object implementation ------ */
|
|
|
136 |
|
|
|
137 |
#define pacte ((const gs_composite_alpha_t *)pcte)
|
|
|
138 |
|
|
|
139 |
private bool
|
|
|
140 |
c_alpha_equal(const gs_composite_t * pcte, const gs_composite_t * pcte2)
|
|
|
141 |
{
|
|
|
142 |
return (pcte2->type == pcte->type &&
|
|
|
143 |
#define pacte2 ((const gs_composite_alpha_t *)pcte2)
|
|
|
144 |
pacte2->params.op == pacte->params.op &&
|
|
|
145 |
(pacte->params.op != composite_Dissolve ||
|
|
|
146 |
pacte2->params.delta == pacte->params.delta));
|
|
|
147 |
#undef pacte2
|
|
|
148 |
}
|
|
|
149 |
|
|
|
150 |
private int
|
|
|
151 |
c_alpha_write(const gs_composite_t * pcte, byte * data, uint * psize)
|
|
|
152 |
{
|
|
|
153 |
uint size = *psize;
|
|
|
154 |
uint used;
|
|
|
155 |
|
|
|
156 |
if (pacte->params.op == composite_Dissolve) {
|
|
|
157 |
used = 1 + sizeof(pacte->params.delta);
|
|
|
158 |
if (size < used) {
|
|
|
159 |
*psize = used;
|
|
|
160 |
return_error(gs_error_rangecheck);
|
|
|
161 |
}
|
|
|
162 |
memcpy(data + 1, &pacte->params.delta, sizeof(pacte->params.delta));
|
|
|
163 |
} else {
|
|
|
164 |
used = 1;
|
|
|
165 |
if (size < used) {
|
|
|
166 |
*psize = used;
|
|
|
167 |
return_error(gs_error_rangecheck);
|
|
|
168 |
}
|
|
|
169 |
}
|
|
|
170 |
*data = (byte) pacte->params.op;
|
|
|
171 |
*psize = used;
|
|
|
172 |
return 0;
|
|
|
173 |
}
|
|
|
174 |
|
|
|
175 |
private int
|
|
|
176 |
c_alpha_read(gs_composite_t ** ppcte, const byte * data, uint size,
|
|
|
177 |
gs_memory_t * mem)
|
|
|
178 |
{
|
|
|
179 |
gs_composite_alpha_params_t params;
|
|
|
180 |
int code, nbytes = 1;
|
|
|
181 |
|
|
|
182 |
if (size < 1 || *data > composite_op_last)
|
|
|
183 |
return_error(gs_error_rangecheck);
|
|
|
184 |
params.op = *data;
|
|
|
185 |
if (params.op == composite_Dissolve) {
|
|
|
186 |
if (size < 1 + sizeof(params.delta))
|
|
|
187 |
return_error(gs_error_rangecheck);
|
|
|
188 |
memcpy(¶ms.delta, data + 1, sizeof(params.delta));
|
|
|
189 |
nbytes += sizeof(params.delta);
|
|
|
190 |
}
|
|
|
191 |
code = gs_create_composite_alpha(ppcte, ¶ms, mem);
|
|
|
192 |
return code < 0 ? code : nbytes;
|
|
|
193 |
}
|
|
|
194 |
|
|
|
195 |
/* ---------------- Alpha-compositing device ---------------- */
|
|
|
196 |
|
|
|
197 |
/* Define the default alpha-compositing device. */
|
|
|
198 |
typedef struct gx_device_composite_alpha_s {
|
|
|
199 |
gx_device_forward_common;
|
|
|
200 |
gs_composite_alpha_params_t params;
|
|
|
201 |
} gx_device_composite_alpha;
|
|
|
202 |
|
|
|
203 |
gs_private_st_suffix_add0_final(st_device_composite_alpha,
|
|
|
204 |
gx_device_composite_alpha, "gx_device_composite_alpha",
|
|
|
205 |
device_c_alpha_enum_ptrs, device_c_alpha_reloc_ptrs, gx_device_finalize,
|
|
|
206 |
st_device_forward);
|
|
|
207 |
/* The device descriptor. */
|
|
|
208 |
private dev_proc_close_device(dca_close);
|
|
|
209 |
private dev_proc_fill_rectangle(dca_fill_rectangle);
|
|
|
210 |
private dev_proc_map_rgb_color(dca_map_rgb_color);
|
|
|
211 |
private dev_proc_map_color_rgb(dca_map_color_rgb);
|
|
|
212 |
private dev_proc_copy_mono(dca_copy_mono);
|
|
|
213 |
private dev_proc_copy_color(dca_copy_color);
|
|
|
214 |
private dev_proc_map_rgb_alpha_color(dca_map_rgb_alpha_color);
|
|
|
215 |
private dev_proc_map_color_rgb_alpha(dca_map_color_rgb_alpha);
|
|
|
216 |
private dev_proc_copy_alpha(dca_copy_alpha);
|
|
|
217 |
private const gx_device_composite_alpha gs_composite_alpha_device =
|
|
|
218 |
{std_device_std_body_open(gx_device_composite_alpha, 0,
|
|
|
219 |
"alpha compositor", 0, 0, 1, 1),
|
|
|
220 |
{gx_default_open_device,
|
|
|
221 |
gx_forward_get_initial_matrix,
|
|
|
222 |
gx_default_sync_output,
|
|
|
223 |
gx_default_output_page,
|
|
|
224 |
dca_close,
|
|
|
225 |
dca_map_rgb_color,
|
|
|
226 |
dca_map_color_rgb,
|
|
|
227 |
dca_fill_rectangle,
|
|
|
228 |
gx_default_tile_rectangle,
|
|
|
229 |
dca_copy_mono,
|
|
|
230 |
dca_copy_color,
|
|
|
231 |
gx_default_draw_line,
|
|
|
232 |
gx_default_get_bits,
|
|
|
233 |
gx_forward_get_params,
|
|
|
234 |
gx_forward_put_params,
|
|
|
235 |
gx_default_cmyk_map_cmyk_color, /* only called for CMYK */
|
|
|
236 |
gx_forward_get_xfont_procs,
|
|
|
237 |
gx_forward_get_xfont_device,
|
|
|
238 |
dca_map_rgb_alpha_color,
|
|
|
239 |
gx_forward_get_page_device,
|
|
|
240 |
gx_forward_get_alpha_bits,
|
|
|
241 |
dca_copy_alpha,
|
|
|
242 |
gx_forward_get_band,
|
|
|
243 |
gx_default_copy_rop,
|
|
|
244 |
gx_default_fill_path,
|
|
|
245 |
gx_default_stroke_path,
|
|
|
246 |
gx_default_fill_mask,
|
|
|
247 |
gx_default_fill_trapezoid,
|
|
|
248 |
gx_default_fill_parallelogram,
|
|
|
249 |
gx_default_fill_triangle,
|
|
|
250 |
gx_default_draw_thin_line,
|
|
|
251 |
gx_default_begin_image,
|
|
|
252 |
gx_default_image_data,
|
|
|
253 |
gx_default_end_image,
|
|
|
254 |
gx_default_strip_tile_rectangle,
|
|
|
255 |
gx_default_strip_copy_rop,
|
|
|
256 |
gx_forward_get_clipping_box,
|
|
|
257 |
gx_default_begin_typed_image,
|
|
|
258 |
gx_forward_get_bits_rectangle,
|
|
|
259 |
dca_map_color_rgb_alpha,
|
|
|
260 |
gx_no_create_compositor
|
|
|
261 |
}
|
|
|
262 |
};
|
|
|
263 |
|
|
|
264 |
/* Create an alpha compositor. */
|
|
|
265 |
private int
|
|
|
266 |
c_alpha_create_default_compositor(const gs_composite_t * pcte,
|
|
|
267 |
gx_device ** pcdev, gx_device * dev, gs_imager_state * pis,
|
|
|
268 |
gs_memory_t * mem)
|
|
|
269 |
{
|
|
|
270 |
gx_device_composite_alpha *cdev;
|
|
|
271 |
|
|
|
272 |
if (pacte->params.op == composite_Copy) {
|
|
|
273 |
/* Just use the original device. */
|
|
|
274 |
*pcdev = dev;
|
|
|
275 |
return 0;
|
|
|
276 |
}
|
|
|
277 |
cdev =
|
|
|
278 |
gs_alloc_struct_immovable(mem, gx_device_composite_alpha,
|
|
|
279 |
&st_device_composite_alpha,
|
|
|
280 |
"create default alpha compositor");
|
|
|
281 |
*pcdev = (gx_device *)cdev;
|
|
|
282 |
if (cdev == 0)
|
|
|
283 |
return_error(gs_error_VMerror);
|
|
|
284 |
gx_device_init((gx_device *)cdev,
|
|
|
285 |
(const gx_device *)&gs_composite_alpha_device, mem, true);
|
|
|
286 |
gx_device_copy_params((gx_device *)cdev, dev);
|
|
|
287 |
/*
|
|
|
288 |
* Set the color_info and depth to be compatible with the target,
|
|
|
289 |
* but using standard chunky color storage, including alpha.
|
|
|
290 |
****** CURRENTLY ALWAYS USE 8-BIT COLOR ******
|
|
|
291 |
*/
|
|
|
292 |
cdev->color_info.depth =
|
|
|
293 |
(dev->color_info.num_components == 4 ? 32 /* CMYK, no alpha */ :
|
|
|
294 |
(dev->color_info.num_components + 1) * 8);
|
|
|
295 |
cdev->color_info.max_gray = cdev->color_info.max_color = 255;
|
|
|
296 |
/* No halftoning will occur, but we fill these in anyway.... */
|
|
|
297 |
cdev->color_info.dither_grays = cdev->color_info.dither_colors = 256;
|
|
|
298 |
/*
|
|
|
299 |
* We could speed things up a little by tailoring the procedures in
|
|
|
300 |
* the device to the specific num_components, but for simplicity,
|
|
|
301 |
* we'll defer considering that until there is a demonstrated need.
|
|
|
302 |
*/
|
|
|
303 |
gx_device_set_target((gx_device_forward *)cdev, dev);
|
|
|
304 |
cdev->params = pacte->params;
|
|
|
305 |
return 0;
|
|
|
306 |
}
|
|
|
307 |
|
|
|
308 |
/* Close the device and free its storage. */
|
|
|
309 |
private int
|
|
|
310 |
dca_close(gx_device * dev)
|
|
|
311 |
{ /*
|
|
|
312 |
* Finalization will call close again: avoid a recursion loop.
|
|
|
313 |
*/
|
|
|
314 |
set_dev_proc(dev, close_device, gx_default_close_device);
|
|
|
315 |
gs_free_object(dev->memory, dev, "dca_close");
|
|
|
316 |
return 0;
|
|
|
317 |
}
|
|
|
318 |
|
|
|
319 |
/* ------ (RGB) color mapping ------ */
|
|
|
320 |
|
|
|
321 |
private gx_color_index
|
|
|
322 |
dca_map_rgb_color(gx_device * dev, const gx_color_value cv[])
|
|
|
323 |
{
|
|
|
324 |
return dca_map_rgb_alpha_color(dev, cv[0], cv[1], cv[2], gx_max_color_value);
|
|
|
325 |
}
|
|
|
326 |
private gx_color_index
|
|
|
327 |
dca_map_rgb_alpha_color(gx_device * dev,
|
|
|
328 |
gx_color_value red, gx_color_value green, gx_color_value blue,
|
|
|
329 |
gx_color_value alpha)
|
|
|
330 |
{ /*
|
|
|
331 |
* We work exclusively with premultiplied color values, so we
|
|
|
332 |
* have to premultiply the color components by alpha here.
|
|
|
333 |
*/
|
|
|
334 |
byte a = gx_color_value_to_byte(alpha);
|
|
|
335 |
|
|
|
336 |
#define premult_(c)\
|
|
|
337 |
(((c) * a + gx_max_color_value / 2) / gx_max_color_value)
|
|
|
338 |
#ifdef PREMULTIPLY_TOWARDS_WHITE
|
|
|
339 |
byte bias = ~a;
|
|
|
340 |
|
|
|
341 |
# define premult(c) (premult_(c) + bias)
|
|
|
342 |
#else
|
|
|
343 |
# define premult(c) premult_(c)
|
|
|
344 |
#endif
|
|
|
345 |
gx_color_index color;
|
|
|
346 |
|
|
|
347 |
if (dev->color_info.num_components == 1) {
|
|
|
348 |
uint lum =
|
|
|
349 |
(red * lum_red_weight + green * lum_green_weight +
|
|
|
350 |
blue * lum_blue_weight + lum_all_weights / 2) /
|
|
|
351 |
lum_all_weights;
|
|
|
352 |
|
|
|
353 |
if (a == 0xff)
|
|
|
354 |
color = gx_color_value_to_byte(lum);
|
|
|
355 |
else /* Premultiplication is necessary. */
|
|
|
356 |
color = premult(lum);
|
|
|
357 |
} else {
|
|
|
358 |
if (a == 0xff)
|
|
|
359 |
color =
|
|
|
360 |
((uint) gx_color_value_to_byte(red) << 16) +
|
|
|
361 |
((uint) gx_color_value_to_byte(green) << 8) +
|
|
|
362 |
gx_color_value_to_byte(blue);
|
|
|
363 |
else /* Premultiplication is necessary. */
|
|
|
364 |
color =
|
|
|
365 |
(premult(red) << 16) + (premult(green) << 8) + premult(blue);
|
|
|
366 |
}
|
|
|
367 |
#undef premult
|
|
|
368 |
return (color << 8) + a;
|
|
|
369 |
}
|
|
|
370 |
private int
|
|
|
371 |
dca_map_color_rgb(gx_device * dev, gx_color_index color,
|
|
|
372 |
gx_color_value prgb[3])
|
|
|
373 |
{
|
|
|
374 |
gx_color_value red = gx_color_value_from_byte((byte) (color >> 24));
|
|
|
375 |
byte a = (byte) color;
|
|
|
376 |
|
|
|
377 |
#define postdiv_(c)\
|
|
|
378 |
(((c) * 0xff + a / 2) / a)
|
|
|
379 |
#ifdef PREMULTIPLY_TOWARDS_WHITE
|
|
|
380 |
byte bias = ~a;
|
|
|
381 |
|
|
|
382 |
# define postdiv(c) postdiv_(c - bias)
|
|
|
383 |
#else
|
|
|
384 |
# define postdiv(c) postdiv_(c)
|
|
|
385 |
#endif
|
|
|
386 |
|
|
|
387 |
if (dev->color_info.num_components == 1) {
|
|
|
388 |
if (a != 0xff) {
|
|
|
389 |
/* Undo premultiplication. */
|
|
|
390 |
if (a == 0)
|
|
|
391 |
red = 0;
|
|
|
392 |
else
|
|
|
393 |
red = postdiv(red);
|
|
|
394 |
}
|
|
|
395 |
prgb[0] = prgb[1] = prgb[2] = red;
|
|
|
396 |
} else {
|
|
|
397 |
gx_color_value
|
|
|
398 |
green = gx_color_value_from_byte((byte) (color >> 16)),
|
|
|
399 |
blue = gx_color_value_from_byte((byte) (color >> 8));
|
|
|
400 |
|
|
|
401 |
if (a != 0xff) {
|
|
|
402 |
/* Undo premultiplication. */
|
|
|
403 |
/****** WHAT TO DO ABOUT BIG LOSS OF PRECISION? ******/
|
|
|
404 |
if (a == 0)
|
|
|
405 |
red = green = blue = 0;
|
|
|
406 |
else {
|
|
|
407 |
red = postdiv(red);
|
|
|
408 |
green = postdiv(green);
|
|
|
409 |
blue = postdiv(blue);
|
|
|
410 |
}
|
|
|
411 |
}
|
|
|
412 |
prgb[0] = red, prgb[1] = green, prgb[2] = blue;
|
|
|
413 |
}
|
|
|
414 |
#undef postdiv
|
|
|
415 |
return 0;
|
|
|
416 |
}
|
|
|
417 |
private int
|
|
|
418 |
dca_map_color_rgb_alpha(gx_device * dev, gx_color_index color,
|
|
|
419 |
gx_color_value prgba[4])
|
|
|
420 |
{
|
|
|
421 |
prgba[3] = gx_color_value_from_byte((byte) color);
|
|
|
422 |
return dca_map_color_rgb(dev, color, prgba);
|
|
|
423 |
}
|
|
|
424 |
|
|
|
425 |
/* ------ Imaging ------ */
|
|
|
426 |
|
|
|
427 |
private int
|
|
|
428 |
dca_fill_rectangle(gx_device * dev, int x, int y, int w, int h,
|
|
|
429 |
gx_color_index color)
|
|
|
430 |
{ /* This is where all the real work gets done! */
|
|
|
431 |
gx_device_composite_alpha *adev = (gx_device_composite_alpha *) dev;
|
|
|
432 |
gx_device *target = adev->target;
|
|
|
433 |
byte *std_row;
|
|
|
434 |
byte *native_row;
|
|
|
435 |
gs_int_rect rect;
|
|
|
436 |
gs_get_bits_params_t std_params, native_params;
|
|
|
437 |
int code = 0;
|
|
|
438 |
int yi;
|
|
|
439 |
gs_composite_params_t cp;
|
|
|
440 |
const_pixel_row_t source;
|
|
|
441 |
pixel_row_t dest;
|
|
|
442 |
|
|
|
443 |
fit_fill(dev, x, y, w, h);
|
|
|
444 |
std_row = gs_alloc_bytes(dev->memory,
|
|
|
445 |
(dev->color_info.depth * w + 7) >> 3,
|
|
|
446 |
"dca_fill_rectangle(std)");
|
|
|
447 |
native_row = gs_alloc_bytes(dev->memory,
|
|
|
448 |
(target->color_info.depth * w + 7) >> 3,
|
|
|
449 |
"dca_fill_rectangle(native)");
|
|
|
450 |
if (std_row == 0 || native_row == 0) {
|
|
|
451 |
code = gs_note_error(gs_error_VMerror);
|
|
|
452 |
goto out;
|
|
|
453 |
}
|
|
|
454 |
rect.p.x = x, rect.q.x = x + w;
|
|
|
455 |
std_params.options =
|
|
|
456 |
GB_COLORS_NATIVE |
|
|
|
457 |
(GB_ALPHA_LAST | GB_DEPTH_8 | GB_PACKING_CHUNKY |
|
|
|
458 |
GB_RETURN_COPY | GB_RETURN_POINTER | GB_ALIGN_ANY |
|
|
|
459 |
GB_OFFSET_0 | GB_OFFSET_ANY | GB_RASTER_STANDARD |
|
|
|
460 |
GB_RASTER_ANY);
|
|
|
461 |
cp.cop = adev->params.op;
|
|
|
462 |
if (cp.cop == composite_Dissolve)
|
|
|
463 |
cp.delta = adev->params.delta;
|
|
|
464 |
{
|
|
|
465 |
gx_color_value rgba[4];
|
|
|
466 |
|
|
|
467 |
/****** DOESN'T HANDLE CMYK ******/
|
|
|
468 |
(*dev_proc(dev, map_color_rgb_alpha)) (dev, color, rgba);
|
|
|
469 |
cp.source_values[0] = gx_color_value_to_byte(rgba[0]);
|
|
|
470 |
cp.source_values[1] = gx_color_value_to_byte(rgba[1]);
|
|
|
471 |
cp.source_values[2] = gx_color_value_to_byte(rgba[2]);
|
|
|
472 |
cp.source_alpha = gx_color_value_to_byte(rgba[3]);
|
|
|
473 |
}
|
|
|
474 |
source.data = 0;
|
|
|
475 |
source.bits_per_value = 8;
|
|
|
476 |
source.alpha = gs_image_alpha_none;
|
|
|
477 |
for (yi = y; yi < y + h; ++yi) {
|
|
|
478 |
/* Read a row in standard representation. */
|
|
|
479 |
rect.p.y = yi, rect.q.y = yi + 1;
|
|
|
480 |
std_params.data[0] = std_row;
|
|
|
481 |
code = (*dev_proc(target, get_bits_rectangle))
|
|
|
482 |
(target, &rect, &std_params, NULL);
|
|
|
483 |
if (code < 0)
|
|
|
484 |
break;
|
|
|
485 |
/* Do the work. */
|
|
|
486 |
dest.data = std_params.data[0];
|
|
|
487 |
dest.bits_per_value = 8;
|
|
|
488 |
dest.initial_x =
|
|
|
489 |
(std_params.options & GB_OFFSET_ANY ? std_params.x_offset : 0);
|
|
|
490 |
dest.alpha =
|
|
|
491 |
(std_params.options & GB_ALPHA_FIRST ? gs_image_alpha_first :
|
|
|
492 |
std_params.options & GB_ALPHA_LAST ? gs_image_alpha_last :
|
|
|
493 |
gs_image_alpha_none);
|
|
|
494 |
code = composite_values(&dest, &source,
|
|
|
495 |
dev->color_info.num_components, w, &cp);
|
|
|
496 |
if (code < 0)
|
|
|
497 |
break;
|
|
|
498 |
if (std_params.data[0] == std_row) {
|
|
|
499 |
/* Convert the row back to native representation. */
|
|
|
500 |
/* (Otherwise, we had a direct pointer to device data.) */
|
|
|
501 |
native_params.options =
|
|
|
502 |
(GB_COLORS_NATIVE | GB_PACKING_CHUNKY | GB_RETURN_COPY |
|
|
|
503 |
GB_OFFSET_0 | GB_RASTER_ALL | GB_ALIGN_STANDARD);
|
|
|
504 |
native_params.data[0] = native_row;
|
|
|
505 |
code = gx_get_bits_copy(target, 0, w, 1, &native_params,
|
|
|
506 |
&std_params, std_row,
|
|
|
507 |
|
|
|
508 |
if (code < 0)
|
|
|
509 |
break;
|
|
|
510 |
code = (*dev_proc(target, copy_color))
|
|
|
511 |
(target, native_row, 0, 0 /* raster is irrelevant */ ,
|
|
|
512 |
gx_no_bitmap_id, x, yi, w, 1);
|
|
|
513 |
if (code < 0)
|
|
|
514 |
break;
|
|
|
515 |
}
|
|
|
516 |
}
|
|
|
517 |
out:gs_free_object(dev->memory, native_row, "dca_fill_rectangle(native)");
|
|
|
518 |
gs_free_object(dev->memory, std_row, "dca_fill_rectangle(std)");
|
|
|
519 |
return code;
|
|
|
520 |
}
|
|
|
521 |
|
|
|
522 |
private int
|
|
|
523 |
dca_copy_mono(gx_device * dev, const byte * data,
|
|
|
524 |
int dx, int raster, gx_bitmap_id id, int x, int y, int w, int h,
|
|
|
525 |
gx_color_index zero, gx_color_index one)
|
|
|
526 |
{
|
|
|
527 |
/****** TEMPORARY ******/
|
|
|
528 |
return gx_default_copy_mono(dev, data, dx, raster, id, x, y, w, h,
|
|
|
529 |
zero, one);
|
|
|
530 |
}
|
|
|
531 |
|
|
|
532 |
private int
|
|
|
533 |
dca_copy_color(gx_device * dev, const byte * data,
|
|
|
534 |
int dx, int raster, gx_bitmap_id id,
|
|
|
535 |
int x, int y, int w, int h)
|
|
|
536 |
{
|
|
|
537 |
/****** TEMPORARY ******/
|
|
|
538 |
return gx_default_copy_color(dev, data, dx, raster, id, x, y, w, h);
|
|
|
539 |
}
|
|
|
540 |
|
|
|
541 |
private int
|
|
|
542 |
dca_copy_alpha(gx_device * dev, const byte * data, int data_x,
|
|
|
543 |
int raster, gx_bitmap_id id, int x, int y, int width, int height,
|
|
|
544 |
gx_color_index color, int depth)
|
|
|
545 |
{
|
|
|
546 |
/****** TEMPORARY ******/
|
|
|
547 |
return gx_default_copy_alpha(dev, data, data_x, raster, id, x, y,
|
|
|
548 |
width, height, color, depth);
|
|
|
549 |
}
|
|
|
550 |
|
|
|
551 |
/*
|
|
|
552 |
* Composite two arrays of (premultiplied) pixel values.
|
|
|
553 |
* See gsdpnext.h for the specification.
|
|
|
554 |
*
|
|
|
555 |
* The current implementation is simple but inefficient. We'll speed it up
|
|
|
556 |
* later if necessary.
|
|
|
557 |
*/
|
|
|
558 |
int
|
|
|
559 |
composite_values(const pixel_row_t * pdest, const const_pixel_row_t * psource,
|
|
|
560 |
int values_per_pixel, uint num_pixels, const gs_composite_params_t * pcp)
|
|
|
561 |
{
|
|
|
562 |
int dest_bpv = pdest->bits_per_value;
|
|
|
563 |
int source_bpv = psource->bits_per_value;
|
|
|
564 |
|
|
|
565 |
/*
|
|
|
566 |
* source_alpha_j gives the source component index for the alpha value,
|
|
|
567 |
* if the source has alpha.
|
|
|
568 |
*/
|
|
|
569 |
int source_alpha_j =
|
|
|
570 |
(psource->alpha == gs_image_alpha_last ? values_per_pixel :
|
|
|
571 |
psource->alpha == gs_image_alpha_first ? 0 : -1);
|
|
|
572 |
|
|
|
573 |
/* dest_alpha_j does the same for the destination. */
|
|
|
574 |
int dest_alpha_j =
|
|
|
575 |
(pdest->alpha == gs_image_alpha_last ? values_per_pixel :
|
|
|
576 |
pdest->alpha == gs_image_alpha_first ? 0 : -1);
|
|
|
577 |
|
|
|
578 |
/* dest_vpp is the number of stored destination values. */
|
|
|
579 |
int dest_vpp = values_per_pixel + (dest_alpha_j >= 0);
|
|
|
580 |
|
|
|
581 |
/* source_vpp is the number of stored source values. */
|
|
|
582 |
int source_vpp = values_per_pixel + (source_alpha_j >= 0);
|
|
|
583 |
|
|
|
584 |
bool constant_colors = psource->data == 0;
|
|
|
585 |
uint highlight_value = (1 << dest_bpv) - 1;
|
|
|
586 |
|
|
|
587 |
sample_load_declare(sptr, sbit);
|
|
|
588 |
sample_store_declare(dptr, dbit, dbyte);
|
|
|
589 |
|
|
|
590 |
{
|
|
|
591 |
uint xbit = pdest->initial_x * dest_bpv * dest_vpp;
|
|
|
592 |
|
|
|
593 |
sample_store_setup(dbit, xbit & 7, dest_bpv);
|
|
|
594 |
dptr = pdest->data + (xbit >> 3);
|
|
|
595 |
}
|
|
|
596 |
{
|
|
|
597 |
uint xbit = psource->initial_x * source_bpv * source_vpp;
|
|
|
598 |
|
|
|
599 |
sbit = xbit & 7;
|
|
|
600 |
sptr = psource->data + (xbit >> 3);
|
|
|
601 |
}
|
|
|
602 |
{
|
|
|
603 |
uint source_max = (1 << source_bpv) - 1;
|
|
|
604 |
uint dest_max = (1 << dest_bpv) - 1;
|
|
|
605 |
|
|
|
606 |
/*
|
|
|
607 |
* We could save a little work by only setting up source_delta
|
|
|
608 |
* and dest_delta if the operation is Dissolve.
|
|
|
609 |
*/
|
|
|
610 |
float source_delta = pcp->delta * dest_max / source_max;
|
|
|
611 |
float dest_delta = 1.0 - pcp->delta;
|
|
|
612 |
uint source_alpha = pcp->source_alpha;
|
|
|
613 |
uint dest_alpha = dest_max;
|
|
|
614 |
|
|
|
615 |
#ifdef PREMULTIPLY_TOWARDS_WHITE
|
|
|
616 |
uint source_bias = source_max - source_alpha;
|
|
|
617 |
uint dest_bias = 0;
|
|
|
618 |
uint result_bias = 0;
|
|
|
619 |
|
|
|
620 |
#endif
|
|
|
621 |
uint x;
|
|
|
622 |
|
|
|
623 |
if (!pdest->alpha) {
|
|
|
624 |
uint mask =
|
|
|
625 |
(psource->alpha || source_alpha != source_max ?
|
|
|
626 |
alpha_out_S_notD : alpha_out_notS_notD);
|
|
|
627 |
|
|
|
628 |
if ((mask >> pcp->cop) & 1) {
|
|
|
629 |
/*
|
|
|
630 |
* The operation could produce non-unity alpha values, but
|
|
|
631 |
* the destination can't store them. Return an error.
|
|
|
632 |
*/
|
|
|
633 |
return_error(gs_error_rangecheck);
|
|
|
634 |
}
|
|
|
635 |
}
|
|
|
636 |
/* Preload the output byte buffer if necessary. */
|
|
|
637 |
sample_store_preload(dbyte, dptr, dbit, dest_bpv);
|
|
|
638 |
|
|
|
639 |
for (x = 0; x < num_pixels; ++x) {
|
|
|
640 |
int j;
|
|
|
641 |
uint result_alpha = dest_alpha;
|
|
|
642 |
|
|
|
643 |
/* get_value does not increment the source pointer. */
|
|
|
644 |
#define get_value(v, ptr, bit, bpv, vmax)\
|
|
|
645 |
sample_load16(v, ptr, bit, bpv)
|
|
|
646 |
|
|
|
647 |
/* put_value increments the destination pointer. */
|
|
|
648 |
#define put_value(v, ptr, bit, bpv, bbyte)\
|
|
|
649 |
sample_store_next16(v, ptr, bit, bpv, bbyte)
|
|
|
650 |
|
|
|
651 |
#define advance(ptr, bit, bpv)\
|
|
|
652 |
sample_next(ptr, bit, bpv)
|
|
|
653 |
|
|
|
654 |
/* Get destination alpha value. */
|
|
|
655 |
if (dest_alpha_j >= 0) {
|
|
|
656 |
int dabit = dbit + dest_bpv * dest_alpha_j;
|
|
|
657 |
const byte *daptr = dptr + (dabit >> 3);
|
|
|
658 |
|
|
|
659 |
get_value(dest_alpha, daptr, dabit & 7, dest_bpv, dest_max);
|
|
|
660 |
#ifdef PREMULTIPLY_TOWARDS_WHITE
|
|
|
661 |
dest_bias = dest_max - dest_alpha;
|
|
|
662 |
#endif
|
|
|
663 |
}
|
|
|
664 |
/* Get source alpha value. */
|
|
|
665 |
if (source_alpha_j >= 0) {
|
|
|
666 |
int sabit = sbit;
|
|
|
667 |
const byte *saptr = sptr;
|
|
|
668 |
|
|
|
669 |
if (source_alpha_j == 0)
|
|
|
670 |
advance(sptr, sbit, source_bpv);
|
|
|
671 |
else
|
|
|
672 |
advance(saptr, sabit, source_bpv * source_alpha_j);
|
|
|
673 |
get_value(source_alpha, saptr, sabit, source_bpv, source_max);
|
|
|
674 |
#ifdef PREMULTIPLY_TOWARDS_WHITE
|
|
|
675 |
source_bias = source_max - source_alpha;
|
|
|
676 |
#endif
|
|
|
677 |
}
|
|
|
678 |
/*
|
|
|
679 |
* We are always multiplying a dest value by a source value to compute a
|
|
|
680 |
* dest value, so the denominator is always source_max. (Dissolve is the
|
|
|
681 |
* one exception.)
|
|
|
682 |
*/
|
|
|
683 |
#define fr(v, a) ((v) * (a) / source_max)
|
|
|
684 |
#define nfr(v, a, maxv) ((v) * (maxv - (a)) / source_max)
|
|
|
685 |
|
|
|
686 |
/*
|
|
|
687 |
* Iterate over the components of a single pixel.
|
|
|
688 |
* j = 0 for alpha, 1 .. values_per_pixel for color
|
|
|
689 |
* components, regardless of the actual storage order;
|
|
|
690 |
* we arrange things so that sptr/sbit and dptr/dbit
|
|
|
691 |
* always point to the right place.
|
|
|
692 |
*/
|
|
|
693 |
for (j = 0; j <= values_per_pixel; ++j) {
|
|
|
694 |
uint dest_v, source_v, result;
|
|
|
695 |
|
|
|
696 |
#define set_clamped(r, v)\
|
|
|
697 |
BEGIN if ( (r = (v)) > dest_max ) r = dest_max; END
|
|
|
698 |
|
|
|
699 |
if (j == 0) {
|
|
|
700 |
source_v = source_alpha;
|
|
|
701 |
dest_v = dest_alpha;
|
|
|
702 |
} else {
|
|
|
703 |
if (constant_colors)
|
|
|
704 |
source_v = pcp->source_values[j - 1];
|
|
|
705 |
else {
|
|
|
706 |
get_value(source_v, sptr, sbit, source_bpv, source_max);
|
|
|
707 |
advance(sptr, sbit, source_bpv);
|
|
|
708 |
}
|
|
|
709 |
get_value(dest_v, dptr, dbit, dest_bpv, dest_max);
|
|
|
710 |
#ifdef PREMULTIPLY_TOWARDS_WHITE
|
|
|
711 |
source_v -= source_bias;
|
|
|
712 |
dest_v -= dest_bias;
|
|
|
713 |
#endif
|
|
|
714 |
}
|
|
|
715 |
|
|
|
716 |
switch (pcp->cop) {
|
|
|
717 |
case composite_Clear:
|
|
|
718 |
/*
|
|
|
719 |
* The NeXT documentation doesn't say this, but the CLEAR
|
|
|
720 |
* operation sets not only alpha but also all the color
|
|
|
721 |
* values to 0.
|
|
|
722 |
*/
|
|
|
723 |
result = 0;
|
|
|
724 |
break;
|
|
|
725 |
case composite_Copy:
|
|
|
726 |
result = source_v;
|
|
|
727 |
break;
|
|
|
728 |
case composite_PlusD:
|
|
|
729 |
/*
|
|
|
730 |
* This is the only case where we have to worry about
|
|
|
731 |
* clamping a possibly negative result.
|
|
|
732 |
*/
|
|
|
733 |
result = source_v + dest_v;
|
|
|
734 |
result = (result < dest_max ? 0 : result - dest_max);
|
|
|
735 |
break;
|
|
|
736 |
case composite_PlusL:
|
|
|
737 |
set_clamped(result, source_v + dest_v);
|
|
|
738 |
break;
|
|
|
739 |
case composite_Sover:
|
|
|
740 |
set_clamped(result, source_v + nfr(dest_v, source_alpha, source_max));
|
|
|
741 |
break;
|
|
|
742 |
case composite_Dover:
|
|
|
743 |
set_clamped(result, nfr(source_v, dest_alpha, dest_max) + dest_v);
|
|
|
744 |
break;
|
|
|
745 |
case composite_Sin:
|
|
|
746 |
result = fr(source_v, dest_alpha);
|
|
|
747 |
break;
|
|
|
748 |
case composite_Din:
|
|
|
749 |
result = fr(dest_v, source_alpha);
|
|
|
750 |
break;
|
|
|
751 |
case composite_Sout:
|
|
|
752 |
result = nfr(source_v, dest_alpha, dest_max);
|
|
|
753 |
break;
|
|
|
754 |
case composite_Dout:
|
|
|
755 |
result = nfr(dest_v, source_alpha, source_max);
|
|
|
756 |
break;
|
|
|
757 |
case composite_Satop:
|
|
|
758 |
set_clamped(result, fr(source_v, dest_alpha) +
|
|
|
759 |
nfr(dest_v, source_alpha, source_max));
|
|
|
760 |
break;
|
|
|
761 |
case composite_Datop:
|
|
|
762 |
set_clamped(result, nfr(source_v, dest_alpha, dest_max) +
|
|
|
763 |
fr(dest_v, source_alpha));
|
|
|
764 |
break;
|
|
|
765 |
case composite_Xor:
|
|
|
766 |
set_clamped(result, nfr(source_v, dest_alpha, dest_max) +
|
|
|
767 |
nfr(dest_v, source_alpha, source_max));
|
|
|
768 |
break;
|
|
|
769 |
case composite_Highlight:
|
|
|
770 |
/*
|
|
|
771 |
* Bizarre but true: this operation converts white and
|
|
|
772 |
* light gray into each other, and leaves all other values
|
|
|
773 |
* unchanged. We only implement it properly for gray-scale
|
|
|
774 |
* devices.
|
|
|
775 |
*/
|
|
|
776 |
if (j != 0 && !((source_v ^ highlight_value) & ~1))
|
|
|
777 |
result = source_v ^ 1;
|
|
|
778 |
else
|
|
|
779 |
result = source_v;
|
|
|
780 |
break;
|
|
|
781 |
case composite_Dissolve:
|
|
|
782 |
/*
|
|
|
783 |
* In this case, and only this case, we need to worry about
|
|
|
784 |
* source and dest having different bpv values. For the
|
|
|
785 |
* moment, we wimp out and do everything in floating point.
|
|
|
786 |
*/
|
|
|
787 |
result = (uint) (source_v * source_delta + dest_v * dest_delta);
|
|
|
788 |
break;
|
|
|
789 |
default:
|
|
|
790 |
return_error(gs_error_rangecheck);
|
|
|
791 |
}
|
|
|
792 |
/*
|
|
|
793 |
* Store the result. We don't have to worry about
|
|
|
794 |
* destinations that don't store alpha, because we don't
|
|
|
795 |
* even compute an alpha value in that case.
|
|
|
796 |
*/
|
|
|
797 |
#ifdef PREMULTIPLY_TOWARDS_WHITE
|
|
|
798 |
if (j == 0) {
|
|
|
799 |
result_alpha = result;
|
|
|
800 |
result_bias = dest_max - result_alpha;
|
|
|
801 |
if (dest_alpha_j != 0)
|
|
|
802 |
continue;
|
|
|
803 |
} else {
|
|
|
804 |
result += result_bias;
|
|
|
805 |
}
|
|
|
806 |
#else
|
|
|
807 |
if (j == 0 && dest_alpha_j != 0) {
|
|
|
808 |
result_alpha = result;
|
|
|
809 |
continue;
|
|
|
810 |
}
|
|
|
811 |
#endif
|
|
|
812 |
put_value(result, dptr, dbit, dest_bpv, dbyte);
|
|
|
813 |
}
|
|
|
814 |
/* Skip a trailing source alpha value. */
|
|
|
815 |
if (source_alpha_j > 0)
|
|
|
816 |
advance(sptr, sbit, source_bpv);
|
|
|
817 |
/* Store a trailing destination alpha value. */
|
|
|
818 |
if (dest_alpha_j > 0)
|
|
|
819 |
put_value(result_alpha, dptr, dbit, dest_bpv, dbyte);
|
|
|
820 |
#undef get_value
|
|
|
821 |
#undef put_value
|
|
|
822 |
#undef advance
|
|
|
823 |
}
|
|
|
824 |
/* Store any partial output byte. */
|
|
|
825 |
sample_store_flush(dptr, dbit, dest_bpv, dbyte);
|
|
|
826 |
}
|
|
|
827 |
return 0;
|
|
|
828 |
}
|