2 |
- |
1 |
/*
|
|
|
2 |
* psymodel.c
|
|
|
3 |
*
|
|
|
4 |
* Copyright (c) 1999 Mark Taylor
|
|
|
5 |
*
|
|
|
6 |
* This library is free software; you can redistribute it and/or
|
|
|
7 |
* modify it under the terms of the GNU Library General Public
|
|
|
8 |
* License as published by the Free Software Foundation; either
|
|
|
9 |
* version 2 of the License, or (at your option) any later version.
|
|
|
10 |
*
|
|
|
11 |
* This library is distributed in the hope that it will be useful,
|
|
|
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
14 |
* Library General Public License for more details.
|
|
|
15 |
*
|
|
|
16 |
* You should have received a copy of the GNU Library General Public
|
|
|
17 |
* License along with this library; if not, write to the
|
|
|
18 |
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
|
19 |
* Boston, MA 02111-1307, USA.
|
|
|
20 |
*/
|
|
|
21 |
|
|
|
22 |
/* $Id: psymodel.c,v 1.75 2001/03/25 21:37:00 shibatch Exp $ */
|
|
|
23 |
|
|
|
24 |
|
|
|
25 |
/*
|
|
|
26 |
PSYCHO ACOUSTICS
|
|
|
27 |
|
|
|
28 |
|
|
|
29 |
This routine computes the psycho acoustics, delayed by
|
|
|
30 |
one granule.
|
|
|
31 |
|
|
|
32 |
Input: buffer of PCM data (1024 samples).
|
|
|
33 |
|
|
|
34 |
This window should be centered over the 576 sample granule window.
|
|
|
35 |
The routine will compute the psycho acoustics for
|
|
|
36 |
this granule, but return the psycho acoustics computed
|
|
|
37 |
for the *previous* granule. This is because the block
|
|
|
38 |
type of the previous granule can only be determined
|
|
|
39 |
after we have computed the psycho acoustics for the following
|
|
|
40 |
granule.
|
|
|
41 |
|
|
|
42 |
Output: maskings and energies for each scalefactor band.
|
|
|
43 |
block type, PE, and some correlation measures.
|
|
|
44 |
The PE is used by CBR modes to determine if extra bits
|
|
|
45 |
from the bit reservoir should be used. The correlation
|
|
|
46 |
measures are used to determine mid/side or regular stereo.
|
|
|
47 |
|
|
|
48 |
|
|
|
49 |
Notation:
|
|
|
50 |
|
|
|
51 |
barks: a non-linear frequency scale. Mapping from frequency to
|
|
|
52 |
barks is given by freq2bark()
|
|
|
53 |
|
|
|
54 |
scalefactor bands: The spectrum (frequencies) are broken into
|
|
|
55 |
SBMAX "scalefactor bands". Thes bands
|
|
|
56 |
are determined by the MPEG ISO spec. In
|
|
|
57 |
the noise shaping/quantization code, we allocate
|
|
|
58 |
bits among the partition bands to achieve the
|
|
|
59 |
best possible quality
|
|
|
60 |
|
|
|
61 |
partition bands: The spectrum is also broken into about
|
|
|
62 |
64 "partition bands". Each partition
|
|
|
63 |
band is about .34 barks wide. There are about 2-5
|
|
|
64 |
partition bands for each scalefactor band.
|
|
|
65 |
|
|
|
66 |
LAME computes all psycho acoustic information for each partition
|
|
|
67 |
band. Then at the end of the computations, this information
|
|
|
68 |
is mapped to scalefactor bands. The energy in each scalefactor
|
|
|
69 |
band is taken as the sum of the energy in all partition bands
|
|
|
70 |
which overlap the scalefactor band. The maskings can be computed
|
|
|
71 |
in the same way (and thus represent the average masking in that band)
|
|
|
72 |
or by taking the minmum value multiplied by the number of
|
|
|
73 |
partition bands used (which represents a minimum masking in that band).
|
|
|
74 |
|
|
|
75 |
|
|
|
76 |
The general outline is as follows:
|
|
|
77 |
|
|
|
78 |
|
|
|
79 |
1. compute the energy in each partition band
|
|
|
80 |
2. compute the tonality in each partition band
|
|
|
81 |
3. compute the strength of each partion band "masker"
|
|
|
82 |
4. compute the masking (via the spreading function applied to each masker)
|
|
|
83 |
5. Modifications for mid/side masking.
|
|
|
84 |
|
|
|
85 |
Each partition band is considiered a "masker". The strength
|
|
|
86 |
of the i'th masker in band j is given by:
|
|
|
87 |
|
|
|
88 |
s3(bark(i)-bark(j))*strength(i)
|
|
|
89 |
|
|
|
90 |
The strength of the masker is a function of the energy and tonality.
|
|
|
91 |
The more tonal, the less masking. LAME uses a simple linear formula
|
|
|
92 |
(controlled by NMT and TMN) which says the strength is given by the
|
|
|
93 |
energy divided by a linear function of the tonality.
|
|
|
94 |
|
|
|
95 |
|
|
|
96 |
s3() is the "spreading function". It is given by a formula
|
|
|
97 |
determined via listening tests.
|
|
|
98 |
|
|
|
99 |
The total masking in the j'th partition band is the sum over
|
|
|
100 |
all maskings i. It is thus given by the convolution of
|
|
|
101 |
the strength with s3(), the "spreading function."
|
|
|
102 |
|
|
|
103 |
masking(j) = sum_over_i s3(i-j)*strength(i) = s3 o strength
|
|
|
104 |
|
|
|
105 |
where "o" = convolution operator. s3 is given by a formula determined
|
|
|
106 |
via listening tests. It is normalized so that s3 o 1 = 1.
|
|
|
107 |
|
|
|
108 |
Note: instead of a simple convolution, LAME also has the
|
|
|
109 |
option of using "additive masking"
|
|
|
110 |
|
|
|
111 |
The most critical part is step 2, computing the tonality of each
|
|
|
112 |
partition band. LAME has two tonality estimators. The first
|
|
|
113 |
is based on the ISO spec, and measures how predictiable the
|
|
|
114 |
signal is over time. The more predictable, the more tonal.
|
|
|
115 |
The second measure is based on looking at the spectrum of
|
|
|
116 |
a single granule. The more peaky the spectrum, the more
|
|
|
117 |
tonal. By most indications, the latter approach is better.
|
|
|
118 |
|
|
|
119 |
Finally, in step 5, the maskings for the mid and side
|
|
|
120 |
channel are possibly increased. Under certain circumstances,
|
|
|
121 |
noise in the mid & side channels is assumed to also
|
|
|
122 |
be masked by strong maskers in the L or R channels.
|
|
|
123 |
|
|
|
124 |
|
|
|
125 |
Other data computed by the psy-model:
|
|
|
126 |
|
|
|
127 |
ms_ratio side-channel / mid-channel masking ratio (for previous granule)
|
|
|
128 |
ms_ratio_next side-channel / mid-channel masking ratio for this granule
|
|
|
129 |
|
|
|
130 |
percep_entropy[2] L and R values (prev granule) of PE - A measure of how
|
|
|
131 |
much pre-echo is in the previous granule
|
|
|
132 |
percep_entropy_MS[2] mid and side channel values (prev granule) of percep_entropy
|
|
|
133 |
energy[4] L,R,M,S energy in each channel, prev granule
|
|
|
134 |
blocktype_d[2] block type to use for previous granule
|
|
|
135 |
|
|
|
136 |
|
|
|
137 |
*/
|
|
|
138 |
|
|
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
|
142 |
#ifdef HAVE_CONFIG_H
|
|
|
143 |
# include <config.h>
|
|
|
144 |
#endif
|
|
|
145 |
|
|
|
146 |
#include "util.h"
|
|
|
147 |
#include "encoder.h"
|
|
|
148 |
#include "psymodel.h"
|
|
|
149 |
#include "l3side.h"
|
|
|
150 |
#include <assert.h>
|
|
|
151 |
#include "tables.h"
|
|
|
152 |
#include "fft.h"
|
|
|
153 |
|
|
|
154 |
#ifdef WITH_DMALLOC
|
|
|
155 |
#include <dmalloc.h>
|
|
|
156 |
#endif
|
|
|
157 |
|
|
|
158 |
#define NSFIRLEN 21
|
|
|
159 |
#define rpelev 2
|
|
|
160 |
#define rpelev2 16
|
|
|
161 |
|
|
|
162 |
/* size of each partition band, in barks: */
|
|
|
163 |
#define DELBARK .34
|
|
|
164 |
|
|
|
165 |
|
|
|
166 |
#if 1
|
|
|
167 |
/* AAC values, results in more masking over MP3 values */
|
|
|
168 |
# define TMN 18
|
|
|
169 |
# define NMT 6
|
|
|
170 |
#else
|
|
|
171 |
/* MP3 values */
|
|
|
172 |
# define TMN 29
|
|
|
173 |
# define NMT 6
|
|
|
174 |
#endif
|
|
|
175 |
|
|
|
176 |
#define NBPSY_l (SBMAX_l)
|
|
|
177 |
#define NBPSY_s (SBMAX_s)
|
|
|
178 |
|
|
|
179 |
|
|
|
180 |
#ifdef M_LN10
|
|
|
181 |
#define LN_TO_LOG10 (M_LN10/10)
|
|
|
182 |
#else
|
|
|
183 |
#define LN_TO_LOG10 0.2302585093
|
|
|
184 |
#endif
|
|
|
185 |
|
|
|
186 |
|
|
|
187 |
|
|
|
188 |
|
|
|
189 |
|
|
|
190 |
/*
|
|
|
191 |
L3psycho_anal. Compute psycho acoustics.
|
|
|
192 |
|
|
|
193 |
Data returned to the calling program must be delayed by one
|
|
|
194 |
granule.
|
|
|
195 |
|
|
|
196 |
This is done in two places.
|
|
|
197 |
If we do not need to know the blocktype, the copying
|
|
|
198 |
can be done here at the top of the program: we copy the data for
|
|
|
199 |
the last granule (computed during the last call) before it is
|
|
|
200 |
overwritten with the new data. It looks like this:
|
|
|
201 |
|
|
|
202 |
0. static psymodel_data
|
|
|
203 |
1. calling_program_data = psymodel_data
|
|
|
204 |
2. compute psymodel_data
|
|
|
205 |
|
|
|
206 |
For data which needs to know the blocktype, the copying must be
|
|
|
207 |
done at the end of this loop, and the old values must be saved:
|
|
|
208 |
|
|
|
209 |
0. static psymodel_data_old
|
|
|
210 |
1. compute psymodel_data
|
|
|
211 |
2. compute possible block type of this granule
|
|
|
212 |
3. compute final block type of previous granule based on #2.
|
|
|
213 |
4. calling_program_data = psymodel_data_old
|
|
|
214 |
5. psymodel_data_old = psymodel_data
|
|
|
215 |
*/
|
|
|
216 |
int L3psycho_anal( lame_global_flags * gfp,
|
|
|
217 |
const sample_t *buffer[2], int gr_out,
|
|
|
218 |
FLOAT8 *ms_ratio,
|
|
|
219 |
FLOAT8 *ms_ratio_next,
|
|
|
220 |
III_psy_ratio masking_ratio[2][2],
|
|
|
221 |
III_psy_ratio masking_MS_ratio[2][2],
|
|
|
222 |
FLOAT8 percep_entropy[2],FLOAT8 percep_MS_entropy[2],
|
|
|
223 |
FLOAT8 energy[4],
|
|
|
224 |
int blocktype_d[2])
|
|
|
225 |
{
|
|
|
226 |
/* to get a good cache performance, one has to think about
|
|
|
227 |
* the sequence, in which the variables are used.
|
|
|
228 |
* (Note: these static variables have been moved to the gfc-> struct,
|
|
|
229 |
* and their order in memory is layed out in util.h)
|
|
|
230 |
*/
|
|
|
231 |
lame_internal_flags *gfc=gfp->internal_flags;
|
|
|
232 |
|
|
|
233 |
|
|
|
234 |
/* fft and energy calculation */
|
|
|
235 |
FLOAT (*wsamp_l)[BLKSIZE];
|
|
|
236 |
FLOAT (*wsamp_s)[3][BLKSIZE_s];
|
|
|
237 |
|
|
|
238 |
/* convolution */
|
|
|
239 |
FLOAT8 eb[CBANDS];
|
|
|
240 |
FLOAT8 cb[CBANDS];
|
|
|
241 |
FLOAT8 thr[CBANDS];
|
|
|
242 |
|
|
|
243 |
/* ratios */
|
|
|
244 |
FLOAT8 ms_ratio_l=0,ms_ratio_s=0;
|
|
|
245 |
|
|
|
246 |
/* block type */
|
|
|
247 |
int blocktype[2],uselongblock[2];
|
|
|
248 |
|
|
|
249 |
/* usual variables like loop indices, etc.. */
|
|
|
250 |
int numchn, chn;
|
|
|
251 |
int b, i, j, k;
|
|
|
252 |
int sb,sblock;
|
|
|
253 |
|
|
|
254 |
|
|
|
255 |
if(gfc->psymodel_init==0) {
|
|
|
256 |
psymodel_init(gfp);
|
|
|
257 |
init_fft(gfc);
|
|
|
258 |
gfc->psymodel_init=1;
|
|
|
259 |
}
|
|
|
260 |
|
|
|
261 |
|
|
|
262 |
|
|
|
263 |
|
|
|
264 |
|
|
|
265 |
numchn = gfc->channels_out;
|
|
|
266 |
/* chn=2 and 3 = Mid and Side channels */
|
|
|
267 |
if (gfp->mode == JOINT_STEREO) numchn=4;
|
|
|
268 |
|
|
|
269 |
for (chn=0; chn<numchn; chn++) {
|
|
|
270 |
for (i=0; i<numchn; ++i) {
|
|
|
271 |
energy[chn]=gfc->tot_ener[chn];
|
|
|
272 |
}
|
|
|
273 |
}
|
|
|
274 |
|
|
|
275 |
for (chn=0; chn<numchn; chn++) {
|
|
|
276 |
|
|
|
277 |
/* there is a one granule delay. Copy maskings computed last call
|
|
|
278 |
* into masking_ratio to return to calling program.
|
|
|
279 |
*/
|
|
|
280 |
if (chn < 2) {
|
|
|
281 |
/* LR maskings */
|
|
|
282 |
percep_entropy [chn] = gfc -> pe [chn];
|
|
|
283 |
masking_ratio [gr_out] [chn] .en = gfc -> en [chn];
|
|
|
284 |
masking_ratio [gr_out] [chn] .thm = gfc -> thm [chn];
|
|
|
285 |
} else {
|
|
|
286 |
/* MS maskings */
|
|
|
287 |
percep_MS_entropy [chn-2] = gfc -> pe [chn];
|
|
|
288 |
masking_MS_ratio [gr_out] [chn-2].en = gfc -> en [chn];
|
|
|
289 |
masking_MS_ratio [gr_out] [chn-2].thm = gfc -> thm [chn];
|
|
|
290 |
}
|
|
|
291 |
|
|
|
292 |
|
|
|
293 |
|
|
|
294 |
/**********************************************************************
|
|
|
295 |
* compute FFTs
|
|
|
296 |
**********************************************************************/
|
|
|
297 |
wsamp_s = gfc->wsamp_S+(chn & 1);
|
|
|
298 |
wsamp_l = gfc->wsamp_L+(chn & 1);
|
|
|
299 |
if (chn<2) {
|
|
|
300 |
fft_long ( gfc, *wsamp_l, chn, buffer);
|
|
|
301 |
fft_short( gfc, *wsamp_s, chn, buffer);
|
|
|
302 |
}
|
|
|
303 |
/* FFT data for mid and side channel is derived from L & R */
|
|
|
304 |
if (chn == 2)
|
|
|
305 |
{
|
|
|
306 |
for (j = BLKSIZE-1; j >=0 ; --j)
|
|
|
307 |
{
|
|
|
308 |
FLOAT l = gfc->wsamp_L[0][j];
|
|
|
309 |
FLOAT r = gfc->wsamp_L[1][j];
|
|
|
310 |
gfc->wsamp_L[0][j] = (l+r)*(FLOAT)(SQRT2*0.5);
|
|
|
311 |
gfc->wsamp_L[1][j] = (l-r)*(FLOAT)(SQRT2*0.5);
|
|
|
312 |
}
|
|
|
313 |
for (b = 2; b >= 0; --b)
|
|
|
314 |
{
|
|
|
315 |
for (j = BLKSIZE_s-1; j >= 0 ; --j)
|
|
|
316 |
{
|
|
|
317 |
FLOAT l = gfc->wsamp_S[0][b][j];
|
|
|
318 |
FLOAT r = gfc->wsamp_S[1][b][j];
|
|
|
319 |
gfc->wsamp_S[0][b][j] = (l+r)*(FLOAT)(SQRT2*0.5);
|
|
|
320 |
gfc->wsamp_S[1][b][j] = (l-r)*(FLOAT)(SQRT2*0.5);
|
|
|
321 |
}
|
|
|
322 |
}
|
|
|
323 |
}
|
|
|
324 |
|
|
|
325 |
|
|
|
326 |
/**********************************************************************
|
|
|
327 |
* compute energies
|
|
|
328 |
**********************************************************************/
|
|
|
329 |
|
|
|
330 |
|
|
|
331 |
|
|
|
332 |
gfc->energy[0] = (*wsamp_l)[0];
|
|
|
333 |
gfc->energy[0] *= gfc->energy[0];
|
|
|
334 |
|
|
|
335 |
gfc->tot_ener[chn] = gfc->energy[0]; /* sum total energy at nearly no extra cost */
|
|
|
336 |
|
|
|
337 |
for (j=BLKSIZE/2-1; j >= 0; --j)
|
|
|
338 |
{
|
|
|
339 |
FLOAT re = (*wsamp_l)[BLKSIZE/2-j];
|
|
|
340 |
FLOAT im = (*wsamp_l)[BLKSIZE/2+j];
|
|
|
341 |
gfc->energy[BLKSIZE/2-j] = (re * re + im * im) * (FLOAT)0.5;
|
|
|
342 |
|
|
|
343 |
if (BLKSIZE/2-j > 10)
|
|
|
344 |
gfc->tot_ener[chn] += gfc->energy[BLKSIZE/2-j];
|
|
|
345 |
}
|
|
|
346 |
for (b = 2; b >= 0; --b)
|
|
|
347 |
{
|
|
|
348 |
gfc->energy_s[b][0] = (*wsamp_s)[b][0];
|
|
|
349 |
gfc->energy_s[b][0] *= gfc->energy_s [b][0];
|
|
|
350 |
for (j=BLKSIZE_s/2-1; j >= 0; --j)
|
|
|
351 |
{
|
|
|
352 |
FLOAT re = (*wsamp_s)[b][BLKSIZE_s/2-j];
|
|
|
353 |
FLOAT im = (*wsamp_s)[b][BLKSIZE_s/2+j];
|
|
|
354 |
gfc->energy_s[b][BLKSIZE_s/2-j] = (re * re + im * im) * (FLOAT)0.5;
|
|
|
355 |
}
|
|
|
356 |
}
|
|
|
357 |
|
|
|
358 |
|
|
|
359 |
if (gfp->analysis) {
|
|
|
360 |
for (j=0; j<HBLKSIZE ; j++) {
|
|
|
361 |
gfc->pinfo->energy[gr_out][chn][j]=gfc->energy_save[chn][j];
|
|
|
362 |
gfc->energy_save[chn][j]=gfc->energy[j];
|
|
|
363 |
}
|
|
|
364 |
}
|
|
|
365 |
|
|
|
366 |
/**********************************************************************
|
|
|
367 |
* compute unpredicatability of first six spectral lines *
|
|
|
368 |
**********************************************************************/
|
|
|
369 |
for ( j = 0; j < gfc->cw_lower_index; j++ )
|
|
|
370 |
{ /* calculate unpredictability measure cw */
|
|
|
371 |
FLOAT an, a1, a2;
|
|
|
372 |
FLOAT bn, b1, b2;
|
|
|
373 |
FLOAT rn, r1, r2;
|
|
|
374 |
FLOAT numre, numim, den;
|
|
|
375 |
|
|
|
376 |
a2 = gfc-> ax_sav[chn][1][j];
|
|
|
377 |
b2 = gfc-> bx_sav[chn][1][j];
|
|
|
378 |
r2 = gfc-> rx_sav[chn][1][j];
|
|
|
379 |
a1 = gfc-> ax_sav[chn][1][j] = gfc-> ax_sav[chn][0][j];
|
|
|
380 |
b1 = gfc-> bx_sav[chn][1][j] = gfc-> bx_sav[chn][0][j];
|
|
|
381 |
r1 = gfc-> rx_sav[chn][1][j] = gfc-> rx_sav[chn][0][j];
|
|
|
382 |
an = gfc-> ax_sav[chn][0][j] = (*wsamp_l)[j];
|
|
|
383 |
bn = gfc-> bx_sav[chn][0][j] = j==0 ? (*wsamp_l)[0] : (*wsamp_l)[BLKSIZE-j];
|
|
|
384 |
rn = gfc-> rx_sav[chn][0][j] = sqrt(gfc->energy[j]);
|
|
|
385 |
|
|
|
386 |
{ /* square (x1,y1) */
|
|
|
387 |
if( r1 != 0 ) {
|
|
|
388 |
numre = (a1*b1);
|
|
|
389 |
numim = (a1*a1-b1*b1)*(FLOAT)0.5;
|
|
|
390 |
den = r1*r1;
|
|
|
391 |
} else {
|
|
|
392 |
numre = 1;
|
|
|
393 |
numim = 0;
|
|
|
394 |
den = 1;
|
|
|
395 |
}
|
|
|
396 |
}
|
|
|
397 |
|
|
|
398 |
{ /* multiply by (x2,-y2) */
|
|
|
399 |
if( r2 != 0 ) {
|
|
|
400 |
FLOAT tmp2 = (numim+numre)*(a2+b2)*(FLOAT)0.5;
|
|
|
401 |
FLOAT tmp1 = -a2*numre+tmp2;
|
|
|
402 |
numre = -b2*numim+tmp2;
|
|
|
403 |
numim = tmp1;
|
|
|
404 |
den *= r2;
|
|
|
405 |
} else {
|
|
|
406 |
/* do nothing */
|
|
|
407 |
}
|
|
|
408 |
}
|
|
|
409 |
|
|
|
410 |
{ /* r-prime factor */
|
|
|
411 |
FLOAT tmp = (2*r1-r2)/den;
|
|
|
412 |
numre *= tmp;
|
|
|
413 |
numim *= tmp;
|
|
|
414 |
}
|
|
|
415 |
den=rn+fabs(2*r1-r2);
|
|
|
416 |
if( den != 0 ) {
|
|
|
417 |
numre = (an+bn)*(FLOAT)0.5-numre;
|
|
|
418 |
numim = (an-bn)*(FLOAT)0.5-numim;
|
|
|
419 |
den = sqrt(numre*numre+numim*numim)/den;
|
|
|
420 |
}
|
|
|
421 |
gfc->cw[j] = den;
|
|
|
422 |
}
|
|
|
423 |
|
|
|
424 |
|
|
|
425 |
|
|
|
426 |
/**********************************************************************
|
|
|
427 |
* compute unpredicatibility of next 200 spectral lines *
|
|
|
428 |
**********************************************************************/
|
|
|
429 |
for ( j = gfc->cw_lower_index; j < gfc->cw_upper_index; j += 4 )
|
|
|
430 |
{/* calculate unpredictability measure cw */
|
|
|
431 |
FLOAT rn, r1, r2;
|
|
|
432 |
FLOAT numre, numim, den;
|
|
|
433 |
|
|
|
434 |
k = (j+2) / 4;
|
|
|
435 |
|
|
|
436 |
{ /* square (x1,y1) */
|
|
|
437 |
r1 = gfc->energy_s[0][k];
|
|
|
438 |
if( r1 != 0 ) {
|
|
|
439 |
FLOAT a1 = (*wsamp_s)[0][k];
|
|
|
440 |
FLOAT b1 = (*wsamp_s)[0][BLKSIZE_s-k]; /* k is never 0 */
|
|
|
441 |
numre = (a1*b1);
|
|
|
442 |
numim = (a1*a1-b1*b1)*(FLOAT)0.5;
|
|
|
443 |
den = r1;
|
|
|
444 |
r1 = sqrt(r1);
|
|
|
445 |
} else {
|
|
|
446 |
numre = 1;
|
|
|
447 |
numim = 0;
|
|
|
448 |
den = 1;
|
|
|
449 |
}
|
|
|
450 |
}
|
|
|
451 |
|
|
|
452 |
|
|
|
453 |
{ /* multiply by (x2,-y2) */
|
|
|
454 |
r2 = gfc->energy_s[2][k];
|
|
|
455 |
if( r2 != 0 ) {
|
|
|
456 |
FLOAT a2 = (*wsamp_s)[2][k];
|
|
|
457 |
FLOAT b2 = (*wsamp_s)[2][BLKSIZE_s-k];
|
|
|
458 |
|
|
|
459 |
|
|
|
460 |
FLOAT tmp2 = (numim+numre)*(a2+b2)*(FLOAT)0.5;
|
|
|
461 |
FLOAT tmp1 = -a2*numre+tmp2;
|
|
|
462 |
numre = -b2*numim+tmp2;
|
|
|
463 |
numim = tmp1;
|
|
|
464 |
|
|
|
465 |
r2 = sqrt(r2);
|
|
|
466 |
den *= r2;
|
|
|
467 |
} else {
|
|
|
468 |
/* do nothing */
|
|
|
469 |
}
|
|
|
470 |
}
|
|
|
471 |
|
|
|
472 |
{ /* r-prime factor */
|
|
|
473 |
FLOAT tmp = (2*r1-r2)/den;
|
|
|
474 |
numre *= tmp;
|
|
|
475 |
numim *= tmp;
|
|
|
476 |
}
|
|
|
477 |
|
|
|
478 |
rn = sqrt(gfc->energy_s[1][k]);
|
|
|
479 |
den=rn+fabs(2*r1-r2);
|
|
|
480 |
if( den != 0 ) {
|
|
|
481 |
FLOAT an = (*wsamp_s)[1][k];
|
|
|
482 |
FLOAT bn = (*wsamp_s)[1][BLKSIZE_s-k];
|
|
|
483 |
numre = (an+bn)*(FLOAT)0.5-numre;
|
|
|
484 |
numim = (an-bn)*(FLOAT)0.5-numim;
|
|
|
485 |
den = sqrt(numre*numre+numim*numim)/den;
|
|
|
486 |
}
|
|
|
487 |
|
|
|
488 |
gfc->cw[j+1] = gfc->cw[j+2] = gfc->cw[j+3] = gfc->cw[j] = den;
|
|
|
489 |
}
|
|
|
490 |
|
|
|
491 |
#if 0
|
|
|
492 |
for ( j = 14; j < HBLKSIZE-4; j += 4 )
|
|
|
493 |
{/* calculate energy from short ffts */
|
|
|
494 |
FLOAT8 tot,ave;
|
|
|
495 |
k = (j+2) / 4;
|
|
|
496 |
for (tot=0, sblock=0; sblock < 3; sblock++)
|
|
|
497 |
tot+=gfc->energy_s[sblock][k];
|
|
|
498 |
ave = gfc->energy[j+1]+ gfc->energy[j+2]+ gfc->energy[j+3]+ gfc->energy[j];
|
|
|
499 |
ave /= 4.;
|
|
|
500 |
gfc->energy[j+1] = gfc->energy[j+2] = gfc->energy[j+3] = gfc->energy[j]=tot;
|
|
|
501 |
}
|
|
|
502 |
#endif
|
|
|
503 |
|
|
|
504 |
/**********************************************************************
|
|
|
505 |
* Calculate the energy and the unpredictability in the threshold *
|
|
|
506 |
* calculation partitions *
|
|
|
507 |
**********************************************************************/
|
|
|
508 |
|
|
|
509 |
b = 0;
|
|
|
510 |
for (j = 0; j < gfc->cw_upper_index && gfc->numlines_l[b] && b<gfc->npart_l_orig; )
|
|
|
511 |
{
|
|
|
512 |
FLOAT8 ebb, cbb;
|
|
|
513 |
|
|
|
514 |
ebb = gfc->energy[j];
|
|
|
515 |
cbb = gfc->energy[j] * gfc->cw[j];
|
|
|
516 |
j++;
|
|
|
517 |
|
|
|
518 |
for (i = gfc->numlines_l[b] - 1; i > 0; i--)
|
|
|
519 |
{
|
|
|
520 |
ebb += gfc->energy[j];
|
|
|
521 |
cbb += gfc->energy[j] * gfc->cw[j];
|
|
|
522 |
j++;
|
|
|
523 |
}
|
|
|
524 |
eb[b] = ebb;
|
|
|
525 |
cb[b] = cbb;
|
|
|
526 |
b++;
|
|
|
527 |
}
|
|
|
528 |
|
|
|
529 |
for (; b < gfc->npart_l_orig; b++ )
|
|
|
530 |
{
|
|
|
531 |
FLOAT8 ebb = gfc->energy[j++];
|
|
|
532 |
assert(gfc->numlines_l[b]);
|
|
|
533 |
for (i = gfc->numlines_l[b] - 1; i > 0; i--)
|
|
|
534 |
{
|
|
|
535 |
ebb += gfc->energy[j++];
|
|
|
536 |
}
|
|
|
537 |
eb[b] = ebb;
|
|
|
538 |
cb[b] = ebb * 0.4;
|
|
|
539 |
}
|
|
|
540 |
|
|
|
541 |
/**********************************************************************
|
|
|
542 |
* convolve the partitioned energy and unpredictability *
|
|
|
543 |
* with the spreading function, s3_l[b][k] *
|
|
|
544 |
******************************************************************** */
|
|
|
545 |
gfc->pe[chn] = 0; /* calculate percetual entropy */
|
|
|
546 |
for ( b = 0;b < gfc->npart_l; b++ )
|
|
|
547 |
{
|
|
|
548 |
FLOAT8 tbb,ecb,ctb;
|
|
|
549 |
|
|
|
550 |
ecb = 0;
|
|
|
551 |
ctb = 0;
|
|
|
552 |
|
|
|
553 |
for ( k = gfc->s3ind[b][0]; k <= gfc->s3ind[b][1]; k++ )
|
|
|
554 |
{
|
|
|
555 |
ecb += gfc->s3_l[b][k] * eb[k]; /* sprdngf for Layer III */
|
|
|
556 |
ctb += gfc->s3_l[b][k] * cb[k];
|
|
|
557 |
}
|
|
|
558 |
|
|
|
559 |
/* calculate the tonality of each threshold calculation partition
|
|
|
560 |
* calculate the SNR in each threshold calculation partition
|
|
|
561 |
* tonality = -0.299 - .43*log(ctb/ecb);
|
|
|
562 |
* tonality = 0: use NMT (lots of masking)
|
|
|
563 |
* tonality = 1: use TMN (little masking)
|
|
|
564 |
*/
|
|
|
565 |
|
|
|
566 |
/* ISO values */
|
|
|
567 |
#define CONV1 (-.299)
|
|
|
568 |
#define CONV2 (-.43)
|
|
|
569 |
|
|
|
570 |
tbb = ecb;
|
|
|
571 |
if (tbb != 0)
|
|
|
572 |
{
|
|
|
573 |
tbb = ctb / tbb;
|
|
|
574 |
if (tbb <= exp((1-CONV1)/CONV2))
|
|
|
575 |
{ /* tonality near 1 */
|
|
|
576 |
tbb = exp(-LN_TO_LOG10 * TMN);
|
|
|
577 |
}
|
|
|
578 |
else if (tbb >= exp((0-CONV1)/CONV2))
|
|
|
579 |
{/* tonality near 0 */
|
|
|
580 |
tbb = exp(-LN_TO_LOG10 * NMT);
|
|
|
581 |
}
|
|
|
582 |
else
|
|
|
583 |
{
|
|
|
584 |
/* convert to tonality index */
|
|
|
585 |
/* tonality small: tbb=1 */
|
|
|
586 |
/* tonality large: tbb=-.299 */
|
|
|
587 |
tbb = CONV1 + CONV2*log(tbb);
|
|
|
588 |
tbb = exp(-LN_TO_LOG10 * ( TMN*tbb + (1-tbb)*NMT) );
|
|
|
589 |
}
|
|
|
590 |
}
|
|
|
591 |
|
|
|
592 |
/* at this point, tbb represents the amount the spreading function
|
|
|
593 |
* will be reduced. The smaller the value, the less masking.
|
|
|
594 |
* minval[] = 1 (0db) says just use tbb.
|
|
|
595 |
* minval[]= .01 (-20db) says reduce spreading function by
|
|
|
596 |
* at least 20db.
|
|
|
597 |
*/
|
|
|
598 |
|
|
|
599 |
tbb = Min(gfc->minval[b], tbb);
|
|
|
600 |
ecb *= tbb;
|
|
|
601 |
|
|
|
602 |
/* long block pre-echo control. */
|
|
|
603 |
/* rpelev=2.0, rpelev2=16.0 */
|
|
|
604 |
/* note: all surges in PE are because of this pre-echo formula
|
|
|
605 |
* for thr[b]. If it this is not used, PE is always around 600
|
|
|
606 |
*/
|
|
|
607 |
/* dont use long block pre-echo control if previous granule was
|
|
|
608 |
* a short block. This is to avoid the situation:
|
|
|
609 |
* frame0: quiet (very low masking)
|
|
|
610 |
* frame1: surge (triggers short blocks)
|
|
|
611 |
* frame2: regular frame. looks like pre-echo when compared to
|
|
|
612 |
* frame0, but all pre-echo was in frame1.
|
|
|
613 |
*/
|
|
|
614 |
/* chn=0,1 L and R channels
|
|
|
615 |
chn=2,3 S and M channels.
|
|
|
616 |
*/
|
|
|
617 |
|
|
|
618 |
if (vbr_mtrh == gfp->VBR) {
|
|
|
619 |
thr[b] = Min (rpelev*gfc->nb_1[chn][b], rpelev2*gfc->nb_2[chn][b]);
|
|
|
620 |
thr[b] = Max (thr[b], gfc->ATH->adjust * gfc->ATH->cb[b]);
|
|
|
621 |
thr[b] = Min (thr[b], ecb);
|
|
|
622 |
}
|
|
|
623 |
else if (gfc->blocktype_old[chn>1 ? chn-2 : chn] == SHORT_TYPE )
|
|
|
624 |
thr[b] = ecb; /* Min(ecb, rpelev*gfc->nb_1[chn][b]); */
|
|
|
625 |
else
|
|
|
626 |
thr[b] = Min(ecb, Min(rpelev*gfc->nb_1[chn][b],rpelev2*gfc->nb_2[chn][b]) );
|
|
|
627 |
|
|
|
628 |
gfc->nb_2[chn][b] = gfc->nb_1[chn][b];
|
|
|
629 |
gfc->nb_1[chn][b] = ecb;
|
|
|
630 |
|
|
|
631 |
{
|
|
|
632 |
FLOAT8 thrpe;
|
|
|
633 |
thrpe = Max(thr[b],gfc->ATH->cb[b]);
|
|
|
634 |
/*
|
|
|
635 |
printf("%i thr=%e ATH=%e \n",b,thr[b],gfc->ATH->cb[b]);
|
|
|
636 |
*/
|
|
|
637 |
if (thrpe < eb[b])
|
|
|
638 |
gfc->pe[chn] -= gfc->numlines_l[b] * log(thrpe / eb[b]);
|
|
|
639 |
}
|
|
|
640 |
}
|
|
|
641 |
|
|
|
642 |
/***************************************************************
|
|
|
643 |
* determine the block type (window type) based on L & R channels
|
|
|
644 |
*
|
|
|
645 |
***************************************************************/
|
|
|
646 |
{ /* compute PE for all 4 channels */
|
|
|
647 |
FLOAT mn,mx,ma=0,mb=0,mc=0;
|
|
|
648 |
|
|
|
649 |
for ( j = HBLKSIZE_s/2; j < HBLKSIZE_s; j ++)
|
|
|
650 |
{
|
|
|
651 |
ma += gfc->energy_s[0][j];
|
|
|
652 |
mb += gfc->energy_s[1][j];
|
|
|
653 |
mc += gfc->energy_s[2][j];
|
|
|
654 |
}
|
|
|
655 |
mn = Min(ma,mb);
|
|
|
656 |
mn = Min(mn,mc);
|
|
|
657 |
mx = Max(ma,mb);
|
|
|
658 |
mx = Max(mx,mc);
|
|
|
659 |
|
|
|
660 |
/* bit allocation is based on pe. */
|
|
|
661 |
if (mx>mn) {
|
|
|
662 |
FLOAT8 tmp = 400*log(mx/(1e-12+mn));
|
|
|
663 |
if (tmp>gfc->pe[chn]) gfc->pe[chn]=tmp;
|
|
|
664 |
}
|
|
|
665 |
|
|
|
666 |
/* block type is based just on L or R channel */
|
|
|
667 |
if (chn<2) {
|
|
|
668 |
uselongblock[chn] = 1;
|
|
|
669 |
|
|
|
670 |
/* tuned for t1.wav. doesnt effect most other samples */
|
|
|
671 |
if (gfc->pe[chn] > 3000)
|
|
|
672 |
uselongblock[chn]=0;
|
|
|
673 |
|
|
|
674 |
if ( mx > 30*mn )
|
|
|
675 |
{/* big surge of energy - always use short blocks */
|
|
|
676 |
uselongblock[chn] = 0;
|
|
|
677 |
}
|
|
|
678 |
else if ((mx > 10*mn) && (gfc->pe[chn] > 1000))
|
|
|
679 |
{/* medium surge, medium pe - use short blocks */
|
|
|
680 |
uselongblock[chn] = 0;
|
|
|
681 |
}
|
|
|
682 |
|
|
|
683 |
/* disable short blocks */
|
|
|
684 |
if (gfp->no_short_blocks)
|
|
|
685 |
uselongblock[chn]=1;
|
|
|
686 |
}
|
|
|
687 |
}
|
|
|
688 |
|
|
|
689 |
if (gfp->analysis) {
|
|
|
690 |
FLOAT mn,mx,ma=0,mb=0,mc=0;
|
|
|
691 |
|
|
|
692 |
for ( j = HBLKSIZE_s/2; j < HBLKSIZE_s; j ++)
|
|
|
693 |
{
|
|
|
694 |
ma += gfc->energy_s[0][j];
|
|
|
695 |
mb += gfc->energy_s[1][j];
|
|
|
696 |
mc += gfc->energy_s[2][j];
|
|
|
697 |
}
|
|
|
698 |
mn = Min(ma,mb);
|
|
|
699 |
mn = Min(mn,mc);
|
|
|
700 |
mx = Max(ma,mb);
|
|
|
701 |
mx = Max(mx,mc);
|
|
|
702 |
|
|
|
703 |
gfc->pinfo->ers[gr_out][chn]=gfc->ers_save[chn];
|
|
|
704 |
gfc->ers_save[chn]=(mx/(1e-12+mn));
|
|
|
705 |
gfc->pinfo->pe[gr_out][chn]=gfc->pe_save[chn];
|
|
|
706 |
gfc->pe_save[chn]=gfc->pe[chn];
|
|
|
707 |
}
|
|
|
708 |
|
|
|
709 |
|
|
|
710 |
/***************************************************************
|
|
|
711 |
* compute masking thresholds for both short and long blocks
|
|
|
712 |
***************************************************************/
|
|
|
713 |
/* longblock threshold calculation (part 2) */
|
|
|
714 |
for ( sb = 0; sb < NBPSY_l; sb++ )
|
|
|
715 |
{
|
|
|
716 |
FLOAT8 enn = gfc->w1_l[sb] * eb[gfc->bu_l[sb]] + gfc->w2_l[sb] * eb[gfc->bo_l[sb]];
|
|
|
717 |
FLOAT8 thmm = gfc->w1_l[sb] *thr[gfc->bu_l[sb]] + gfc->w2_l[sb] * thr[gfc->bo_l[sb]];
|
|
|
718 |
|
|
|
719 |
for ( b = gfc->bu_l[sb]+1; b < gfc->bo_l[sb]; b++ )
|
|
|
720 |
{
|
|
|
721 |
enn += eb[b];
|
|
|
722 |
thmm += thr[b];
|
|
|
723 |
}
|
|
|
724 |
|
|
|
725 |
gfc->en [chn].l[sb] = enn;
|
|
|
726 |
gfc->thm[chn].l[sb] = thmm;
|
|
|
727 |
}
|
|
|
728 |
|
|
|
729 |
|
|
|
730 |
/* threshold calculation for short blocks */
|
|
|
731 |
for ( sblock = 0; sblock < 3; sblock++ )
|
|
|
732 |
{
|
|
|
733 |
j = 0;
|
|
|
734 |
for ( b = 0; b < gfc->npart_s_orig; b++ )
|
|
|
735 |
{
|
|
|
736 |
FLOAT ecb = gfc->energy_s[sblock][j++];
|
|
|
737 |
for (i = 1 ; i<gfc->numlines_s[b]; ++i)
|
|
|
738 |
{
|
|
|
739 |
ecb += gfc->energy_s[sblock][j++];
|
|
|
740 |
}
|
|
|
741 |
eb[b] = ecb;
|
|
|
742 |
}
|
|
|
743 |
|
|
|
744 |
for ( b = 0; b < gfc->npart_s; b++ )
|
|
|
745 |
{
|
|
|
746 |
FLOAT8 ecb = 0;
|
|
|
747 |
for ( k = gfc->s3ind_s[b][0]; k <= gfc->s3ind_s[b][1]; k++ ) {
|
|
|
748 |
ecb += gfc->s3_s[b][k] * eb[k];
|
|
|
749 |
}
|
|
|
750 |
ecb *= gfc->SNR_s[b];
|
|
|
751 |
thr[b] = Max (1e-6, ecb);
|
|
|
752 |
}
|
|
|
753 |
|
|
|
754 |
for ( sb = 0; sb < NBPSY_s; sb++ ){
|
|
|
755 |
FLOAT8 enn = gfc->w1_s[sb] * eb[gfc->bu_s[sb]] + gfc->w2_s[sb] * eb[gfc->bo_s[sb]];
|
|
|
756 |
FLOAT8 thmm = gfc->w1_s[sb] *thr[gfc->bu_s[sb]] + gfc->w2_s[sb] * thr[gfc->bo_s[sb]];
|
|
|
757 |
|
|
|
758 |
for ( b = gfc->bu_s[sb]+1; b < gfc->bo_s[sb]; b++ ) {
|
|
|
759 |
enn += eb[b];
|
|
|
760 |
thmm += thr[b];
|
|
|
761 |
}
|
|
|
762 |
|
|
|
763 |
gfc->en [chn].s[sb][sblock] = enn;
|
|
|
764 |
gfc->thm[chn].s[sb][sblock] = thmm;
|
|
|
765 |
}
|
|
|
766 |
}
|
|
|
767 |
} /* end loop over chn */
|
|
|
768 |
|
|
|
769 |
|
|
|
770 |
/* compute M/S thresholds from Johnston & Ferreira 1992 ICASSP paper */
|
|
|
771 |
if (gfp->mode == JOINT_STEREO) {
|
|
|
772 |
FLOAT8 rside,rmid,mld;
|
|
|
773 |
int chmid=2,chside=3;
|
|
|
774 |
|
|
|
775 |
for ( sb = 0; sb < NBPSY_l; sb++ ) {
|
|
|
776 |
/* use this fix if L & R masking differs by 2db or less */
|
|
|
777 |
/* if db = 10*log10(x2/x1) < 2 */
|
|
|
778 |
/* if (x2 < 1.58*x1) { */
|
|
|
779 |
if (gfc->thm[0].l[sb] <= 1.58*gfc->thm[1].l[sb]
|
|
|
780 |
&& gfc->thm[1].l[sb] <= 1.58*gfc->thm[0].l[sb]) {
|
|
|
781 |
|
|
|
782 |
mld = gfc->mld_l[sb]*gfc->en[chside].l[sb];
|
|
|
783 |
rmid = Max(gfc->thm[chmid].l[sb], Min(gfc->thm[chside].l[sb],mld));
|
|
|
784 |
|
|
|
785 |
mld = gfc->mld_l[sb]*gfc->en[chmid].l[sb];
|
|
|
786 |
rside = Max(gfc->thm[chside].l[sb],Min(gfc->thm[chmid].l[sb],mld));
|
|
|
787 |
|
|
|
788 |
gfc->thm[chmid].l[sb]=rmid;
|
|
|
789 |
gfc->thm[chside].l[sb]=rside;
|
|
|
790 |
}
|
|
|
791 |
}
|
|
|
792 |
for ( sb = 0; sb < NBPSY_s; sb++ ) {
|
|
|
793 |
for ( sblock = 0; sblock < 3; sblock++ ) {
|
|
|
794 |
if (gfc->thm[0].s[sb][sblock] <= 1.58*gfc->thm[1].s[sb][sblock]
|
|
|
795 |
&& gfc->thm[1].s[sb][sblock] <= 1.58*gfc->thm[0].s[sb][sblock]) {
|
|
|
796 |
|
|
|
797 |
mld = gfc->mld_s[sb]*gfc->en[chside].s[sb][sblock];
|
|
|
798 |
rmid = Max(gfc->thm[chmid].s[sb][sblock],Min(gfc->thm[chside].s[sb][sblock],mld));
|
|
|
799 |
|
|
|
800 |
mld = gfc->mld_s[sb]*gfc->en[chmid].s[sb][sblock];
|
|
|
801 |
rside = Max(gfc->thm[chside].s[sb][sblock],Min(gfc->thm[chmid].s[sb][sblock],mld));
|
|
|
802 |
|
|
|
803 |
gfc->thm[chmid].s[sb][sblock]=rmid;
|
|
|
804 |
gfc->thm[chside].s[sb][sblock]=rside;
|
|
|
805 |
}
|
|
|
806 |
}
|
|
|
807 |
}
|
|
|
808 |
}
|
|
|
809 |
|
|
|
810 |
if (gfp->mode == JOINT_STEREO) {
|
|
|
811 |
/* determin ms_ratio from masking thresholds*/
|
|
|
812 |
/* use ms_stereo (ms_ratio < .35) if average thresh. diff < 5 db */
|
|
|
813 |
FLOAT8 db,x1,x2,sidetot=0,tot=0;
|
|
|
814 |
for (sb= NBPSY_l/4 ; sb< NBPSY_l; sb ++ ) {
|
|
|
815 |
x1 = Min(gfc->thm[0].l[sb],gfc->thm[1].l[sb]);
|
|
|
816 |
x2 = Max(gfc->thm[0].l[sb],gfc->thm[1].l[sb]);
|
|
|
817 |
/* thresholds difference in db */
|
|
|
818 |
if (x2 >= 1000*x1) db=3;
|
|
|
819 |
else db = log10(x2/x1);
|
|
|
820 |
/* DEBUGF(gfc,"db = %f %e %e \n",db,gfc->thm[0].l[sb],gfc->thm[1].l[sb]);*/
|
|
|
821 |
sidetot += db;
|
|
|
822 |
tot++;
|
|
|
823 |
}
|
|
|
824 |
ms_ratio_l= (sidetot/tot)*0.7; /* was .35*(sidetot/tot)/5.0*10 */
|
|
|
825 |
ms_ratio_l = Min(ms_ratio_l,0.5);
|
|
|
826 |
|
|
|
827 |
sidetot=0; tot=0;
|
|
|
828 |
for ( sblock = 0; sblock < 3; sblock++ )
|
|
|
829 |
for ( sb = NBPSY_s/4; sb < NBPSY_s; sb++ ) {
|
|
|
830 |
x1 = Min(gfc->thm[0].s[sb][sblock],gfc->thm[1].s[sb][sblock]);
|
|
|
831 |
x2 = Max(gfc->thm[0].s[sb][sblock],gfc->thm[1].s[sb][sblock]);
|
|
|
832 |
/* thresholds difference in db */
|
|
|
833 |
if (x2 >= 1000*x1) db=3;
|
|
|
834 |
else db = log10(x2/x1);
|
|
|
835 |
sidetot += db;
|
|
|
836 |
tot++;
|
|
|
837 |
}
|
|
|
838 |
ms_ratio_s = (sidetot/tot)*0.7; /* was .35*(sidetot/tot)/5.0*10 */
|
|
|
839 |
ms_ratio_s = Min(ms_ratio_s,.5);
|
|
|
840 |
}
|
|
|
841 |
|
|
|
842 |
/***************************************************************
|
|
|
843 |
* determine final block type
|
|
|
844 |
***************************************************************/
|
|
|
845 |
|
|
|
846 |
for (chn=0; chn<gfc->channels_out; chn++) {
|
|
|
847 |
blocktype[chn] = NORM_TYPE;
|
|
|
848 |
}
|
|
|
849 |
|
|
|
850 |
|
|
|
851 |
if (gfc->channels_out==2) {
|
|
|
852 |
if (!gfp->allow_diff_short || gfp->mode==JOINT_STEREO) {
|
|
|
853 |
/* force both channels to use the same block type */
|
|
|
854 |
/* this is necessary if the frame is to be encoded in ms_stereo. */
|
|
|
855 |
/* But even without ms_stereo, FhG does this */
|
|
|
856 |
int bothlong= (uselongblock[0] && uselongblock[1]);
|
|
|
857 |
if (!bothlong) {
|
|
|
858 |
uselongblock[0]=0;
|
|
|
859 |
uselongblock[1]=0;
|
|
|
860 |
}
|
|
|
861 |
}
|
|
|
862 |
}
|
|
|
863 |
|
|
|
864 |
|
|
|
865 |
|
|
|
866 |
/* update the blocktype of the previous granule, since it depends on what
|
|
|
867 |
* happend in this granule */
|
|
|
868 |
for (chn=0; chn<gfc->channels_out; chn++) {
|
|
|
869 |
if ( uselongblock[chn])
|
|
|
870 |
{ /* no attack : use long blocks */
|
|
|
871 |
assert( gfc->blocktype_old[chn] != START_TYPE );
|
|
|
872 |
switch( gfc->blocktype_old[chn] )
|
|
|
873 |
{
|
|
|
874 |
case NORM_TYPE:
|
|
|
875 |
case STOP_TYPE:
|
|
|
876 |
blocktype[chn] = NORM_TYPE;
|
|
|
877 |
break;
|
|
|
878 |
case SHORT_TYPE:
|
|
|
879 |
blocktype[chn] = STOP_TYPE;
|
|
|
880 |
break;
|
|
|
881 |
}
|
|
|
882 |
} else {
|
|
|
883 |
/* attack : use short blocks */
|
|
|
884 |
blocktype[chn] = SHORT_TYPE;
|
|
|
885 |
if ( gfc->blocktype_old[chn] == NORM_TYPE ) {
|
|
|
886 |
gfc->blocktype_old[chn] = START_TYPE;
|
|
|
887 |
}
|
|
|
888 |
if ( gfc->blocktype_old[chn] == STOP_TYPE ) {
|
|
|
889 |
gfc->blocktype_old[chn] = SHORT_TYPE ;
|
|
|
890 |
}
|
|
|
891 |
}
|
|
|
892 |
|
|
|
893 |
blocktype_d[chn] = gfc->blocktype_old[chn]; /* value returned to calling program */
|
|
|
894 |
gfc->blocktype_old[chn] = blocktype[chn]; /* save for next call to l3psy_anal */
|
|
|
895 |
}
|
|
|
896 |
|
|
|
897 |
if (blocktype_d[0]==2)
|
|
|
898 |
*ms_ratio = gfc->ms_ratio_s_old;
|
|
|
899 |
else
|
|
|
900 |
*ms_ratio = gfc->ms_ratio_l_old;
|
|
|
901 |
|
|
|
902 |
gfc->ms_ratio_s_old = ms_ratio_s;
|
|
|
903 |
gfc->ms_ratio_l_old = ms_ratio_l;
|
|
|
904 |
|
|
|
905 |
/* we dont know the block type of this frame yet - assume long */
|
|
|
906 |
*ms_ratio_next = ms_ratio_l;
|
|
|
907 |
|
|
|
908 |
return 0;
|
|
|
909 |
}
|
|
|
910 |
|
|
|
911 |
/* addition of simultaneous masking Naoki Shibata 2000/7 */
|
|
|
912 |
inline static FLOAT8 mask_add(FLOAT8 m1,FLOAT8 m2,int k,int b, lame_internal_flags * const gfc)
|
|
|
913 |
{
|
|
|
914 |
static const FLOAT8 table1[] = {
|
|
|
915 |
3.3246 *3.3246 ,3.23837*3.23837,3.15437*3.15437,3.00412*3.00412,2.86103*2.86103,2.65407*2.65407,2.46209*2.46209,2.284 *2.284 ,
|
|
|
916 |
2.11879*2.11879,1.96552*1.96552,1.82335*1.82335,1.69146*1.69146,1.56911*1.56911,1.46658*1.46658,1.37074*1.37074,1.31036*1.31036,
|
|
|
917 |
1.25264*1.25264,1.20648*1.20648,1.16203*1.16203,1.12765*1.12765,1.09428*1.09428,1.0659 *1.0659 ,1.03826*1.03826,1.01895*1.01895,
|
|
|
918 |
1
|
|
|
919 |
};
|
|
|
920 |
|
|
|
921 |
static const FLOAT8 table2[] = {
|
|
|
922 |
1.33352*1.33352,1.35879*1.35879,1.38454*1.38454,1.39497*1.39497,1.40548*1.40548,1.3537 *1.3537 ,1.30382*1.30382,1.22321*1.22321,
|
|
|
923 |
1.14758*1.14758
|
|
|
924 |
};
|
|
|
925 |
|
|
|
926 |
static const FLOAT8 table3[] = {
|
|
|
927 |
2.35364*2.35364,2.29259*2.29259,2.23313*2.23313,2.12675*2.12675,2.02545*2.02545,1.87894*1.87894,1.74303*1.74303,1.61695*1.61695,
|
|
|
928 |
1.49999*1.49999,1.39148*1.39148,1.29083*1.29083,1.19746*1.19746,1.11084*1.11084,1.03826*1.03826
|
|
|
929 |
};
|
|
|
930 |
|
|
|
931 |
|
|
|
932 |
int i;
|
|
|
933 |
FLOAT8 m;
|
|
|
934 |
|
|
|
935 |
if (m1 == 0) return m2;
|
|
|
936 |
|
|
|
937 |
if (b < 0) b = -b;
|
|
|
938 |
|
|
|
939 |
i = 10*log10(m2 / m1)/10*16;
|
|
|
940 |
m = 10*log10((m1+m2)/gfc->ATH->cb[k]);
|
|
|
941 |
|
|
|
942 |
if (i < 0) i = -i;
|
|
|
943 |
|
|
|
944 |
if (b <= 3) { /* approximately, 1 bark = 3 partitions */
|
|
|
945 |
if (i > 8) return m1+m2;
|
|
|
946 |
return (m1+m2)*table2[i];
|
|
|
947 |
}
|
|
|
948 |
|
|
|
949 |
if (m<15) {
|
|
|
950 |
if (m > 0) {
|
|
|
951 |
FLOAT8 f=1.0,r;
|
|
|
952 |
if (i > 24) return m1+m2;
|
|
|
953 |
if (i > 13) f = 1; else f = table3[i];
|
|
|
954 |
r = (m-0)/15;
|
|
|
955 |
return (m1+m2)*(table1[i]*r+f*(1-r));
|
|
|
956 |
}
|
|
|
957 |
if (i > 13) return m1+m2;
|
|
|
958 |
return (m1+m2)*table3[i];
|
|
|
959 |
}
|
|
|
960 |
|
|
|
961 |
if (i > 24) return m1+m2;
|
|
|
962 |
return (m1+m2)*table1[i];
|
|
|
963 |
}
|
|
|
964 |
|
|
|
965 |
int L3psycho_anal_ns( lame_global_flags * gfp,
|
|
|
966 |
const sample_t *buffer[2], int gr_out,
|
|
|
967 |
FLOAT8 *ms_ratio,
|
|
|
968 |
FLOAT8 *ms_ratio_next,
|
|
|
969 |
III_psy_ratio masking_ratio[2][2],
|
|
|
970 |
III_psy_ratio masking_MS_ratio[2][2],
|
|
|
971 |
FLOAT8 percep_entropy[2],FLOAT8 percep_MS_entropy[2],
|
|
|
972 |
FLOAT8 energy[4],
|
|
|
973 |
int blocktype_d[2])
|
|
|
974 |
{
|
|
|
975 |
/* to get a good cache performance, one has to think about
|
|
|
976 |
* the sequence, in which the variables are used.
|
|
|
977 |
* (Note: these static variables have been moved to the gfc-> struct,
|
|
|
978 |
* and their order in memory is layed out in util.h)
|
|
|
979 |
*/
|
|
|
980 |
lame_internal_flags *gfc=gfp->internal_flags;
|
|
|
981 |
|
|
|
982 |
/* fft and energy calculation */
|
|
|
983 |
FLOAT (*wsamp_l)[BLKSIZE];
|
|
|
984 |
FLOAT (*wsamp_s)[3][BLKSIZE_s];
|
|
|
985 |
|
|
|
986 |
/* convolution */
|
|
|
987 |
FLOAT8 eb[CBANDS],eb2[CBANDS];
|
|
|
988 |
FLOAT8 thr[CBANDS];
|
|
|
989 |
|
|
|
990 |
FLOAT8 max[CBANDS],avg[CBANDS],tonality2[CBANDS];
|
|
|
991 |
|
|
|
992 |
/* ratios */
|
|
|
993 |
FLOAT8 ms_ratio_l=0,ms_ratio_s=0;
|
|
|
994 |
|
|
|
995 |
/* block type */
|
|
|
996 |
int blocktype[2],uselongblock[2];
|
|
|
997 |
|
|
|
998 |
/* usual variables like loop indices, etc.. */
|
|
|
999 |
int numchn, chn;
|
|
|
1000 |
int b, i, j, k;
|
|
|
1001 |
int sb,sblock;
|
|
|
1002 |
|
|
|
1003 |
/* variables used for --nspsytune */
|
|
|
1004 |
int ns_attacks[4];
|
|
|
1005 |
FLOAT ns_hpfsmpl[4][576+576/3+NSFIRLEN];
|
|
|
1006 |
FLOAT pe_l[4],pe_s[4];
|
|
|
1007 |
FLOAT pcfact;
|
|
|
1008 |
|
|
|
1009 |
|
|
|
1010 |
if(gfc->psymodel_init==0) {
|
|
|
1011 |
psymodel_init(gfp);
|
|
|
1012 |
init_fft(gfc);
|
|
|
1013 |
gfc->psymodel_init=1;
|
|
|
1014 |
}
|
|
|
1015 |
|
|
|
1016 |
|
|
|
1017 |
numchn = gfc->channels_out;
|
|
|
1018 |
/* chn=2 and 3 = Mid and Side channels */
|
|
|
1019 |
if (gfp->mode == JOINT_STEREO) numchn=4;
|
|
|
1020 |
|
|
|
1021 |
if (gfp->VBR==vbr_off) pcfact = gfc->ResvMax == 0 ? 0 : ((FLOAT)gfc->ResvSize)/gfc->ResvMax*0.5;
|
|
|
1022 |
else if (gfp->VBR == vbr_rh || gfp->VBR == vbr_mtrh || gfp->VBR == vbr_mt) {
|
|
|
1023 |
static const FLOAT8 pcQns[10]={1.0,1.0,1.0,0.8,0.6,0.5,0.4,0.3,0.2,0.1};
|
|
|
1024 |
pcfact = pcQns[gfp->VBR_q];
|
|
|
1025 |
} else pcfact = 1;
|
|
|
1026 |
|
|
|
1027 |
/**********************************************************************
|
|
|
1028 |
* Apply HPF of fs/4 to the input signal.
|
|
|
1029 |
* This is used for attack detection / handling.
|
|
|
1030 |
**********************************************************************/
|
|
|
1031 |
|
|
|
1032 |
{
|
|
|
1033 |
static const FLOAT fircoef[] = {
|
|
|
1034 |
-8.65163e-18,-0.00851586,-6.74764e-18, 0.0209036,
|
|
|
1035 |
-3.36639e-17,-0.0438162 ,-1.54175e-17, 0.0931738,
|
|
|
1036 |
-5.52212e-17,-0.313819 , 0.5 ,-0.313819,
|
|
|
1037 |
-5.52212e-17, 0.0931738 ,-1.54175e-17,-0.0438162,
|
|
|
1038 |
-3.36639e-17, 0.0209036 ,-6.74764e-18,-0.00851586,
|
|
|
1039 |
-8.65163e-18,
|
|
|
1040 |
};
|
|
|
1041 |
|
|
|
1042 |
for(chn=0;chn<gfc->channels_out;chn++)
|
|
|
1043 |
{
|
|
|
1044 |
FLOAT firbuf[576+576/3+NSFIRLEN];
|
|
|
1045 |
|
|
|
1046 |
/* apply high pass filter of fs/4 */
|
|
|
1047 |
|
|
|
1048 |
for(i=-NSFIRLEN;i<576+576/3;i++)
|
|
|
1049 |
firbuf[i+NSFIRLEN] = buffer[chn][576-350+(i)];
|
|
|
1050 |
|
|
|
1051 |
for(i=0;i<576+576/3-NSFIRLEN;i++)
|
|
|
1052 |
{
|
|
|
1053 |
FLOAT sum = 0;
|
|
|
1054 |
for(j=0;j<NSFIRLEN;j++)
|
|
|
1055 |
sum += fircoef[j] * firbuf[i+j];
|
|
|
1056 |
ns_hpfsmpl[chn][i] = sum;
|
|
|
1057 |
}
|
|
|
1058 |
for(;i<576+576/3;i++)
|
|
|
1059 |
ns_hpfsmpl[chn][i] = 0;
|
|
|
1060 |
}
|
|
|
1061 |
|
|
|
1062 |
if (gfp->mode == JOINT_STEREO) {
|
|
|
1063 |
for(i=0;i<576+576/3;i++)
|
|
|
1064 |
{
|
|
|
1065 |
ns_hpfsmpl[2][i] = ns_hpfsmpl[0][i]+ns_hpfsmpl[1][i];
|
|
|
1066 |
ns_hpfsmpl[3][i] = ns_hpfsmpl[0][i]-ns_hpfsmpl[1][i];
|
|
|
1067 |
}
|
|
|
1068 |
}
|
|
|
1069 |
}
|
|
|
1070 |
|
|
|
1071 |
|
|
|
1072 |
|
|
|
1073 |
/* there is a one granule delay. Copy maskings computed last call
|
|
|
1074 |
* into masking_ratio to return to calling program.
|
|
|
1075 |
*/
|
|
|
1076 |
for (chn=0; chn<numchn; chn++) {
|
|
|
1077 |
for (i=0; i<numchn; ++i) {
|
|
|
1078 |
energy[chn]=gfc->tot_ener[chn];
|
|
|
1079 |
}
|
|
|
1080 |
}
|
|
|
1081 |
|
|
|
1082 |
|
|
|
1083 |
for (chn=0; chn<numchn; chn++) {
|
|
|
1084 |
/* there is a one granule delay. Copy maskings computed last call
|
|
|
1085 |
* into masking_ratio to return to calling program.
|
|
|
1086 |
*/
|
|
|
1087 |
pe_l[chn] = gfc->nsPsy.pe_l[chn];
|
|
|
1088 |
pe_s[chn] = gfc->nsPsy.pe_s[chn];
|
|
|
1089 |
|
|
|
1090 |
if (chn < 2) {
|
|
|
1091 |
/* LR maskings */
|
|
|
1092 |
//percep_entropy [chn] = gfc -> pe [chn];
|
|
|
1093 |
masking_ratio [gr_out] [chn] .en = gfc -> en [chn];
|
|
|
1094 |
masking_ratio [gr_out] [chn] .thm = gfc -> thm [chn];
|
|
|
1095 |
} else {
|
|
|
1096 |
/* MS maskings */
|
|
|
1097 |
//percep_MS_entropy [chn-2] = gfc -> pe [chn];
|
|
|
1098 |
masking_MS_ratio [gr_out] [chn-2].en = gfc -> en [chn];
|
|
|
1099 |
masking_MS_ratio [gr_out] [chn-2].thm = gfc -> thm [chn];
|
|
|
1100 |
}
|
|
|
1101 |
}
|
|
|
1102 |
|
|
|
1103 |
for (chn=0; chn<numchn; chn++) {
|
|
|
1104 |
|
|
|
1105 |
/**********************************************************************
|
|
|
1106 |
* compute FFTs
|
|
|
1107 |
**********************************************************************/
|
|
|
1108 |
|
|
|
1109 |
wsamp_s = gfc->wsamp_S+(chn & 1);
|
|
|
1110 |
wsamp_l = gfc->wsamp_L+(chn & 1);
|
|
|
1111 |
|
|
|
1112 |
if (chn<2) {
|
|
|
1113 |
fft_long ( gfc, *wsamp_l, chn, buffer);
|
|
|
1114 |
fft_short( gfc, *wsamp_s, chn, buffer);
|
|
|
1115 |
}
|
|
|
1116 |
|
|
|
1117 |
/* FFT data for mid and side channel is derived from L & R */
|
|
|
1118 |
|
|
|
1119 |
if (chn == 2)
|
|
|
1120 |
{
|
|
|
1121 |
for (j = BLKSIZE-1; j >=0 ; --j)
|
|
|
1122 |
{
|
|
|
1123 |
FLOAT l = gfc->wsamp_L[0][j];
|
|
|
1124 |
FLOAT r = gfc->wsamp_L[1][j];
|
|
|
1125 |
gfc->wsamp_L[0][j] = (l+r)*(FLOAT)(SQRT2*0.5);
|
|
|
1126 |
gfc->wsamp_L[1][j] = (l-r)*(FLOAT)(SQRT2*0.5);
|
|
|
1127 |
}
|
|
|
1128 |
for (b = 2; b >= 0; --b)
|
|
|
1129 |
{
|
|
|
1130 |
for (j = BLKSIZE_s-1; j >= 0 ; --j)
|
|
|
1131 |
{
|
|
|
1132 |
FLOAT l = gfc->wsamp_S[0][b][j];
|
|
|
1133 |
FLOAT r = gfc->wsamp_S[1][b][j];
|
|
|
1134 |
gfc->wsamp_S[0][b][j] = (l+r)*(FLOAT)(SQRT2*0.5);
|
|
|
1135 |
gfc->wsamp_S[1][b][j] = (l-r)*(FLOAT)(SQRT2*0.5);
|
|
|
1136 |
}
|
|
|
1137 |
}
|
|
|
1138 |
}
|
|
|
1139 |
|
|
|
1140 |
|
|
|
1141 |
/**********************************************************************
|
|
|
1142 |
* compute energies for each spectral line
|
|
|
1143 |
**********************************************************************/
|
|
|
1144 |
|
|
|
1145 |
/* long block */
|
|
|
1146 |
|
|
|
1147 |
gfc->energy[0] = (*wsamp_l)[0];
|
|
|
1148 |
gfc->energy[0] *= gfc->energy[0];
|
|
|
1149 |
|
|
|
1150 |
gfc->tot_ener[chn] = gfc->energy[0]; /* sum total energy at nearly no extra cost */
|
|
|
1151 |
|
|
|
1152 |
for (j=BLKSIZE/2-1; j >= 0; --j)
|
|
|
1153 |
{
|
|
|
1154 |
FLOAT re = (*wsamp_l)[BLKSIZE/2-j];
|
|
|
1155 |
FLOAT im = (*wsamp_l)[BLKSIZE/2+j];
|
|
|
1156 |
gfc->energy[BLKSIZE/2-j] = (re * re + im * im) * (FLOAT)0.5;
|
|
|
1157 |
|
|
|
1158 |
if (BLKSIZE/2-j > 10)
|
|
|
1159 |
gfc->tot_ener[chn] += gfc->energy[BLKSIZE/2-j];
|
|
|
1160 |
}
|
|
|
1161 |
|
|
|
1162 |
|
|
|
1163 |
/* short block */
|
|
|
1164 |
|
|
|
1165 |
for (b = 2; b >= 0; --b)
|
|
|
1166 |
{
|
|
|
1167 |
gfc->energy_s[b][0] = (*wsamp_s)[b][0];
|
|
|
1168 |
gfc->energy_s[b][0] *= gfc->energy_s [b][0];
|
|
|
1169 |
for (j=BLKSIZE_s/2-1; j >= 0; --j)
|
|
|
1170 |
{
|
|
|
1171 |
FLOAT re = (*wsamp_s)[b][BLKSIZE_s/2-j];
|
|
|
1172 |
FLOAT im = (*wsamp_s)[b][BLKSIZE_s/2+j];
|
|
|
1173 |
gfc->energy_s[b][BLKSIZE_s/2-j] = (re * re + im * im) * (FLOAT)0.5;
|
|
|
1174 |
}
|
|
|
1175 |
}
|
|
|
1176 |
|
|
|
1177 |
|
|
|
1178 |
/* output data for analysis */
|
|
|
1179 |
|
|
|
1180 |
if (gfp->analysis) {
|
|
|
1181 |
for (j=0; j<HBLKSIZE ; j++) {
|
|
|
1182 |
gfc->pinfo->energy[gr_out][chn][j]=gfc->energy_save[chn][j];
|
|
|
1183 |
gfc->energy_save[chn][j]=gfc->energy[j];
|
|
|
1184 |
}
|
|
|
1185 |
}
|
|
|
1186 |
|
|
|
1187 |
|
|
|
1188 |
/**********************************************************************
|
|
|
1189 |
* Calculate the energy and the tonality of each partition.
|
|
|
1190 |
**********************************************************************/
|
|
|
1191 |
|
|
|
1192 |
for (b=0, j=0; b<gfc->npart_l_orig; b++)
|
|
|
1193 |
{
|
|
|
1194 |
FLOAT8 ebb,m,a;
|
|
|
1195 |
|
|
|
1196 |
ebb = gfc->energy[j];
|
|
|
1197 |
m = a = gfc->energy[j];
|
|
|
1198 |
j++;
|
|
|
1199 |
|
|
|
1200 |
for (i = gfc->numlines_l[b] - 1; i > 0; i--)
|
|
|
1201 |
{
|
|
|
1202 |
FLOAT8 el = gfc->energy[j];
|
|
|
1203 |
ebb += gfc->energy[j];
|
|
|
1204 |
a += el;
|
|
|
1205 |
m = m < el ? el : m;
|
|
|
1206 |
j++;
|
|
|
1207 |
}
|
|
|
1208 |
eb[b] = ebb;
|
|
|
1209 |
max[b] = m;
|
|
|
1210 |
avg[b] = a / gfc->numlines_l[b];
|
|
|
1211 |
}
|
|
|
1212 |
|
|
|
1213 |
j = 0;
|
|
|
1214 |
for (b=0; b < gfc->npart_l_orig; b++ )
|
|
|
1215 |
{
|
|
|
1216 |
int c1,c2;
|
|
|
1217 |
FLOAT8 m,a;
|
|
|
1218 |
tonality2[b] = 0;
|
|
|
1219 |
c1 = c2 = 0;
|
|
|
1220 |
m = a = 0;
|
|
|
1221 |
for(k=b-1;k<=b+1;k++)
|
|
|
1222 |
{
|
|
|
1223 |
if (k >= 0 && k < gfc->npart_l_orig) {
|
|
|
1224 |
c1++;
|
|
|
1225 |
c2 += gfc->numlines_l[k];
|
|
|
1226 |
a += avg[k];
|
|
|
1227 |
m = m < max[k] ? max[k] : m;
|
|
|
1228 |
}
|
|
|
1229 |
}
|
|
|
1230 |
|
|
|
1231 |
a /= c1;
|
|
|
1232 |
tonality2[b] = a == 0 ? 0 : (m / a - 1)/(c2-1);
|
|
|
1233 |
}
|
|
|
1234 |
|
|
|
1235 |
for (b=0; b < gfc->npart_l_orig; b++ )
|
|
|
1236 |
{
|
|
|
1237 |
#if 0
|
|
|
1238 |
static FLOAT8 tab[20] =
|
|
|
1239 |
{ 0, 1, 2, 2, 2, 2, 2, 6,9.3,9.3,9.3,9.3,9.3,9.3,9.3,9.3,9.3,9.3,9.3,9.3};
|
|
|
1240 |
|
|
|
1241 |
static int init = 1;
|
|
|
1242 |
if (init) {
|
|
|
1243 |
int j;
|
|
|
1244 |
for(j=0;j<20;j++) {
|
|
|
1245 |
tab[j] = pow(10.0,-tab[j]/10.0);
|
|
|
1246 |
}
|
|
|
1247 |
init = 0;
|
|
|
1248 |
}
|
|
|
1249 |
#else
|
|
|
1250 |
static FLOAT8 tab[20] = {
|
|
|
1251 |
1,0.79433,0.63096,0.63096,0.63096,0.63096,0.63096,0.25119,0.11749,0.11749,
|
|
|
1252 |
0.11749,0.11749,0.11749,0.11749,0.11749,0.11749,0.11749,0.11749,0.11749,0.11749
|
|
|
1253 |
};
|
|
|
1254 |
#endif
|
|
|
1255 |
|
|
|
1256 |
int t = 20*tonality2[b];
|
|
|
1257 |
if (t > 19) t = 19;
|
|
|
1258 |
eb2[b] = eb[b] * tab[t];
|
|
|
1259 |
}
|
|
|
1260 |
|
|
|
1261 |
|
|
|
1262 |
/**********************************************************************
|
|
|
1263 |
* convolve the partitioned energy and unpredictability
|
|
|
1264 |
* with the spreading function, s3_l[b][k]
|
|
|
1265 |
******************************************************************** */
|
|
|
1266 |
|
|
|
1267 |
for ( b = 0;b < gfc->npart_l; b++ )
|
|
|
1268 |
{
|
|
|
1269 |
FLOAT8 ecb;
|
|
|
1270 |
|
|
|
1271 |
/**** convolve the partitioned energy with the spreading function ****/
|
|
|
1272 |
|
|
|
1273 |
ecb = 0;
|
|
|
1274 |
|
|
|
1275 |
#if 1
|
|
|
1276 |
for ( k = gfc->s3ind[b][0]; k <= gfc->s3ind[b][1]; k++ )
|
|
|
1277 |
{
|
|
|
1278 |
ecb = mask_add(ecb,gfc->s3_l[b][k] * eb2[k],k,k-b,gfc);
|
|
|
1279 |
}
|
|
|
1280 |
|
|
|
1281 |
ecb *= 0.158489319246111; // pow(10,-0.8)
|
|
|
1282 |
#endif
|
|
|
1283 |
|
|
|
1284 |
#if 0
|
|
|
1285 |
for ( k = gfc->s3ind[b][0]; k <= gfc->s3ind[b][1]; k++ )
|
|
|
1286 |
{
|
|
|
1287 |
ecb += gfc->s3_l[k][b] * eb2[k];
|
|
|
1288 |
}
|
|
|
1289 |
|
|
|
1290 |
ecb *= 0.223872113856834; // pow(10,-0.65);
|
|
|
1291 |
#endif
|
|
|
1292 |
|
|
|
1293 |
/**** long block pre-echo control ****/
|
|
|
1294 |
|
|
|
1295 |
/* dont use long block pre-echo control if previous granule was
|
|
|
1296 |
* a short block. This is to avoid the situation:
|
|
|
1297 |
* frame0: quiet (very low masking)
|
|
|
1298 |
* frame1: surge (triggers short blocks)
|
|
|
1299 |
* frame2: regular frame. looks like pre-echo when compared to
|
|
|
1300 |
* frame0, but all pre-echo was in frame1.
|
|
|
1301 |
*/
|
|
|
1302 |
|
|
|
1303 |
/* chn=0,1 L and R channels
|
|
|
1304 |
chn=2,3 S and M channels.
|
|
|
1305 |
*/
|
|
|
1306 |
|
|
|
1307 |
#define NS_INTERP(x,y,r) (pow((x),(r))*pow((y),1-(r)))
|
|
|
1308 |
|
|
|
1309 |
if (gfc->blocktype_old[chn>1 ? chn-2 : chn] == SHORT_TYPE )
|
|
|
1310 |
thr[b] = ecb; /* Min(ecb, rpelev*gfc->nb_1[chn][b]); */
|
|
|
1311 |
else
|
|
|
1312 |
thr[b] = NS_INTERP(Min(ecb, Min(rpelev*gfc->nb_1[chn][b],rpelev2*gfc->nb_2[chn][b])),ecb,pcfact);
|
|
|
1313 |
|
|
|
1314 |
gfc->nb_2[chn][b] = gfc->nb_1[chn][b];
|
|
|
1315 |
gfc->nb_1[chn][b] = ecb;
|
|
|
1316 |
}
|
|
|
1317 |
|
|
|
1318 |
|
|
|
1319 |
/***************************************************************
|
|
|
1320 |
* determine the block type (window type)
|
|
|
1321 |
***************************************************************/
|
|
|
1322 |
|
|
|
1323 |
{
|
|
|
1324 |
static int count=0;
|
|
|
1325 |
FLOAT en_subshort[12];
|
|
|
1326 |
FLOAT attack_intensity[12];
|
|
|
1327 |
int ns_uselongblock = 1;
|
|
|
1328 |
|
|
|
1329 |
/* calculate energies of each sub-shortblocks */
|
|
|
1330 |
|
|
|
1331 |
k = 0;
|
|
|
1332 |
for(i=0;i<12;i++)
|
|
|
1333 |
{
|
|
|
1334 |
en_subshort[i] = 0;
|
|
|
1335 |
for(j=0;j<576/9;j++)
|
|
|
1336 |
{
|
|
|
1337 |
en_subshort[i] += ns_hpfsmpl[chn][k] * ns_hpfsmpl[chn][k];
|
|
|
1338 |
k++;
|
|
|
1339 |
}
|
|
|
1340 |
|
|
|
1341 |
if (en_subshort[i] < 100) en_subshort[i] = 100;
|
|
|
1342 |
}
|
|
|
1343 |
|
|
|
1344 |
/* compare energies between sub-shortblocks */
|
|
|
1345 |
|
|
|
1346 |
#define NSATTACKTHRE 150
|
|
|
1347 |
#define NSATTACKTHRE_S 300
|
|
|
1348 |
|
|
|
1349 |
for(i=0;i<2;i++) {
|
|
|
1350 |
attack_intensity[i] = en_subshort[i] / gfc->nsPsy.last_en_subshort[chn][7+i];
|
|
|
1351 |
}
|
|
|
1352 |
|
|
|
1353 |
for(;i<12;i++) {
|
|
|
1354 |
attack_intensity[i] = en_subshort[i] / en_subshort[i-2];
|
|
|
1355 |
}
|
|
|
1356 |
|
|
|
1357 |
ns_attacks[0] = ns_attacks[1] = ns_attacks[2] = ns_attacks[3] = 0;
|
|
|
1358 |
|
|
|
1359 |
for(i=0;i<12;i++)
|
|
|
1360 |
{
|
|
|
1361 |
if (!ns_attacks[i/3] && attack_intensity[i] > (chn == 3 ? NSATTACKTHRE_S : NSATTACKTHRE)) ns_attacks[i/3] = (i % 3)+1;
|
|
|
1362 |
}
|
|
|
1363 |
|
|
|
1364 |
if (ns_attacks[0] && gfc->nsPsy.last_attacks[chn][2]) ns_attacks[0] = 0;
|
|
|
1365 |
if (ns_attacks[1] && ns_attacks[0]) ns_attacks[1] = 0;
|
|
|
1366 |
if (ns_attacks[2] && ns_attacks[1]) ns_attacks[2] = 0;
|
|
|
1367 |
if (ns_attacks[3] && ns_attacks[2]) ns_attacks[3] = 0;
|
|
|
1368 |
|
|
|
1369 |
if (gfc->nsPsy.last_attacks[chn][2] == 3 ||
|
|
|
1370 |
ns_attacks[0] || ns_attacks[1] || ns_attacks[2] || ns_attacks[3]) ns_uselongblock = 0;
|
|
|
1371 |
|
|
|
1372 |
if (chn < 4) count++;
|
|
|
1373 |
|
|
|
1374 |
for(i=0;i<9;i++)
|
|
|
1375 |
{
|
|
|
1376 |
gfc->nsPsy.last_en_subshort[chn][i] = en_subshort[i];
|
|
|
1377 |
gfc->nsPsy.last_attack_intensity[chn][i] = attack_intensity[i];
|
|
|
1378 |
}
|
|
|
1379 |
|
|
|
1380 |
if (gfp->no_short_blocks) {
|
|
|
1381 |
uselongblock[chn] = 1;
|
|
|
1382 |
} else {
|
|
|
1383 |
if (chn < 2) {
|
|
|
1384 |
uselongblock[chn] = ns_uselongblock;
|
|
|
1385 |
} else {
|
|
|
1386 |
if (ns_uselongblock == 0) uselongblock[0] = uselongblock[1] = 0;
|
|
|
1387 |
}
|
|
|
1388 |
}
|
|
|
1389 |
}
|
|
|
1390 |
|
|
|
1391 |
if (gfp->analysis) {
|
|
|
1392 |
FLOAT mn,mx,ma=0,mb=0,mc=0;
|
|
|
1393 |
|
|
|
1394 |
for ( j = HBLKSIZE_s/2; j < HBLKSIZE_s; j ++)
|
|
|
1395 |
{
|
|
|
1396 |
ma += gfc->energy_s[0][j];
|
|
|
1397 |
mb += gfc->energy_s[1][j];
|
|
|
1398 |
mc += gfc->energy_s[2][j];
|
|
|
1399 |
}
|
|
|
1400 |
mn = Min(ma,mb);
|
|
|
1401 |
mn = Min(mn,mc);
|
|
|
1402 |
mx = Max(ma,mb);
|
|
|
1403 |
mx = Max(mx,mc);
|
|
|
1404 |
|
|
|
1405 |
gfc->pinfo->ers[gr_out][chn]=gfc->ers_save[chn];
|
|
|
1406 |
gfc->ers_save[chn]=(mx/(1e-12+mn));
|
|
|
1407 |
}
|
|
|
1408 |
|
|
|
1409 |
|
|
|
1410 |
/***************************************************************
|
|
|
1411 |
* compute masking thresholds for long blocks
|
|
|
1412 |
***************************************************************/
|
|
|
1413 |
|
|
|
1414 |
for ( sb = 0; sb < NBPSY_l; sb++ )
|
|
|
1415 |
{
|
|
|
1416 |
FLOAT8 enn = gfc->w1_l[sb] * eb[gfc->bu_l[sb]] + gfc->w2_l[sb] * eb[gfc->bo_l[sb]];
|
|
|
1417 |
FLOAT8 thmm = gfc->w1_l[sb] *thr[gfc->bu_l[sb]] + gfc->w2_l[sb] * thr[gfc->bo_l[sb]];
|
|
|
1418 |
|
|
|
1419 |
for ( b = gfc->bu_l[sb]+1; b < gfc->bo_l[sb]; b++ )
|
|
|
1420 |
{
|
|
|
1421 |
enn += eb[b];
|
|
|
1422 |
thmm += thr[b];
|
|
|
1423 |
}
|
|
|
1424 |
|
|
|
1425 |
gfc->en [chn].l[sb] = enn;
|
|
|
1426 |
gfc->thm[chn].l[sb] = thmm;
|
|
|
1427 |
}
|
|
|
1428 |
|
|
|
1429 |
|
|
|
1430 |
/***************************************************************
|
|
|
1431 |
* compute masking thresholds for short blocks
|
|
|
1432 |
***************************************************************/
|
|
|
1433 |
|
|
|
1434 |
for ( sblock = 0; sblock < 3; sblock++ )
|
|
|
1435 |
{
|
|
|
1436 |
j = 0;
|
|
|
1437 |
for ( b = 0; b < gfc->npart_s_orig; b++ )
|
|
|
1438 |
{
|
|
|
1439 |
FLOAT ecb = gfc->energy_s[sblock][j++];
|
|
|
1440 |
for (i = 1 ; i<gfc->numlines_s[b]; ++i)
|
|
|
1441 |
{
|
|
|
1442 |
ecb += gfc->energy_s[sblock][j++];
|
|
|
1443 |
}
|
|
|
1444 |
eb[b] = ecb;
|
|
|
1445 |
}
|
|
|
1446 |
|
|
|
1447 |
for ( b = 0; b < gfc->npart_s; b++ )
|
|
|
1448 |
{
|
|
|
1449 |
FLOAT8 ecb = 0;
|
|
|
1450 |
for ( k = gfc->s3ind_s[b][0]; k <= gfc->s3ind_s[b][1]; k++ )
|
|
|
1451 |
{
|
|
|
1452 |
ecb += gfc->s3_s[b][k] * eb[k];
|
|
|
1453 |
}
|
|
|
1454 |
thr[b] = Max (1e-6, ecb);
|
|
|
1455 |
}
|
|
|
1456 |
|
|
|
1457 |
for ( sb = 0; sb < NBPSY_s; sb++ )
|
|
|
1458 |
{
|
|
|
1459 |
FLOAT8 enn = gfc->w1_s[sb] * eb[gfc->bu_s[sb]] + gfc->w2_s[sb] * eb[gfc->bo_s[sb]];
|
|
|
1460 |
FLOAT8 thmm = gfc->w1_s[sb] *thr[gfc->bu_s[sb]] + gfc->w2_s[sb] * thr[gfc->bo_s[sb]];
|
|
|
1461 |
|
|
|
1462 |
for ( b = gfc->bu_s[sb]+1; b < gfc->bo_s[sb]; b++ )
|
|
|
1463 |
{
|
|
|
1464 |
enn += eb[b];
|
|
|
1465 |
thmm += thr[b];
|
|
|
1466 |
}
|
|
|
1467 |
|
|
|
1468 |
/**** short block pre-echo control ****/
|
|
|
1469 |
|
|
|
1470 |
#define NS_PREECHO_ATT0 0.8
|
|
|
1471 |
#define NS_PREECHO_ATT1 0.6
|
|
|
1472 |
#define NS_PREECHO_ATT2 0.3
|
|
|
1473 |
|
|
|
1474 |
thmm *= NS_PREECHO_ATT0;
|
|
|
1475 |
|
|
|
1476 |
if (ns_attacks[sblock] >= 2) {
|
|
|
1477 |
if (sblock != 0) {
|
|
|
1478 |
double p = NS_INTERP(gfc->thm[chn].s[sb][sblock-1],thmm,NS_PREECHO_ATT1*pcfact);
|
|
|
1479 |
thmm = Min(thmm,p);
|
|
|
1480 |
} else {
|
|
|
1481 |
double p = NS_INTERP(gfc->nsPsy.last_thm[chn][sb][2],thmm,NS_PREECHO_ATT1*pcfact);
|
|
|
1482 |
thmm = Min(thmm,p);
|
|
|
1483 |
}
|
|
|
1484 |
} else if (ns_attacks[sblock+1] == 1) {
|
|
|
1485 |
if (sblock != 0) {
|
|
|
1486 |
double p = NS_INTERP(gfc->thm[chn].s[sb][sblock-1],thmm,NS_PREECHO_ATT1*pcfact);
|
|
|
1487 |
thmm = Min(thmm,p);
|
|
|
1488 |
} else {
|
|
|
1489 |
double p = NS_INTERP(gfc->nsPsy.last_thm[chn][sb][2],thmm,NS_PREECHO_ATT1*pcfact);
|
|
|
1490 |
thmm = Min(thmm,p);
|
|
|
1491 |
}
|
|
|
1492 |
}
|
|
|
1493 |
|
|
|
1494 |
if (ns_attacks[sblock] == 1) {
|
|
|
1495 |
double p = sblock == 0 ? gfc->nsPsy.last_thm[chn][sb][2] : gfc->thm[chn].s[sb][sblock-1];
|
|
|
1496 |
p = NS_INTERP(p,thmm,NS_PREECHO_ATT2*pcfact);
|
|
|
1497 |
thmm = Min(thmm,p);
|
|
|
1498 |
} else if ((sblock != 0 && ns_attacks[sblock-1] == 3) ||
|
|
|
1499 |
(sblock == 0 && gfc->nsPsy.last_attacks[chn][2] == 3)) {
|
|
|
1500 |
double p = sblock <= 1 ? gfc->nsPsy.last_thm[chn][sb][sblock+1] : gfc->thm[chn].s[sb][0];
|
|
|
1501 |
p = NS_INTERP(p,thmm,NS_PREECHO_ATT2*pcfact);
|
|
|
1502 |
thmm = Min(thmm,p);
|
|
|
1503 |
}
|
|
|
1504 |
|
|
|
1505 |
gfc->en [chn].s[sb][sblock] = enn;
|
|
|
1506 |
gfc->thm[chn].s[sb][sblock] = thmm;
|
|
|
1507 |
}
|
|
|
1508 |
}
|
|
|
1509 |
|
|
|
1510 |
|
|
|
1511 |
/***************************************************************
|
|
|
1512 |
* save some values for analysis of the next granule
|
|
|
1513 |
***************************************************************/
|
|
|
1514 |
|
|
|
1515 |
for ( sblock = 0; sblock < 3; sblock++ )
|
|
|
1516 |
{
|
|
|
1517 |
for ( sb = 0; sb < NBPSY_s; sb++ )
|
|
|
1518 |
{
|
|
|
1519 |
gfc->nsPsy.last_thm[chn][sb][sblock] = gfc->thm[chn].s[sb][sblock];
|
|
|
1520 |
}
|
|
|
1521 |
}
|
|
|
1522 |
|
|
|
1523 |
for(i=0;i<3;i++)
|
|
|
1524 |
gfc->nsPsy.last_attacks[chn][i] = ns_attacks[i];
|
|
|
1525 |
|
|
|
1526 |
} /* end loop over chn */
|
|
|
1527 |
|
|
|
1528 |
|
|
|
1529 |
|
|
|
1530 |
/***************************************************************
|
|
|
1531 |
* compute M/S thresholds
|
|
|
1532 |
***************************************************************/
|
|
|
1533 |
|
|
|
1534 |
/* from Johnston & Ferreira 1992 ICASSP paper */
|
|
|
1535 |
|
|
|
1536 |
if ( numchn==4 /* mid/side and r/l */) {
|
|
|
1537 |
FLOAT8 rside,rmid,mld;
|
|
|
1538 |
int chmid=2,chside=3;
|
|
|
1539 |
|
|
|
1540 |
for ( sb = 0; sb < NBPSY_l; sb++ ) {
|
|
|
1541 |
/* use this fix if L & R masking differs by 2db or less */
|
|
|
1542 |
/* if db = 10*log10(x2/x1) < 2 */
|
|
|
1543 |
/* if (x2 < 1.58*x1) { */
|
|
|
1544 |
if (gfc->thm[0].l[sb] <= 1.58*gfc->thm[1].l[sb]
|
|
|
1545 |
&& gfc->thm[1].l[sb] <= 1.58*gfc->thm[0].l[sb]) {
|
|
|
1546 |
|
|
|
1547 |
mld = gfc->mld_l[sb]*gfc->en[chside].l[sb];
|
|
|
1548 |
rmid = Max(gfc->thm[chmid].l[sb], Min(gfc->thm[chside].l[sb],mld));
|
|
|
1549 |
|
|
|
1550 |
mld = gfc->mld_l[sb]*gfc->en[chmid].l[sb];
|
|
|
1551 |
rside = Max(gfc->thm[chside].l[sb],Min(gfc->thm[chmid].l[sb],mld));
|
|
|
1552 |
|
|
|
1553 |
gfc->thm[chmid].l[sb]=rmid;
|
|
|
1554 |
gfc->thm[chside].l[sb]=rside;
|
|
|
1555 |
}
|
|
|
1556 |
}
|
|
|
1557 |
for ( sb = 0; sb < NBPSY_s; sb++ ) {
|
|
|
1558 |
for ( sblock = 0; sblock < 3; sblock++ ) {
|
|
|
1559 |
if (gfc->thm[0].s[sb][sblock] <= 1.58*gfc->thm[1].s[sb][sblock]
|
|
|
1560 |
&& gfc->thm[1].s[sb][sblock] <= 1.58*gfc->thm[0].s[sb][sblock]) {
|
|
|
1561 |
|
|
|
1562 |
mld = gfc->mld_s[sb]*gfc->en[chside].s[sb][sblock];
|
|
|
1563 |
rmid = Max(gfc->thm[chmid].s[sb][sblock],Min(gfc->thm[chside].s[sb][sblock],mld));
|
|
|
1564 |
|
|
|
1565 |
mld = gfc->mld_s[sb]*gfc->en[chmid].s[sb][sblock];
|
|
|
1566 |
rside = Max(gfc->thm[chside].s[sb][sblock],Min(gfc->thm[chmid].s[sb][sblock],mld));
|
|
|
1567 |
|
|
|
1568 |
gfc->thm[chmid].s[sb][sblock]=rmid;
|
|
|
1569 |
gfc->thm[chside].s[sb][sblock]=rside;
|
|
|
1570 |
}
|
|
|
1571 |
}
|
|
|
1572 |
}
|
|
|
1573 |
}
|
|
|
1574 |
|
|
|
1575 |
|
|
|
1576 |
/* Naoki Shibata 2000 */
|
|
|
1577 |
|
|
|
1578 |
#define NS_MSFIX 3.5
|
|
|
1579 |
|
|
|
1580 |
if (numchn == 4) {
|
|
|
1581 |
FLOAT msfix = NS_MSFIX;
|
|
|
1582 |
if (gfc->nsPsy.safejoint) msfix = 1;
|
|
|
1583 |
|
|
|
1584 |
for ( sb = 0; sb < NBPSY_l; sb++ )
|
|
|
1585 |
{
|
|
|
1586 |
FLOAT8 thmL,thmR,thmM,thmS,ath;
|
|
|
1587 |
ath = (gfc->ATH->cb[(gfc->bu_l[sb] + gfc->bo_l[sb])/2])*pow(10,-gfp->ATHlower/10.0);
|
|
|
1588 |
thmL = Max(gfc->thm[0].l[sb],ath);
|
|
|
1589 |
thmR = Max(gfc->thm[1].l[sb],ath);
|
|
|
1590 |
thmM = Max(gfc->thm[2].l[sb],ath);
|
|
|
1591 |
thmS = Max(gfc->thm[3].l[sb],ath);
|
|
|
1592 |
|
|
|
1593 |
if (thmL*msfix < (thmM+thmS)/2) {
|
|
|
1594 |
FLOAT8 f = thmL*msfix / ((thmM+thmS)/2);
|
|
|
1595 |
thmM *= f;
|
|
|
1596 |
thmS *= f;
|
|
|
1597 |
}
|
|
|
1598 |
if (thmR*msfix < (thmM+thmS)/2) {
|
|
|
1599 |
FLOAT8 f = thmR*msfix / ((thmM+thmS)/2);
|
|
|
1600 |
thmM *= f;
|
|
|
1601 |
thmS *= f;
|
|
|
1602 |
}
|
|
|
1603 |
|
|
|
1604 |
gfc->thm[2].l[sb] = Min(thmM,gfc->thm[2].l[sb]);
|
|
|
1605 |
gfc->thm[3].l[sb] = Min(thmS,gfc->thm[3].l[sb]);
|
|
|
1606 |
}
|
|
|
1607 |
|
|
|
1608 |
for ( sb = 0; sb < NBPSY_s; sb++ ) {
|
|
|
1609 |
for ( sblock = 0; sblock < 3; sblock++ ) {
|
|
|
1610 |
FLOAT8 thmL,thmR,thmM,thmS,ath;
|
|
|
1611 |
ath = (gfc->ATH->cb[(gfc->bu_s[sb] + gfc->bo_s[sb])/2])*pow(10,-gfp->ATHlower/10.0);
|
|
|
1612 |
thmL = Max(gfc->thm[0].s[sb][sblock],ath);
|
|
|
1613 |
thmR = Max(gfc->thm[1].s[sb][sblock],ath);
|
|
|
1614 |
thmM = Max(gfc->thm[2].s[sb][sblock],ath);
|
|
|
1615 |
thmS = Max(gfc->thm[3].s[sb][sblock],ath);
|
|
|
1616 |
|
|
|
1617 |
if (thmL*msfix < (thmM+thmS)/2) {
|
|
|
1618 |
FLOAT8 f = thmL*msfix / ((thmM+thmS)/2);
|
|
|
1619 |
thmM *= f;
|
|
|
1620 |
thmS *= f;
|
|
|
1621 |
}
|
|
|
1622 |
if (thmR*msfix < (thmM+thmS)/2) {
|
|
|
1623 |
FLOAT8 f = thmR*msfix / ((thmM+thmS)/2);
|
|
|
1624 |
thmM *= f;
|
|
|
1625 |
thmS *= f;
|
|
|
1626 |
}
|
|
|
1627 |
|
|
|
1628 |
gfc->thm[2].s[sb][sblock] = Min(gfc->thm[2].s[sb][sblock],thmM);
|
|
|
1629 |
gfc->thm[3].s[sb][sblock] = Min(gfc->thm[3].s[sb][sblock],thmS);
|
|
|
1630 |
}
|
|
|
1631 |
}
|
|
|
1632 |
}
|
|
|
1633 |
|
|
|
1634 |
ms_ratio_l = 0;
|
|
|
1635 |
ms_ratio_s = 0;
|
|
|
1636 |
|
|
|
1637 |
|
|
|
1638 |
/***************************************************************
|
|
|
1639 |
* compute estimation of the amount of bit used in the granule
|
|
|
1640 |
***************************************************************/
|
|
|
1641 |
|
|
|
1642 |
for(chn=0;chn<numchn;chn++)
|
|
|
1643 |
{
|
|
|
1644 |
{
|
|
|
1645 |
static FLOAT8 regcoef[] = {
|
|
|
1646 |
1124.23,10.0583,10.7484,7.29006,16.2714,6.2345,4.09743,3.05468,3.33196,2.54688,
|
|
|
1647 |
3.68168,5.83109,2.93817,-8.03277,-10.8458,8.48777,9.13182,2.05212,8.6674,50.3937,73.267,97.5664,0
|
|
|
1648 |
};
|
|
|
1649 |
|
|
|
1650 |
FLOAT8 msum = regcoef[0]/4;
|
|
|
1651 |
int sb;
|
|
|
1652 |
|
|
|
1653 |
for ( sb = 0; sb < NBPSY_l; sb++ )
|
|
|
1654 |
{
|
|
|
1655 |
FLOAT8 t;
|
|
|
1656 |
|
|
|
1657 |
if (gfc->thm[chn].l[sb]*gfc->masking_lower != 0 &&
|
|
|
1658 |
gfc->en[chn].l[sb]/(gfc->thm[chn].l[sb]*gfc->masking_lower) > 1)
|
|
|
1659 |
t = log(gfc->en[chn].l[sb]/(gfc->thm[chn].l[sb]*gfc->masking_lower));
|
|
|
1660 |
else
|
|
|
1661 |
t = 0;
|
|
|
1662 |
msum += regcoef[sb+1] * t;
|
|
|
1663 |
}
|
|
|
1664 |
|
|
|
1665 |
gfc->nsPsy.pe_l[chn] = msum;
|
|
|
1666 |
}
|
|
|
1667 |
|
|
|
1668 |
{
|
|
|
1669 |
static FLOAT8 regcoef[] = {
|
|
|
1670 |
1236.28,0,0,0,0.434542,25.0738,0,0,0,19.5442,19.7486,60,100,0
|
|
|
1671 |
};
|
|
|
1672 |
|
|
|
1673 |
FLOAT8 msum = regcoef[0]/4;
|
|
|
1674 |
int sb,sblock;
|
|
|
1675 |
|
|
|
1676 |
for(sblock=0;sblock<3;sblock++)
|
|
|
1677 |
{
|
|
|
1678 |
for ( sb = 0; sb < NBPSY_s; sb++ )
|
|
|
1679 |
{
|
|
|
1680 |
FLOAT8 t;
|
|
|
1681 |
|
|
|
1682 |
if (gfc->thm[chn].s[sb][sblock] * gfc->masking_lower != 0 &&
|
|
|
1683 |
gfc->en[chn].s[sb][sblock] / (gfc->thm[chn].s[sb][sblock] * gfc->masking_lower) > 1)
|
|
|
1684 |
t = log(gfc->en[chn].s[sb][sblock] / (gfc->thm[chn].s[sb][sblock] * gfc->masking_lower));
|
|
|
1685 |
else
|
|
|
1686 |
t = 0;
|
|
|
1687 |
msum += regcoef[sb+1] * t;
|
|
|
1688 |
}
|
|
|
1689 |
}
|
|
|
1690 |
|
|
|
1691 |
gfc->nsPsy.pe_s[chn] = msum;
|
|
|
1692 |
}
|
|
|
1693 |
|
|
|
1694 |
//gfc->pe[chn] -= 150;
|
|
|
1695 |
}
|
|
|
1696 |
|
|
|
1697 |
/***************************************************************
|
|
|
1698 |
* determine final block type
|
|
|
1699 |
***************************************************************/
|
|
|
1700 |
|
|
|
1701 |
for (chn=0; chn<gfc->channels_out; chn++) {
|
|
|
1702 |
blocktype[chn] = NORM_TYPE;
|
|
|
1703 |
}
|
|
|
1704 |
|
|
|
1705 |
if (gfc->channels_out==2) {
|
|
|
1706 |
if (!gfp->allow_diff_short || gfp->mode==JOINT_STEREO) {
|
|
|
1707 |
/* force both channels to use the same block type */
|
|
|
1708 |
/* this is necessary if the frame is to be encoded in ms_stereo. */
|
|
|
1709 |
/* But even without ms_stereo, FhG does this */
|
|
|
1710 |
int bothlong= (uselongblock[0] && uselongblock[1]);
|
|
|
1711 |
if (!bothlong) {
|
|
|
1712 |
uselongblock[0]=0;
|
|
|
1713 |
uselongblock[1]=0;
|
|
|
1714 |
}
|
|
|
1715 |
}
|
|
|
1716 |
}
|
|
|
1717 |
|
|
|
1718 |
/* update the blocktype of the previous granule, since it depends on what
|
|
|
1719 |
* happend in this granule */
|
|
|
1720 |
for (chn=0; chn<gfc->channels_out; chn++) {
|
|
|
1721 |
if ( uselongblock[chn])
|
|
|
1722 |
{ /* no attack : use long blocks */
|
|
|
1723 |
assert( gfc->blocktype_old[chn] != START_TYPE );
|
|
|
1724 |
switch( gfc->blocktype_old[chn] )
|
|
|
1725 |
{
|
|
|
1726 |
case NORM_TYPE:
|
|
|
1727 |
case STOP_TYPE:
|
|
|
1728 |
blocktype[chn] = NORM_TYPE;
|
|
|
1729 |
break;
|
|
|
1730 |
case SHORT_TYPE:
|
|
|
1731 |
blocktype[chn] = STOP_TYPE;
|
|
|
1732 |
break;
|
|
|
1733 |
}
|
|
|
1734 |
} else {
|
|
|
1735 |
/* attack : use short blocks */
|
|
|
1736 |
blocktype[chn] = SHORT_TYPE;
|
|
|
1737 |
if ( gfc->blocktype_old[chn] == NORM_TYPE ) {
|
|
|
1738 |
gfc->blocktype_old[chn] = START_TYPE;
|
|
|
1739 |
}
|
|
|
1740 |
if ( gfc->blocktype_old[chn] == STOP_TYPE ) {
|
|
|
1741 |
gfc->blocktype_old[chn] = SHORT_TYPE ;
|
|
|
1742 |
}
|
|
|
1743 |
}
|
|
|
1744 |
|
|
|
1745 |
blocktype_d[chn] = gfc->blocktype_old[chn]; /* value returned to calling program */
|
|
|
1746 |
gfc->blocktype_old[chn] = blocktype[chn]; /* save for next call to l3psy_anal */
|
|
|
1747 |
}
|
|
|
1748 |
|
|
|
1749 |
/*********************************************************************
|
|
|
1750 |
* compute the value of PE to return (one granule delay)
|
|
|
1751 |
*********************************************************************/
|
|
|
1752 |
for(chn=0;chn<numchn;chn++)
|
|
|
1753 |
{
|
|
|
1754 |
if (chn < 2) {
|
|
|
1755 |
if (blocktype_d[chn] == SHORT_TYPE) {
|
|
|
1756 |
percep_entropy[chn] = pe_s[chn];
|
|
|
1757 |
} else {
|
|
|
1758 |
percep_entropy[chn] = pe_l[chn];
|
|
|
1759 |
}
|
|
|
1760 |
if (gfp->analysis) gfc->pinfo->pe[gr_out][chn] = percep_entropy[chn];
|
|
|
1761 |
} else {
|
|
|
1762 |
if (blocktype_d[0] == SHORT_TYPE) {
|
|
|
1763 |
percep_MS_entropy[chn-2] = pe_s[chn];
|
|
|
1764 |
} else {
|
|
|
1765 |
percep_MS_entropy[chn-2] = pe_l[chn];
|
|
|
1766 |
}
|
|
|
1767 |
if (gfp->analysis) gfc->pinfo->pe[gr_out][chn] = percep_MS_entropy[chn-2];
|
|
|
1768 |
}
|
|
|
1769 |
}
|
|
|
1770 |
|
|
|
1771 |
|
|
|
1772 |
return 0;
|
|
|
1773 |
}
|
|
|
1774 |
|
|
|
1775 |
|
|
|
1776 |
|
|
|
1777 |
|
|
|
1778 |
|
|
|
1779 |
/*
|
|
|
1780 |
* The spreading function. Values returned in units of energy
|
|
|
1781 |
*/
|
|
|
1782 |
FLOAT8 s3_func(FLOAT8 bark) {
|
|
|
1783 |
|
|
|
1784 |
FLOAT8 tempx,x,tempy,temp;
|
|
|
1785 |
tempx = bark;
|
|
|
1786 |
if (tempx>=0) tempx *= 3;
|
|
|
1787 |
else tempx *=1.5;
|
|
|
1788 |
|
|
|
1789 |
if(tempx>=0.5 && tempx<=2.5)
|
|
|
1790 |
{
|
|
|
1791 |
temp = tempx - 0.5;
|
|
|
1792 |
x = 8.0 * (temp*temp - 2.0 * temp);
|
|
|
1793 |
}
|
|
|
1794 |
else x = 0.0;
|
|
|
1795 |
tempx += 0.474;
|
|
|
1796 |
tempy = 15.811389 + 7.5*tempx - 17.5*sqrt(1.0+tempx*tempx);
|
|
|
1797 |
|
|
|
1798 |
if (tempy <= -60.0) return 0.0;
|
|
|
1799 |
|
|
|
1800 |
tempx = exp( (x + tempy)*LN_TO_LOG10 );
|
|
|
1801 |
|
|
|
1802 |
/* Normalization. The spreading function should be normalized so that:
|
|
|
1803 |
+inf
|
|
|
1804 |
/
|
|
|
1805 |
| s3 [ bark ] d(bark) = 1
|
|
|
1806 |
/
|
|
|
1807 |
-inf
|
|
|
1808 |
*/
|
|
|
1809 |
tempx /= .6609193;
|
|
|
1810 |
return tempx;
|
|
|
1811 |
|
|
|
1812 |
}
|
|
|
1813 |
|
|
|
1814 |
|
|
|
1815 |
|
|
|
1816 |
|
|
|
1817 |
|
|
|
1818 |
|
|
|
1819 |
|
|
|
1820 |
|
|
|
1821 |
int L3para_read(lame_global_flags * gfp, FLOAT8 sfreq, int *numlines_l,int *numlines_s,
|
|
|
1822 |
FLOAT8 *minval,
|
|
|
1823 |
FLOAT8 s3_l[CBANDS][CBANDS], FLOAT8 s3_s[CBANDS][CBANDS],
|
|
|
1824 |
FLOAT8 *SNR,
|
|
|
1825 |
int *bu_l, int *bo_l, FLOAT8 *w1_l, FLOAT8 *w2_l,
|
|
|
1826 |
int *bu_s, int *bo_s, FLOAT8 *w1_s, FLOAT8 *w2_s,
|
|
|
1827 |
int *npart_l_orig,int *npart_l,int *npart_s_orig,int *npart_s)
|
|
|
1828 |
{
|
|
|
1829 |
lame_internal_flags *gfc=gfp->internal_flags;
|
|
|
1830 |
|
|
|
1831 |
|
|
|
1832 |
FLOAT8 freq_tp;
|
|
|
1833 |
FLOAT8 bval_l[CBANDS], bval_s[CBANDS];
|
|
|
1834 |
FLOAT8 bval_l_width[CBANDS], bval_s_width[CBANDS];
|
|
|
1835 |
int cbmax=0, cbmax_tp;
|
|
|
1836 |
int sbmax ;
|
|
|
1837 |
int i,j;
|
|
|
1838 |
int freq_scale=1;
|
|
|
1839 |
int partition[HBLKSIZE];
|
|
|
1840 |
int loop, k2;
|
|
|
1841 |
|
|
|
1842 |
|
|
|
1843 |
|
|
|
1844 |
/* compute numlines, the number of spectral lines in each partition band */
|
|
|
1845 |
/* each partition band should be about DELBARK wide. */
|
|
|
1846 |
j=0;
|
|
|
1847 |
for(i=0;i<CBANDS;i++)
|
|
|
1848 |
{
|
|
|
1849 |
FLOAT8 ji, bark1,bark2;
|
|
|
1850 |
int k,j2;
|
|
|
1851 |
|
|
|
1852 |
j2 = j;
|
|
|
1853 |
j2 = Min(j2,BLKSIZE/2);
|
|
|
1854 |
|
|
|
1855 |
do {
|
|
|
1856 |
/* find smallest j2 >= j so that (bark - bark_l[i-1]) < DELBARK */
|
|
|
1857 |
ji = j;
|
|
|
1858 |
bark1 = freq2bark(sfreq*ji/BLKSIZE);
|
|
|
1859 |
|
|
|
1860 |
++j2;
|
|
|
1861 |
ji = j2;
|
|
|
1862 |
bark2 = freq2bark(sfreq*ji/BLKSIZE);
|
|
|
1863 |
} while ((bark2 - bark1) < DELBARK && j2<=BLKSIZE/2);
|
|
|
1864 |
|
|
|
1865 |
for (k=j; k<j2; ++k)
|
|
|
1866 |
partition[k]=i;
|
|
|
1867 |
numlines_l[i]=(j2-j);
|
|
|
1868 |
j = j2;
|
|
|
1869 |
if (j > BLKSIZE/2) break;
|
|
|
1870 |
}
|
|
|
1871 |
*npart_l_orig = i+1;
|
|
|
1872 |
assert(*npart_l_orig <= CBANDS);
|
|
|
1873 |
|
|
|
1874 |
/* compute which partition bands are in which scalefactor bands */
|
|
|
1875 |
{ int i1,i2,sfb,start,end;
|
|
|
1876 |
FLOAT8 freq1,freq2;
|
|
|
1877 |
for ( sfb = 0; sfb < SBMAX_l; sfb++ ) {
|
|
|
1878 |
start = gfc->scalefac_band.l[ sfb ];
|
|
|
1879 |
end = gfc->scalefac_band.l[ sfb+1 ];
|
|
|
1880 |
freq1 = sfreq*(start-.5)/(2*576);
|
|
|
1881 |
freq2 = sfreq*(end-1+.5)/(2*576);
|
|
|
1882 |
|
|
|
1883 |
i1 = floor(.5 + BLKSIZE*freq1/sfreq);
|
|
|
1884 |
if (i1<0) i1=0;
|
|
|
1885 |
i2 = floor(.5 + BLKSIZE*freq2/sfreq);
|
|
|
1886 |
if (i2>BLKSIZE/2) i2=BLKSIZE/2;
|
|
|
1887 |
|
|
|
1888 |
// DEBUGF(gfc,"longblock: old: (%i,%i) new: (%i,%i) %i %i \n",bu_l[sfb],bo_l[sfb],partition[i1],partition[i2],i1,i2);
|
|
|
1889 |
|
|
|
1890 |
w1_l[sfb]=.5;
|
|
|
1891 |
w2_l[sfb]=.5;
|
|
|
1892 |
bu_l[sfb]=partition[i1];
|
|
|
1893 |
bo_l[sfb]=partition[i2];
|
|
|
1894 |
|
|
|
1895 |
}
|
|
|
1896 |
}
|
|
|
1897 |
|
|
|
1898 |
|
|
|
1899 |
/* compute bark value and ATH of each critical band */
|
|
|
1900 |
j = 0;
|
|
|
1901 |
for ( i = 0; i < *npart_l_orig; i++ ) {
|
|
|
1902 |
int k;
|
|
|
1903 |
FLOAT8 bark1,bark2;
|
|
|
1904 |
/* FLOAT8 mval,freq; */
|
|
|
1905 |
|
|
|
1906 |
// Calculating the medium bark scaled frequency of the spectral lines
|
|
|
1907 |
// from j ... j + numlines[i]-1 (=spectral lines in parition band i)
|
|
|
1908 |
|
|
|
1909 |
k = numlines_l[i] - 1;
|
|
|
1910 |
bark1 = freq2bark(sfreq*(j+0)/BLKSIZE);
|
|
|
1911 |
bark2 = freq2bark(sfreq*(j+k)/BLKSIZE);
|
|
|
1912 |
bval_l[i] = .5*(bark1+bark2);
|
|
|
1913 |
|
|
|
1914 |
bark1 = freq2bark(sfreq*(j+0-.5)/BLKSIZE);
|
|
|
1915 |
bark2 = freq2bark(sfreq*(j+k+.5)/BLKSIZE);
|
|
|
1916 |
bval_l_width[i] = bark2-bark1;
|
|
|
1917 |
|
|
|
1918 |
gfc->ATH->cb [i] = 1.e37; // preinit for minimum search
|
|
|
1919 |
for (k=0; k < numlines_l[i]; k++, j++) {
|
|
|
1920 |
FLOAT8 freq = sfreq*j/(1000.0*BLKSIZE);
|
|
|
1921 |
FLOAT8 level;
|
|
|
1922 |
assert( freq <= 24 ); // or only '<'
|
|
|
1923 |
// freq = Min(.1,freq); // ATH below 100 Hz constant, not further climbing
|
|
|
1924 |
level = ATHformula (freq*1000, gfp) - 20; // scale to FFT units; returned value is in dB
|
|
|
1925 |
level = pow ( 10., 0.1*level ); // convert from dB -> energy
|
|
|
1926 |
level *= numlines_l [i];
|
|
|
1927 |
if ( level < gfc->ATH->cb [i] )
|
|
|
1928 |
gfc->ATH->cb [i] = level;
|
|
|
1929 |
}
|
|
|
1930 |
|
|
|
1931 |
|
|
|
1932 |
}
|
|
|
1933 |
|
|
|
1934 |
/* MINVAL. For low freq, the strength of the masking is limited by minval
|
|
|
1935 |
* this is an ISO MPEG1 thing, dont know if it is really needed */
|
|
|
1936 |
for(i=0;i<*npart_l_orig;i++){
|
|
|
1937 |
double x = (-20+bval_l[i]*20.0/10.0);
|
|
|
1938 |
if (bval_l[i]>10) x = 0;
|
|
|
1939 |
minval[i]=pow(10.0,x/10);
|
|
|
1940 |
}
|
|
|
1941 |
|
|
|
1942 |
|
|
|
1943 |
|
|
|
1944 |
|
|
|
1945 |
|
|
|
1946 |
|
|
|
1947 |
|
|
|
1948 |
/************************************************************************/
|
|
|
1949 |
/* SHORT BLOCKS */
|
|
|
1950 |
/************************************************************************/
|
|
|
1951 |
|
|
|
1952 |
/* compute numlines */
|
|
|
1953 |
j=0;
|
|
|
1954 |
for(i=0;i<CBANDS;i++)
|
|
|
1955 |
{
|
|
|
1956 |
FLOAT8 ji, bark1,bark2;
|
|
|
1957 |
int k,j2;
|
|
|
1958 |
|
|
|
1959 |
j2 = j;
|
|
|
1960 |
j2 = Min(j2,BLKSIZE_s/2);
|
|
|
1961 |
|
|
|
1962 |
do {
|
|
|
1963 |
/* find smallest j2 >= j so that (bark - bark_s[i-1]) < DELBARK */
|
|
|
1964 |
ji = j;
|
|
|
1965 |
bark1 = freq2bark(sfreq*ji/BLKSIZE_s);
|
|
|
1966 |
|
|
|
1967 |
++j2;
|
|
|
1968 |
ji = j2;
|
|
|
1969 |
bark2 = freq2bark(sfreq*ji/BLKSIZE_s);
|
|
|
1970 |
|
|
|
1971 |
} while ((bark2 - bark1) < DELBARK && j2<=BLKSIZE_s/2);
|
|
|
1972 |
|
|
|
1973 |
for (k=j; k<j2; ++k)
|
|
|
1974 |
partition[k]=i;
|
|
|
1975 |
numlines_s[i]=(j2-j);
|
|
|
1976 |
j = j2;
|
|
|
1977 |
if (j > BLKSIZE_s/2) break;
|
|
|
1978 |
}
|
|
|
1979 |
*npart_s_orig = i+1;
|
|
|
1980 |
assert(*npart_s_orig <= CBANDS);
|
|
|
1981 |
|
|
|
1982 |
/* compute which partition bands are in which scalefactor bands */
|
|
|
1983 |
{ int i1,i2,sfb,start,end;
|
|
|
1984 |
FLOAT8 freq1,freq2;
|
|
|
1985 |
for ( sfb = 0; sfb < SBMAX_s; sfb++ ) {
|
|
|
1986 |
start = gfc->scalefac_band.s[ sfb ];
|
|
|
1987 |
end = gfc->scalefac_band.s[ sfb+1 ];
|
|
|
1988 |
freq1 = sfreq*(start-.5)/(2*192);
|
|
|
1989 |
freq2 = sfreq*(end-1+.5)/(2*192);
|
|
|
1990 |
|
|
|
1991 |
i1 = floor(.5 + BLKSIZE_s*freq1/sfreq);
|
|
|
1992 |
if (i1<0) i1=0;
|
|
|
1993 |
i2 = floor(.5 + BLKSIZE_s*freq2/sfreq);
|
|
|
1994 |
if (i2>BLKSIZE_s/2) i2=BLKSIZE_s/2;
|
|
|
1995 |
|
|
|
1996 |
//DEBUGF(gfc,"shortblock: old: (%i,%i) new: (%i,%i) %i %i \n",bu_s[sfb],bo_s[sfb], partition[i1],partition[i2],i1,i2);
|
|
|
1997 |
|
|
|
1998 |
w1_s[sfb]=.5;
|
|
|
1999 |
w2_s[sfb]=.5;
|
|
|
2000 |
bu_s[sfb]=partition[i1];
|
|
|
2001 |
bo_s[sfb]=partition[i2];
|
|
|
2002 |
|
|
|
2003 |
}
|
|
|
2004 |
}
|
|
|
2005 |
|
|
|
2006 |
|
|
|
2007 |
|
|
|
2008 |
|
|
|
2009 |
|
|
|
2010 |
/* compute bark values of each critical band */
|
|
|
2011 |
j = 0;
|
|
|
2012 |
for(i=0;i<*npart_s_orig;i++)
|
|
|
2013 |
{
|
|
|
2014 |
int k;
|
|
|
2015 |
FLOAT8 bark1,bark2,snr;
|
|
|
2016 |
k = numlines_s[i] - 1;
|
|
|
2017 |
|
|
|
2018 |
bark1 = freq2bark (sfreq*(j+0)/BLKSIZE_s);
|
|
|
2019 |
bark2 = freq2bark (sfreq*(j+k)/BLKSIZE_s);
|
|
|
2020 |
bval_s[i] = .5*(bark1+bark2);
|
|
|
2021 |
|
|
|
2022 |
bark1 = freq2bark (sfreq*(j+0-.5)/BLKSIZE_s);
|
|
|
2023 |
bark2 = freq2bark (sfreq*(j+k+.5)/BLKSIZE_s);
|
|
|
2024 |
bval_s_width[i] = bark2-bark1;
|
|
|
2025 |
j += k+1;
|
|
|
2026 |
|
|
|
2027 |
/* SNR formula */
|
|
|
2028 |
if (bval_s[i]<13)
|
|
|
2029 |
snr=-8.25;
|
|
|
2030 |
else
|
|
|
2031 |
snr = -4.5 * (bval_s[i]-13)/(24.0-13.0) +
|
|
|
2032 |
-8.25*(bval_s[i]-24)/(13.0-24.0);
|
|
|
2033 |
|
|
|
2034 |
SNR[i]=pow(10.0,snr/10.0);
|
|
|
2035 |
}
|
|
|
2036 |
|
|
|
2037 |
|
|
|
2038 |
|
|
|
2039 |
|
|
|
2040 |
|
|
|
2041 |
|
|
|
2042 |
/************************************************************************
|
|
|
2043 |
* Now compute the spreading function, s[j][i], the value of the spread-*
|
|
|
2044 |
* ing function, centered at band j, for band i, store for later use *
|
|
|
2045 |
************************************************************************/
|
|
|
2046 |
/* i.e.: sum over j to spread into signal barkval=i
|
|
|
2047 |
NOTE: i and j are used opposite as in the ISO docs */
|
|
|
2048 |
for(i=0;i<*npart_l_orig;i++) {
|
|
|
2049 |
for(j=0;j<*npart_l_orig;j++) {
|
|
|
2050 |
s3_l[i][j]=s3_func(bval_l[i]-bval_l[j])*bval_l_width[j];
|
|
|
2051 |
}
|
|
|
2052 |
}
|
|
|
2053 |
for(i=0;i<*npart_s_orig;i++) {
|
|
|
2054 |
for(j=0;j<*npart_s_orig;j++) {
|
|
|
2055 |
s3_s[i][j]=s3_func(bval_s[i]-bval_s[j])*bval_s_width[j];
|
|
|
2056 |
}
|
|
|
2057 |
}
|
|
|
2058 |
|
|
|
2059 |
|
|
|
2060 |
|
|
|
2061 |
|
|
|
2062 |
/* compute: */
|
|
|
2063 |
/* npart_l_orig = number of partition bands before convolution */
|
|
|
2064 |
/* npart_l = number of partition bands after convolution */
|
|
|
2065 |
|
|
|
2066 |
*npart_l=bo_l[NBPSY_l-1]+1;
|
|
|
2067 |
*npart_s=bo_s[NBPSY_s-1]+1;
|
|
|
2068 |
|
|
|
2069 |
assert(*npart_l <= *npart_l_orig);
|
|
|
2070 |
assert(*npart_s <= *npart_s_orig);
|
|
|
2071 |
|
|
|
2072 |
|
|
|
2073 |
/* setup stereo demasking thresholds */
|
|
|
2074 |
/* formula reverse enginerred from plot in paper */
|
|
|
2075 |
for ( i = 0; i < NBPSY_s; i++ ) {
|
|
|
2076 |
FLOAT8 arg,mld;
|
|
|
2077 |
arg = freq2bark(sfreq*gfc->scalefac_band.s[i]/(2*192));
|
|
|
2078 |
arg = (Min(arg, 15.5)/15.5);
|
|
|
2079 |
|
|
|
2080 |
mld = 1.25*(1-cos(PI*arg))-2.5;
|
|
|
2081 |
gfc->mld_s[i] = pow(10.0,mld);
|
|
|
2082 |
}
|
|
|
2083 |
for ( i = 0; i < NBPSY_l; i++ ) {
|
|
|
2084 |
FLOAT8 arg,mld;
|
|
|
2085 |
arg = freq2bark(sfreq*gfc->scalefac_band.l[i]/(2*576));
|
|
|
2086 |
arg = (Min(arg, 15.5)/15.5);
|
|
|
2087 |
|
|
|
2088 |
mld = 1.25*(1-cos(PI*arg))-2.5;
|
|
|
2089 |
gfc->mld_l[i] = pow(10.0,mld);
|
|
|
2090 |
}
|
|
|
2091 |
|
|
|
2092 |
#define temporalmask_sustain_sec 0.01
|
|
|
2093 |
|
|
|
2094 |
/* setup temporal masking */
|
|
|
2095 |
gfc->decay = exp(-1.0*LOG10/(temporalmask_sustain_sec*sfreq/192.0));
|
|
|
2096 |
|
|
|
2097 |
return 0;
|
|
|
2098 |
}
|
|
|
2099 |
|
|
|
2100 |
|
|
|
2101 |
|
|
|
2102 |
|
|
|
2103 |
|
|
|
2104 |
|
|
|
2105 |
|
|
|
2106 |
|
|
|
2107 |
|
|
|
2108 |
|
|
|
2109 |
|
|
|
2110 |
|
|
|
2111 |
|
|
|
2112 |
|
|
|
2113 |
|
|
|
2114 |
|
|
|
2115 |
|
|
|
2116 |
|
|
|
2117 |
|
|
|
2118 |
int psymodel_init(lame_global_flags *gfp)
|
|
|
2119 |
{
|
|
|
2120 |
lame_internal_flags *gfc=gfp->internal_flags;
|
|
|
2121 |
int i,j,b,sb,k,samplerate;
|
|
|
2122 |
FLOAT cwlimit;
|
|
|
2123 |
|
|
|
2124 |
samplerate = gfp->out_samplerate;
|
|
|
2125 |
gfc->ms_ener_ratio_old=.25;
|
|
|
2126 |
gfc->blocktype_old[0]=STOP_TYPE;
|
|
|
2127 |
gfc->blocktype_old[1]=STOP_TYPE;
|
|
|
2128 |
gfc->blocktype_old[0]=SHORT_TYPE;
|
|
|
2129 |
gfc->blocktype_old[1]=SHORT_TYPE;
|
|
|
2130 |
|
|
|
2131 |
for (i=0; i<4; ++i) {
|
|
|
2132 |
for (j=0; j<CBANDS; ++j) {
|
|
|
2133 |
gfc->nb_1[i][j]=1e20;
|
|
|
2134 |
gfc->nb_2[i][j]=1e20;
|
|
|
2135 |
}
|
|
|
2136 |
for ( sb = 0; sb < NBPSY_l; sb++ ) {
|
|
|
2137 |
gfc->en[i].l[sb] = 1e20;
|
|
|
2138 |
gfc->thm[i].l[sb] = 1e20;
|
|
|
2139 |
}
|
|
|
2140 |
for (j=0; j<3; ++j) {
|
|
|
2141 |
for ( sb = 0; sb < NBPSY_s; sb++ ) {
|
|
|
2142 |
gfc->en[i].s[sb][j] = 1e20;
|
|
|
2143 |
gfc->thm[i].s[sb][j] = 1e20;
|
|
|
2144 |
}
|
|
|
2145 |
}
|
|
|
2146 |
}
|
|
|
2147 |
for (i=0; i<4; ++i) {
|
|
|
2148 |
for (j=0; j<3; ++j) {
|
|
|
2149 |
for ( sb = 0; sb < NBPSY_s; sb++ ) {
|
|
|
2150 |
gfc->nsPsy.last_thm[i][sb][j] = 1e20;
|
|
|
2151 |
}
|
|
|
2152 |
}
|
|
|
2153 |
}
|
|
|
2154 |
for(i=0;i<4;i++) {
|
|
|
2155 |
for(j=0;j<9;j++)
|
|
|
2156 |
gfc->nsPsy.last_en_subshort[i][j] = 100;
|
|
|
2157 |
for(j=0;j<3;j++)
|
|
|
2158 |
gfc->nsPsy.last_attacks[i][j] = 0;
|
|
|
2159 |
gfc->nsPsy.pe_l[i] = gfc->nsPsy.pe_s[i] = 0;
|
|
|
2160 |
}
|
|
|
2161 |
|
|
|
2162 |
|
|
|
2163 |
|
|
|
2164 |
|
|
|
2165 |
/* gfp->cwlimit = sfreq*j/1024.0; */
|
|
|
2166 |
gfc->cw_lower_index=6;
|
|
|
2167 |
if (gfp->cwlimit>0)
|
|
|
2168 |
cwlimit=gfp->cwlimit;
|
|
|
2169 |
else
|
|
|
2170 |
cwlimit=(FLOAT)8871.7;
|
|
|
2171 |
gfc->cw_upper_index = cwlimit*1024.0/gfp->out_samplerate;
|
|
|
2172 |
gfc->cw_upper_index=Min(HBLKSIZE-4,gfc->cw_upper_index); /* j+3 < HBLKSIZE-1 */
|
|
|
2173 |
gfc->cw_upper_index=Max(6,gfc->cw_upper_index);
|
|
|
2174 |
|
|
|
2175 |
for ( j = 0; j < HBLKSIZE; j++ )
|
|
|
2176 |
gfc->cw[j] = 0.4f;
|
|
|
2177 |
|
|
|
2178 |
|
|
|
2179 |
|
|
|
2180 |
i=L3para_read( gfp,(FLOAT8) samplerate,gfc->numlines_l,gfc->numlines_s,
|
|
|
2181 |
gfc->minval,gfc->s3_l,gfc->s3_s,gfc->SNR_s,gfc->bu_l,
|
|
|
2182 |
gfc->bo_l,gfc->w1_l,gfc->w2_l, gfc->bu_s,gfc->bo_s,
|
|
|
2183 |
gfc->w1_s,gfc->w2_s,&gfc->npart_l_orig,&gfc->npart_l,
|
|
|
2184 |
&gfc->npart_s_orig,&gfc->npart_s );
|
|
|
2185 |
if (i!=0) return -1;
|
|
|
2186 |
|
|
|
2187 |
|
|
|
2188 |
|
|
|
2189 |
/* npart_l_orig = number of partition bands before convolution */
|
|
|
2190 |
/* npart_l = number of partition bands after convolution */
|
|
|
2191 |
|
|
|
2192 |
for (i=0; i<gfc->npart_l; i++) {
|
|
|
2193 |
for (j = 0; j < gfc->npart_l_orig; j++) {
|
|
|
2194 |
if (gfc->s3_l[i][j] != 0.0)
|
|
|
2195 |
break;
|
|
|
2196 |
}
|
|
|
2197 |
gfc->s3ind[i][0] = j;
|
|
|
2198 |
|
|
|
2199 |
for (j = gfc->npart_l_orig - 1; j > 0; j--) {
|
|
|
2200 |
if (gfc->s3_l[i][j] != 0.0)
|
|
|
2201 |
break;
|
|
|
2202 |
}
|
|
|
2203 |
gfc->s3ind[i][1] = j;
|
|
|
2204 |
}
|
|
|
2205 |
|
|
|
2206 |
|
|
|
2207 |
for (i=0; i<gfc->npart_s; i++) {
|
|
|
2208 |
for (j = 0; j < gfc->npart_s_orig; j++) {
|
|
|
2209 |
if (gfc->s3_s[i][j] != 0.0)
|
|
|
2210 |
break;
|
|
|
2211 |
}
|
|
|
2212 |
gfc->s3ind_s[i][0] = j;
|
|
|
2213 |
|
|
|
2214 |
for (j = gfc->npart_s_orig - 1; j > 0; j--) {
|
|
|
2215 |
if (gfc->s3_s[i][j] != 0.0)
|
|
|
2216 |
break;
|
|
|
2217 |
}
|
|
|
2218 |
gfc->s3ind_s[i][1] = j;
|
|
|
2219 |
}
|
|
|
2220 |
|
|
|
2221 |
|
|
|
2222 |
/*
|
|
|
2223 |
#include "debugscalefac.c"
|
|
|
2224 |
*/
|
|
|
2225 |
|
|
|
2226 |
|
|
|
2227 |
|
|
|
2228 |
if (gfc->nsPsy.use) {
|
|
|
2229 |
/* long block spreading function normalization */
|
|
|
2230 |
for ( b = 0;b < gfc->npart_l; b++ ) {
|
|
|
2231 |
for ( k = gfc->s3ind[b][0]; k <= gfc->s3ind[b][1]; k++ ) {
|
|
|
2232 |
// spreading function has been properly normalized by
|
|
|
2233 |
// multiplying by DELBARK/.6609193 = .515.
|
|
|
2234 |
// It looks like Naoki was
|
|
|
2235 |
// way ahead of me and added this factor here!
|
|
|
2236 |
// it is no longer needed.
|
|
|
2237 |
//gfc->s3_l[b][k] *= 0.5;
|
|
|
2238 |
}
|
|
|
2239 |
}
|
|
|
2240 |
/* short block spreading function normalization */
|
|
|
2241 |
// no longer needs to be normalized, but nspsytune wants
|
|
|
2242 |
// SNR_s applied here istead of later to save CPU cycles
|
|
|
2243 |
for ( b = 0;b < gfc->npart_s; b++ ) {
|
|
|
2244 |
FLOAT8 norm=0;
|
|
|
2245 |
for ( k = gfc->s3ind_s[b][0]; k <= gfc->s3ind_s[b][1]; k++ ) {
|
|
|
2246 |
norm += gfc->s3_s[b][k];
|
|
|
2247 |
}
|
|
|
2248 |
for ( k = gfc->s3ind_s[b][0]; k <= gfc->s3ind_s[b][1]; k++ ) {
|
|
|
2249 |
gfc->s3_s[b][k] *= gfc->SNR_s[b] /* / norm */;
|
|
|
2250 |
}
|
|
|
2251 |
}
|
|
|
2252 |
}
|
|
|
2253 |
|
|
|
2254 |
|
|
|
2255 |
|
|
|
2256 |
if (gfc->nsPsy.use) {
|
|
|
2257 |
#if 1
|
|
|
2258 |
/* spread only from npart_l bands. Normally, we use the spreading
|
|
|
2259 |
* function to convolve from npart_l_orig down to npart_l bands
|
|
|
2260 |
*/
|
|
|
2261 |
for(b=0;b<gfc->npart_l;b++)
|
|
|
2262 |
if (gfc->s3ind[b][1] > gfc->npart_l-1) gfc->s3ind[b][1] = gfc->npart_l-1;
|
|
|
2263 |
#endif
|
|
|
2264 |
}
|
|
|
2265 |
|
|
|
2266 |
return 0;
|
|
|
2267 |
}
|
|
|
2268 |
|
|
|
2269 |
|
|
|
2270 |
|
|
|
2271 |
|
|
|
2272 |
|
|
|
2273 |
|