Subversion Repositories planix.SVN

Rev

Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 - 1
/*
2
 * libmad - MPEG audio decoder library
3
 * Copyright (C) 2000-2004 Underbit Technologies, Inc.
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18
 *
19
 * $Id: layer12.c,v 1.17 2004/02/05 09:02:39 rob Exp $
20
 */
21
 
22
# ifdef HAVE_CONFIG_H
23
#  include "config.h"
24
# endif
25
 
26
# include "global.h"
27
 
28
# ifdef HAVE_LIMITS_H
29
#  include <limits.h>
30
# else
31
#  define CHAR_BIT  8
32
# endif
33
 
34
# include "fixed.h"
35
# include "bit.h"
36
# include "stream.h"
37
# include "frame.h"
38
# include "layer12.h"
39
 
40
/*
41
 * scalefactor table
42
 * used in both Layer I and Layer II decoding
43
 */
44
static
45
mad_fixed_t const sf_table[64] = {
46
# include "sf_table.dat"
47
};
48
 
49
/* --- Layer I ------------------------------------------------------------- */
50
 
51
/* linear scaling table */
52
static
53
mad_fixed_t const linear_table[14] = {
54
  MAD_F(0x15555555),  /* 2^2  / (2^2  - 1) == 1.33333333333333 */
55
  MAD_F(0x12492492),  /* 2^3  / (2^3  - 1) == 1.14285714285714 */
56
  MAD_F(0x11111111),  /* 2^4  / (2^4  - 1) == 1.06666666666667 */
57
  MAD_F(0x10842108),  /* 2^5  / (2^5  - 1) == 1.03225806451613 */
58
  MAD_F(0x10410410),  /* 2^6  / (2^6  - 1) == 1.01587301587302 */
59
  MAD_F(0x10204081),  /* 2^7  / (2^7  - 1) == 1.00787401574803 */
60
  MAD_F(0x10101010),  /* 2^8  / (2^8  - 1) == 1.00392156862745 */
61
  MAD_F(0x10080402),  /* 2^9  / (2^9  - 1) == 1.00195694716243 */
62
  MAD_F(0x10040100),  /* 2^10 / (2^10 - 1) == 1.00097751710655 */
63
  MAD_F(0x10020040),  /* 2^11 / (2^11 - 1) == 1.00048851978505 */
64
  MAD_F(0x10010010),  /* 2^12 / (2^12 - 1) == 1.00024420024420 */
65
  MAD_F(0x10008004),  /* 2^13 / (2^13 - 1) == 1.00012208521548 */
66
  MAD_F(0x10004001),  /* 2^14 / (2^14 - 1) == 1.00006103888177 */
67
  MAD_F(0x10002000)   /* 2^15 / (2^15 - 1) == 1.00003051850948 */
68
};
69
 
70
/*
71
 * NAME:	I_sample()
72
 * DESCRIPTION:	decode one requantized Layer I sample from a bitstream
73
 */
74
static
75
mad_fixed_t I_sample(struct mad_bitptr *ptr, unsigned int nb)
76
{
77
  mad_fixed_t sample;
78
 
79
  sample = mad_bit_read(ptr, nb);
80
 
81
  /* invert most significant bit, extend sign, then scale to fixed format */
82
 
83
  sample ^= 1 << (nb - 1);
84
  sample |= -(sample & (1 << (nb - 1)));
85
 
86
  sample <<= MAD_F_FRACBITS - (nb - 1);
87
 
88
  /* requantize the sample */
89
 
90
  /* s'' = (2^nb / (2^nb - 1)) * (s''' + 2^(-nb + 1)) */
91
 
92
  sample += MAD_F_ONE >> (nb - 1);
93
 
94
  return mad_f_mul(sample, linear_table[nb - 2]);
95
 
96
  /* s' = factor * s'' */
97
  /* (to be performed by caller) */
98
}
99
 
100
/*
101
 * NAME:	layer->I()
102
 * DESCRIPTION:	decode a single Layer I frame
103
 */
104
int mad_layer_I(struct mad_stream *stream, struct mad_frame *frame)
105
{
106
  struct mad_header *header = &frame->header;
107
  unsigned int nch, bound, ch, s, sb, nb;
108
  unsigned char allocation[2][32], scalefactor[2][32];
109
 
110
  nch = MAD_NCHANNELS(header);
111
 
112
  bound = 32;
113
  if (header->mode == MAD_MODE_JOINT_STEREO) {
114
    header->flags |= MAD_FLAG_I_STEREO;
115
    bound = 4 + header->mode_extension * 4;
116
  }
117
 
118
  /* check CRC word */
119
 
120
  if (header->flags & MAD_FLAG_PROTECTION) {
121
    header->crc_check =
122
      mad_bit_crc(stream->ptr, 4 * (bound * nch + (32 - bound)),
123
		  header->crc_check);
124
 
125
    if (header->crc_check != header->crc_target &&
126
	!(frame->options & MAD_OPTION_IGNORECRC)) {
127
      stream->error = MAD_ERROR_BADCRC;
128
      return -1;
129
    }
130
  }
131
 
132
  /* decode bit allocations */
133
 
134
  for (sb = 0; sb < bound; ++sb) {
135
    for (ch = 0; ch < nch; ++ch) {
136
      nb = mad_bit_read(&stream->ptr, 4);
137
 
138
      if (nb == 15) {
139
	stream->error = MAD_ERROR_BADBITALLOC;
140
	return -1;
141
      }
142
 
143
      allocation[ch][sb] = nb ? nb + 1 : 0;
144
    }
145
  }
146
 
147
  for (sb = bound; sb < 32; ++sb) {
148
    nb = mad_bit_read(&stream->ptr, 4);
149
 
150
    if (nb == 15) {
151
      stream->error = MAD_ERROR_BADBITALLOC;
152
      return -1;
153
    }
154
 
155
    allocation[0][sb] =
156
    allocation[1][sb] = nb ? nb + 1 : 0;
157
  }
158
 
159
  /* decode scalefactors */
160
 
161
  for (sb = 0; sb < 32; ++sb) {
162
    for (ch = 0; ch < nch; ++ch) {
163
      if (allocation[ch][sb]) {
164
	scalefactor[ch][sb] = mad_bit_read(&stream->ptr, 6);
165
 
166
# if defined(OPT_STRICT)
167
	/*
168
	 * Scalefactor index 63 does not appear in Table B.1 of
169
	 * ISO/IEC 11172-3. Nonetheless, other implementations accept it,
170
	 * so we only reject it if OPT_STRICT is defined.
171
	 */
172
	if (scalefactor[ch][sb] == 63) {
173
	  stream->error = MAD_ERROR_BADSCALEFACTOR;
174
	  return -1;
175
	}
176
# endif
177
      }
178
    }
179
  }
180
 
181
  /* decode samples */
182
 
183
  for (s = 0; s < 12; ++s) {
184
    for (sb = 0; sb < bound; ++sb) {
185
      for (ch = 0; ch < nch; ++ch) {
186
	nb = allocation[ch][sb];
187
	frame->sbsample[ch][s][sb] = nb ?
188
	  mad_f_mul(I_sample(&stream->ptr, nb),
189
		    sf_table[scalefactor[ch][sb]]) : 0;
190
      }
191
    }
192
 
193
    for (sb = bound; sb < 32; ++sb) {
194
      if ((nb = allocation[0][sb])) {
195
	mad_fixed_t sample;
196
 
197
	sample = I_sample(&stream->ptr, nb);
198
 
199
	for (ch = 0; ch < nch; ++ch) {
200
	  frame->sbsample[ch][s][sb] =
201
	    mad_f_mul(sample, sf_table[scalefactor[ch][sb]]);
202
	}
203
      }
204
      else {
205
	for (ch = 0; ch < nch; ++ch)
206
	  frame->sbsample[ch][s][sb] = 0;
207
      }
208
    }
209
  }
210
 
211
  return 0;
212
}
213
 
214
/* --- Layer II ------------------------------------------------------------ */
215
 
216
/* possible quantization per subband table */
217
static
218
struct {
219
  unsigned int sblimit;
220
  unsigned char const offsets[30];
221
} const sbquant_table[5] = {
222
  /* ISO/IEC 11172-3 Table B.2a */
223
  { 27, { 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3,	/* 0 */
224
	  3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0 } },
225
  /* ISO/IEC 11172-3 Table B.2b */
226
  { 30, { 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3,	/* 1 */
227
	  3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0 } },
228
  /* ISO/IEC 11172-3 Table B.2c */
229
  {  8, { 5, 5, 2, 2, 2, 2, 2, 2 } },				/* 2 */
230
  /* ISO/IEC 11172-3 Table B.2d */
231
  { 12, { 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 } },		/* 3 */
232
  /* ISO/IEC 13818-3 Table B.1 */
233
  { 30, { 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1,	/* 4 */
234
	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } }
235
};
236
 
237
/* bit allocation table */
238
static
239
struct {
240
  unsigned short nbal;
241
  unsigned short offset;
242
} const bitalloc_table[8] = {
243
  { 2, 0 },  /* 0 */
244
  { 2, 3 },  /* 1 */
245
  { 3, 3 },  /* 2 */
246
  { 3, 1 },  /* 3 */
247
  { 4, 2 },  /* 4 */
248
  { 4, 3 },  /* 5 */
249
  { 4, 4 },  /* 6 */
250
  { 4, 5 }   /* 7 */
251
};
252
 
253
/* offsets into quantization class table */
254
static
255
unsigned char const offset_table[6][15] = {
256
  { 0, 1, 16                                             },  /* 0 */
257
  { 0, 1,  2, 3, 4, 5, 16                                },  /* 1 */
258
  { 0, 1,  2, 3, 4, 5,  6, 7,  8,  9, 10, 11, 12, 13, 14 },  /* 2 */
259
  { 0, 1,  3, 4, 5, 6,  7, 8,  9, 10, 11, 12, 13, 14, 15 },  /* 3 */
260
  { 0, 1,  2, 3, 4, 5,  6, 7,  8,  9, 10, 11, 12, 13, 16 },  /* 4 */
261
  { 0, 2,  4, 5, 6, 7,  8, 9, 10, 11, 12, 13, 14, 15, 16 }   /* 5 */
262
};
263
 
264
/* quantization class table */
265
static
266
struct quantclass {
267
  unsigned short nlevels;
268
  unsigned char group;
269
  unsigned char bits;
270
  mad_fixed_t C;
271
  mad_fixed_t D;
272
} const qc_table[17] = {
273
# include "qc_table.dat"
274
};
275
 
276
/*
277
 * NAME:	II_samples()
278
 * DESCRIPTION:	decode three requantized Layer II samples from a bitstream
279
 */
280
static
281
void II_samples(struct mad_bitptr *ptr,
282
		struct quantclass const *quantclass,
283
		mad_fixed_t output[3])
284
{
285
  unsigned int nb, s, sample[3];
286
 
287
  if ((nb = quantclass->group)) {
288
    unsigned int c, nlevels;
289
 
290
    /* degrouping */
291
    c = mad_bit_read(ptr, quantclass->bits);
292
    nlevels = quantclass->nlevels;
293
 
294
    for (s = 0; s < 3; ++s) {
295
      sample[s] = c % nlevels;
296
      c /= nlevels;
297
    }
298
  }
299
  else {
300
    nb = quantclass->bits;
301
 
302
    for (s = 0; s < 3; ++s)
303
      sample[s] = mad_bit_read(ptr, nb);
304
  }
305
 
306
  for (s = 0; s < 3; ++s) {
307
    mad_fixed_t requantized;
308
 
309
    /* invert most significant bit, extend sign, then scale to fixed format */
310
 
311
    requantized  = sample[s] ^ (1 << (nb - 1));
312
    requantized |= -(requantized & (1 << (nb - 1)));
313
 
314
    requantized <<= MAD_F_FRACBITS - (nb - 1);
315
 
316
    /* requantize the sample */
317
 
318
    /* s'' = C * (s''' + D) */
319
 
320
    output[s] = mad_f_mul(requantized + quantclass->D, quantclass->C);
321
 
322
    /* s' = factor * s'' */
323
    /* (to be performed by caller) */
324
  }
325
}
326
 
327
/*
328
 * NAME:	layer->II()
329
 * DESCRIPTION:	decode a single Layer II frame
330
 */
331
int mad_layer_II(struct mad_stream *stream, struct mad_frame *frame)
332
{
333
  struct mad_header *header = &frame->header;
334
  struct mad_bitptr start;
335
  unsigned int index, sblimit, nbal, nch, bound, gr, ch, s, sb;
336
  unsigned char const *offsets;
337
  unsigned char allocation[2][32], scfsi[2][32], scalefactor[2][32][3];
338
  mad_fixed_t samples[3];
339
 
340
  nch = MAD_NCHANNELS(header);
341
 
342
  if (header->flags & MAD_FLAG_LSF_EXT)
343
    index = 4;
344
  else if (header->flags & MAD_FLAG_FREEFORMAT)
345
    goto freeformat;
346
  else {
347
    unsigned long bitrate_per_channel;
348
 
349
    bitrate_per_channel = header->bitrate;
350
    if (nch == 2) {
351
      bitrate_per_channel /= 2;
352
 
353
# if defined(OPT_STRICT)
354
      /*
355
       * ISO/IEC 11172-3 allows only single channel mode for 32, 48, 56, and
356
       * 80 kbps bitrates in Layer II, but some encoders ignore this
357
       * restriction. We enforce it if OPT_STRICT is defined.
358
       */
359
      if (bitrate_per_channel <= 28000 || bitrate_per_channel == 40000) {
360
	stream->error = MAD_ERROR_BADMODE;
361
	return -1;
362
      }
363
# endif
364
    }
365
    else {  /* nch == 1 */
366
      if (bitrate_per_channel > 192000) {
367
	/*
368
	 * ISO/IEC 11172-3 does not allow single channel mode for 224, 256,
369
	 * 320, or 384 kbps bitrates in Layer II.
370
	 */
371
	stream->error = MAD_ERROR_BADMODE;
372
	return -1;
373
      }
374
    }
375
 
376
    if (bitrate_per_channel <= 48000)
377
      index = (header->samplerate == 32000) ? 3 : 2;
378
    else if (bitrate_per_channel <= 80000)
379
      index = 0;
380
    else {
381
    freeformat:
382
      index = (header->samplerate == 48000) ? 0 : 1;
383
    }
384
  }
385
 
386
  sblimit = sbquant_table[index].sblimit;
387
  offsets = sbquant_table[index].offsets;
388
 
389
  bound = 32;
390
  if (header->mode == MAD_MODE_JOINT_STEREO) {
391
    header->flags |= MAD_FLAG_I_STEREO;
392
    bound = 4 + header->mode_extension * 4;
393
  }
394
 
395
  if (bound > sblimit)
396
    bound = sblimit;
397
 
398
  start = stream->ptr;
399
 
400
  /* decode bit allocations */
401
 
402
  for (sb = 0; sb < bound; ++sb) {
403
    nbal = bitalloc_table[offsets[sb]].nbal;
404
 
405
    for (ch = 0; ch < nch; ++ch)
406
      allocation[ch][sb] = mad_bit_read(&stream->ptr, nbal);
407
  }
408
 
409
  for (sb = bound; sb < sblimit; ++sb) {
410
    nbal = bitalloc_table[offsets[sb]].nbal;
411
 
412
    allocation[0][sb] =
413
    allocation[1][sb] = mad_bit_read(&stream->ptr, nbal);
414
  }
415
 
416
  /* decode scalefactor selection info */
417
 
418
  for (sb = 0; sb < sblimit; ++sb) {
419
    for (ch = 0; ch < nch; ++ch) {
420
      if (allocation[ch][sb])
421
	scfsi[ch][sb] = mad_bit_read(&stream->ptr, 2);
422
    }
423
  }
424
 
425
  /* check CRC word */
426
 
427
  if (header->flags & MAD_FLAG_PROTECTION) {
428
    header->crc_check =
429
      mad_bit_crc(start, mad_bit_length(&start, &stream->ptr),
430
		  header->crc_check);
431
 
432
    if (header->crc_check != header->crc_target &&
433
	!(frame->options & MAD_OPTION_IGNORECRC)) {
434
      stream->error = MAD_ERROR_BADCRC;
435
      return -1;
436
    }
437
  }
438
 
439
  /* decode scalefactors */
440
 
441
  for (sb = 0; sb < sblimit; ++sb) {
442
    for (ch = 0; ch < nch; ++ch) {
443
      if (allocation[ch][sb]) {
444
	scalefactor[ch][sb][0] = mad_bit_read(&stream->ptr, 6);
445
 
446
	switch (scfsi[ch][sb]) {
447
	case 2:
448
	  scalefactor[ch][sb][2] =
449
	  scalefactor[ch][sb][1] =
450
	  scalefactor[ch][sb][0];
451
	  break;
452
 
453
	case 0:
454
	  scalefactor[ch][sb][1] = mad_bit_read(&stream->ptr, 6);
455
	  /* fall through */
456
 
457
	case 1:
458
	case 3:
459
	  scalefactor[ch][sb][2] = mad_bit_read(&stream->ptr, 6);
460
	}
461
 
462
	if (scfsi[ch][sb] & 1)
463
	  scalefactor[ch][sb][1] = scalefactor[ch][sb][scfsi[ch][sb] - 1];
464
 
465
# if defined(OPT_STRICT)
466
	/*
467
	 * Scalefactor index 63 does not appear in Table B.1 of
468
	 * ISO/IEC 11172-3. Nonetheless, other implementations accept it,
469
	 * so we only reject it if OPT_STRICT is defined.
470
	 */
471
	if (scalefactor[ch][sb][0] == 63 ||
472
	    scalefactor[ch][sb][1] == 63 ||
473
	    scalefactor[ch][sb][2] == 63) {
474
	  stream->error = MAD_ERROR_BADSCALEFACTOR;
475
	  return -1;
476
	}
477
# endif
478
      }
479
    }
480
  }
481
 
482
  /* decode samples */
483
 
484
  for (gr = 0; gr < 12; ++gr) {
485
    for (sb = 0; sb < bound; ++sb) {
486
      for (ch = 0; ch < nch; ++ch) {
487
	if ((index = allocation[ch][sb])) {
488
	  index = offset_table[bitalloc_table[offsets[sb]].offset][index - 1];
489
 
490
	  II_samples(&stream->ptr, &qc_table[index], samples);
491
 
492
	  for (s = 0; s < 3; ++s) {
493
	    frame->sbsample[ch][3 * gr + s][sb] =
494
	      mad_f_mul(samples[s], sf_table[scalefactor[ch][sb][gr / 4]]);
495
	  }
496
	}
497
	else {
498
	  for (s = 0; s < 3; ++s)
499
	    frame->sbsample[ch][3 * gr + s][sb] = 0;
500
	}
501
      }
502
    }
503
 
504
    for (sb = bound; sb < sblimit; ++sb) {
505
      if ((index = allocation[0][sb])) {
506
	index = offset_table[bitalloc_table[offsets[sb]].offset][index - 1];
507
 
508
	II_samples(&stream->ptr, &qc_table[index], samples);
509
 
510
	for (ch = 0; ch < nch; ++ch) {
511
	  for (s = 0; s < 3; ++s) {
512
	    frame->sbsample[ch][3 * gr + s][sb] =
513
	      mad_f_mul(samples[s], sf_table[scalefactor[ch][sb][gr / 4]]);
514
	  }
515
	}
516
      }
517
      else {
518
	for (ch = 0; ch < nch; ++ch) {
519
	  for (s = 0; s < 3; ++s)
520
	    frame->sbsample[ch][3 * gr + s][sb] = 0;
521
	}
522
      }
523
    }
524
 
525
    for (ch = 0; ch < nch; ++ch) {
526
      for (s = 0; s < 3; ++s) {
527
	for (sb = sblimit; sb < 32; ++sb)
528
	  frame->sbsample[ch][3 * gr + s][sb] = 0;
529
      }
530
    }
531
  }
532
 
533
  return 0;
534
}