2 |
- |
1 |
/*
|
|
|
2 |
* quantize_pvt source file
|
|
|
3 |
*
|
|
|
4 |
* Copyright (c) 1999 Takehiro TOMINAGA
|
|
|
5 |
*
|
|
|
6 |
* This library is free software; you can redistribute it and/or
|
|
|
7 |
* modify it under the terms of the GNU Library General Public
|
|
|
8 |
* License as published by the Free Software Foundation; either
|
|
|
9 |
* version 2 of the License, or (at your option) any later version.
|
|
|
10 |
*
|
|
|
11 |
* This library is distributed in the hope that it will be useful,
|
|
|
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
14 |
* Library General Public License for more details.
|
|
|
15 |
*
|
|
|
16 |
* You should have received a copy of the GNU Library General Public
|
|
|
17 |
* License along with this library; if not, write to the
|
|
|
18 |
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
|
19 |
* Boston, MA 02111-1307, USA.
|
|
|
20 |
*/
|
|
|
21 |
|
|
|
22 |
/* $Id: quantize_pvt.c,v 1.55 2001/03/05 20:29:24 markt Exp $ */
|
|
|
23 |
|
|
|
24 |
#ifdef HAVE_CONFIG_H
|
|
|
25 |
# include <config.h>
|
|
|
26 |
#endif
|
|
|
27 |
|
|
|
28 |
#include <assert.h>
|
|
|
29 |
#include "util.h"
|
|
|
30 |
#include "lame-analysis.h"
|
|
|
31 |
#include "tables.h"
|
|
|
32 |
#include "reservoir.h"
|
|
|
33 |
#include "quantize_pvt.h"
|
|
|
34 |
|
|
|
35 |
#ifdef WITH_DMALLOC
|
|
|
36 |
#include <dmalloc.h>
|
|
|
37 |
#endif
|
|
|
38 |
|
|
|
39 |
|
|
|
40 |
#define NSATHSCALE 100 // Assuming dynamic range=96dB, this value should be 92
|
|
|
41 |
|
|
|
42 |
const char slen1_tab [16] = { 0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4 };
|
|
|
43 |
const char slen2_tab [16] = { 0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3 };
|
|
|
44 |
|
|
|
45 |
|
|
|
46 |
/*
|
|
|
47 |
The following table is used to implement the scalefactor
|
|
|
48 |
partitioning for MPEG2 as described in section
|
|
|
49 |
2.4.3.2 of the IS. The indexing corresponds to the
|
|
|
50 |
way the tables are presented in the IS:
|
|
|
51 |
|
|
|
52 |
[table_number][row_in_table][column of nr_of_sfb]
|
|
|
53 |
*/
|
|
|
54 |
const int nr_of_sfb_block [6] [3] [4] =
|
|
|
55 |
{
|
|
|
56 |
{
|
|
|
57 |
{6, 5, 5, 5},
|
|
|
58 |
{9, 9, 9, 9},
|
|
|
59 |
{6, 9, 9, 9}
|
|
|
60 |
},
|
|
|
61 |
{
|
|
|
62 |
{6, 5, 7, 3},
|
|
|
63 |
{9, 9, 12, 6},
|
|
|
64 |
{6, 9, 12, 6}
|
|
|
65 |
},
|
|
|
66 |
{
|
|
|
67 |
{11, 10, 0, 0},
|
|
|
68 |
{18, 18, 0, 0},
|
|
|
69 |
{15,18,0,0}
|
|
|
70 |
},
|
|
|
71 |
{
|
|
|
72 |
{7, 7, 7, 0},
|
|
|
73 |
{12, 12, 12, 0},
|
|
|
74 |
{6, 15, 12, 0}
|
|
|
75 |
},
|
|
|
76 |
{
|
|
|
77 |
{6, 6, 6, 3},
|
|
|
78 |
{12, 9, 9, 6},
|
|
|
79 |
{6, 12, 9, 6}
|
|
|
80 |
},
|
|
|
81 |
{
|
|
|
82 |
{8, 8, 5, 0},
|
|
|
83 |
{15,12,9,0},
|
|
|
84 |
{6,18,9,0}
|
|
|
85 |
}
|
|
|
86 |
};
|
|
|
87 |
|
|
|
88 |
|
|
|
89 |
/* Table B.6: layer3 preemphasis */
|
|
|
90 |
const char pretab [SBMAX_l] =
|
|
|
91 |
{
|
|
|
92 |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
93 |
1, 1, 1, 1, 2, 2, 3, 3, 3, 2, 0
|
|
|
94 |
};
|
|
|
95 |
|
|
|
96 |
/*
|
|
|
97 |
Here are MPEG1 Table B.8 and MPEG2 Table B.1
|
|
|
98 |
-- Layer III scalefactor bands.
|
|
|
99 |
Index into this using a method such as:
|
|
|
100 |
idx = fr_ps->header->sampling_frequency
|
|
|
101 |
+ (fr_ps->header->version * 3)
|
|
|
102 |
*/
|
|
|
103 |
|
|
|
104 |
|
|
|
105 |
const scalefac_struct sfBandIndex[9] =
|
|
|
106 |
{
|
|
|
107 |
{ /* Table B.2.b: 22.05 kHz */
|
|
|
108 |
{0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
|
|
|
109 |
{0,4,8,12,18,24,32,42,56,74,100,132,174,192}
|
|
|
110 |
},
|
|
|
111 |
{ /* Table B.2.c: 24 kHz */ /* docs: 332. mpg123(broken): 330 */
|
|
|
112 |
{0,6,12,18,24,30,36,44,54,66,80,96,114,136,162,194,232,278, 332, 394,464,540,576},
|
|
|
113 |
{0,4,8,12,18,26,36,48,62,80,104,136,180,192}
|
|
|
114 |
},
|
|
|
115 |
{ /* Table B.2.a: 16 kHz */
|
|
|
116 |
{0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
|
|
|
117 |
{0,4,8,12,18,26,36,48,62,80,104,134,174,192}
|
|
|
118 |
},
|
|
|
119 |
{ /* Table B.8.b: 44.1 kHz */
|
|
|
120 |
{0,4,8,12,16,20,24,30,36,44,52,62,74,90,110,134,162,196,238,288,342,418,576},
|
|
|
121 |
{0,4,8,12,16,22,30,40,52,66,84,106,136,192}
|
|
|
122 |
},
|
|
|
123 |
{ /* Table B.8.c: 48 kHz */
|
|
|
124 |
{0,4,8,12,16,20,24,30,36,42,50,60,72,88,106,128,156,190,230,276,330,384,576},
|
|
|
125 |
{0,4,8,12,16,22,28,38,50,64,80,100,126,192}
|
|
|
126 |
},
|
|
|
127 |
{ /* Table B.8.a: 32 kHz */
|
|
|
128 |
{0,4,8,12,16,20,24,30,36,44,54,66,82,102,126,156,194,240,296,364,448,550,576},
|
|
|
129 |
{0,4,8,12,16,22,30,42,58,78,104,138,180,192}
|
|
|
130 |
},
|
|
|
131 |
{ /* MPEG-2.5 11.025 kHz */
|
|
|
132 |
{0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
|
|
|
133 |
{0/3,12/3,24/3,36/3,54/3,78/3,108/3,144/3,186/3,240/3,312/3,402/3,522/3,576/3}
|
|
|
134 |
},
|
|
|
135 |
{ /* MPEG-2.5 12 kHz */
|
|
|
136 |
{0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
|
|
|
137 |
{0/3,12/3,24/3,36/3,54/3,78/3,108/3,144/3,186/3,240/3,312/3,402/3,522/3,576/3}
|
|
|
138 |
},
|
|
|
139 |
{ /* MPEG-2.5 8 kHz */
|
|
|
140 |
{0,12,24,36,48,60,72,88,108,132,160,192,232,280,336,400,476,566,568,570,572,574,576},
|
|
|
141 |
{0/3,24/3,48/3,72/3,108/3,156/3,216/3,288/3,372/3,480/3,486/3,492/3,498/3,576/3}
|
|
|
142 |
}
|
|
|
143 |
};
|
|
|
144 |
|
|
|
145 |
|
|
|
146 |
|
|
|
147 |
FLOAT8 pow20[Q_MAX];
|
|
|
148 |
FLOAT8 ipow20[Q_MAX];
|
|
|
149 |
FLOAT8 pow43[PRECALC_SIZE];
|
|
|
150 |
/* initialized in first call to iteration_init */
|
|
|
151 |
FLOAT8 adj43asm[PRECALC_SIZE];
|
|
|
152 |
FLOAT8 adj43[PRECALC_SIZE];
|
|
|
153 |
|
|
|
154 |
/************************************************************************/
|
|
|
155 |
/* initialization for iteration_loop */
|
|
|
156 |
/************************************************************************/
|
|
|
157 |
void
|
|
|
158 |
iteration_init( lame_global_flags *gfp)
|
|
|
159 |
{
|
|
|
160 |
lame_internal_flags *gfc=gfp->internal_flags;
|
|
|
161 |
III_side_info_t * const l3_side = &gfc->l3_side;
|
|
|
162 |
int i;
|
|
|
163 |
|
|
|
164 |
if ( gfc->iteration_init_init==0 ) {
|
|
|
165 |
gfc->iteration_init_init=1;
|
|
|
166 |
|
|
|
167 |
l3_side->main_data_begin = 0;
|
|
|
168 |
compute_ath(gfp,gfc->ATH->l,gfc->ATH->s);
|
|
|
169 |
|
|
|
170 |
pow43[0] = 0.0;
|
|
|
171 |
for(i=1;i<PRECALC_SIZE;i++)
|
|
|
172 |
pow43[i] = pow((FLOAT8)i, 4.0/3.0);
|
|
|
173 |
|
|
|
174 |
adj43asm[0] = 0.0;
|
|
|
175 |
for (i = 1; i < PRECALC_SIZE; i++)
|
|
|
176 |
adj43asm[i] = i - 0.5 - pow(0.5 * (pow43[i - 1] + pow43[i]),0.75);
|
|
|
177 |
for (i = 0; i < PRECALC_SIZE-1; i++)
|
|
|
178 |
adj43[i] = (i + 1) - pow(0.5 * (pow43[i] + pow43[i + 1]), 0.75);
|
|
|
179 |
adj43[i] = 0.5;
|
|
|
180 |
for (i = 0; i < Q_MAX; i++) {
|
|
|
181 |
ipow20[i] = pow(2.0, (double)(i - 210) * -0.1875);
|
|
|
182 |
pow20[i] = pow(2.0, (double)(i - 210) * 0.25);
|
|
|
183 |
}
|
|
|
184 |
huffman_init(gfc);
|
|
|
185 |
}
|
|
|
186 |
}
|
|
|
187 |
|
|
|
188 |
|
|
|
189 |
|
|
|
190 |
|
|
|
191 |
|
|
|
192 |
/*
|
|
|
193 |
compute the ATH for each scalefactor band
|
|
|
194 |
cd range: 0..96db
|
|
|
195 |
|
|
|
196 |
Input: 3.3kHz signal 32767 amplitude (3.3kHz is where ATH is smallest = -5db)
|
|
|
197 |
longblocks: sfb=12 en0/bw=-11db max_en0 = 1.3db
|
|
|
198 |
shortblocks: sfb=5 -9db 0db
|
|
|
199 |
|
|
|
200 |
Input: 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 (repeated)
|
|
|
201 |
longblocks: amp=1 sfb=12 en0/bw=-103 db max_en0 = -92db
|
|
|
202 |
amp=32767 sfb=12 -12 db -1.4db
|
|
|
203 |
|
|
|
204 |
Input: 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 (repeated)
|
|
|
205 |
shortblocks: amp=1 sfb=5 en0/bw= -99 -86
|
|
|
206 |
amp=32767 sfb=5 -9 db 4db
|
|
|
207 |
|
|
|
208 |
|
|
|
209 |
MAX energy of largest wave at 3.3kHz = 1db
|
|
|
210 |
AVE energy of largest wave at 3.3kHz = -11db
|
|
|
211 |
Let's take AVE: -11db = maximum signal in sfb=12.
|
|
|
212 |
Dynamic range of CD: 96db. Therefor energy of smallest audible wave
|
|
|
213 |
in sfb=12 = -11 - 96 = -107db = ATH at 3.3kHz.
|
|
|
214 |
|
|
|
215 |
ATH formula for this wave: -5db. To adjust to LAME scaling, we need
|
|
|
216 |
ATH = ATH_formula - 103 (db)
|
|
|
217 |
ATH = ATH * 2.5e-10 (ener)
|
|
|
218 |
|
|
|
219 |
*/
|
|
|
220 |
|
|
|
221 |
FLOAT8 ATHmdct( lame_global_flags *gfp, FLOAT8 f )
|
|
|
222 |
{
|
|
|
223 |
lame_internal_flags *gfc = gfp->internal_flags;
|
|
|
224 |
FLOAT8 ath;
|
|
|
225 |
|
|
|
226 |
ath = ATHformula( f , gfp );
|
|
|
227 |
|
|
|
228 |
if (gfc->nsPsy.use) {
|
|
|
229 |
ath -= NSATHSCALE;
|
|
|
230 |
} else {
|
|
|
231 |
ath -= 114;
|
|
|
232 |
}
|
|
|
233 |
|
|
|
234 |
/* modify the MDCT scaling for the ATH */
|
|
|
235 |
ath -= gfp->ATHlower;
|
|
|
236 |
|
|
|
237 |
/* convert to energy */
|
|
|
238 |
ath = pow( 10.0, ath/10.0 );
|
|
|
239 |
return ath;
|
|
|
240 |
}
|
|
|
241 |
|
|
|
242 |
|
|
|
243 |
void compute_ath( lame_global_flags *gfp, FLOAT8 ATH_l[], FLOAT8 ATH_s[] )
|
|
|
244 |
{
|
|
|
245 |
lame_internal_flags *gfc = gfp->internal_flags;
|
|
|
246 |
int sfb, i, start, end;
|
|
|
247 |
FLOAT8 ATH_f;
|
|
|
248 |
FLOAT8 samp_freq = gfp->out_samplerate;
|
|
|
249 |
|
|
|
250 |
for (sfb = 0; sfb < SBMAX_l; sfb++) {
|
|
|
251 |
start = gfc->scalefac_band.l[ sfb ];
|
|
|
252 |
end = gfc->scalefac_band.l[ sfb+1 ];
|
|
|
253 |
ATH_l[sfb]=1e99;
|
|
|
254 |
for (i = start ; i < end; i++) {
|
|
|
255 |
FLOAT8 freq = i*samp_freq/(2*576);
|
|
|
256 |
ATH_f = ATHmdct( gfp, freq ); /* freq in kHz */
|
|
|
257 |
ATH_l[sfb] = Min( ATH_l[sfb], ATH_f );
|
|
|
258 |
}
|
|
|
259 |
|
|
|
260 |
}
|
|
|
261 |
|
|
|
262 |
for (sfb = 0; sfb < SBMAX_s; sfb++){
|
|
|
263 |
start = gfc->scalefac_band.s[ sfb ];
|
|
|
264 |
end = gfc->scalefac_band.s[ sfb+1 ];
|
|
|
265 |
ATH_s[sfb] = 1e99;
|
|
|
266 |
for (i = start ; i < end; i++) {
|
|
|
267 |
FLOAT8 freq = i*samp_freq/(2*192);
|
|
|
268 |
ATH_f = ATHmdct( gfp, freq ); /* freq in kHz */
|
|
|
269 |
ATH_s[sfb] = Min( ATH_s[sfb], ATH_f );
|
|
|
270 |
}
|
|
|
271 |
}
|
|
|
272 |
|
|
|
273 |
/* no-ATH mode:
|
|
|
274 |
* reduce ATH to -200 dB
|
|
|
275 |
*/
|
|
|
276 |
|
|
|
277 |
if (gfp->noATH) {
|
|
|
278 |
for (sfb = 0; sfb < SBMAX_l; sfb++) {
|
|
|
279 |
ATH_l[sfb] = 1E-37;
|
|
|
280 |
}
|
|
|
281 |
for (sfb = 0; sfb < SBMAX_s; sfb++) {
|
|
|
282 |
ATH_s[sfb] = 1E-37;
|
|
|
283 |
}
|
|
|
284 |
}
|
|
|
285 |
}
|
|
|
286 |
|
|
|
287 |
|
|
|
288 |
|
|
|
289 |
|
|
|
290 |
|
|
|
291 |
/* convert from L/R <-> Mid/Side, src == dst allowed */
|
|
|
292 |
void ms_convert(FLOAT8 dst[2][576], FLOAT8 src[2][576])
|
|
|
293 |
{
|
|
|
294 |
FLOAT8 l;
|
|
|
295 |
FLOAT8 r;
|
|
|
296 |
int i;
|
|
|
297 |
for (i = 0; i < 576; ++i) {
|
|
|
298 |
l = src[0][i];
|
|
|
299 |
r = src[1][i];
|
|
|
300 |
dst[0][i] = (l+r) * (FLOAT8)(SQRT2*0.5);
|
|
|
301 |
dst[1][i] = (l-r) * (FLOAT8)(SQRT2*0.5);
|
|
|
302 |
}
|
|
|
303 |
}
|
|
|
304 |
|
|
|
305 |
|
|
|
306 |
|
|
|
307 |
/************************************************************************
|
|
|
308 |
* allocate bits among 2 channels based on PE
|
|
|
309 |
* mt 6/99
|
|
|
310 |
************************************************************************/
|
|
|
311 |
int on_pe(lame_global_flags *gfp,FLOAT8 pe[2][2],III_side_info_t *l3_side,
|
|
|
312 |
int targ_bits[2],int mean_bits, int gr)
|
|
|
313 |
{
|
|
|
314 |
lame_internal_flags *gfc=gfp->internal_flags;
|
|
|
315 |
gr_info *cod_info;
|
|
|
316 |
int extra_bits,tbits,bits;
|
|
|
317 |
int add_bits[2];
|
|
|
318 |
int ch;
|
|
|
319 |
int max_bits; /* maximum allowed bits for this granule */
|
|
|
320 |
|
|
|
321 |
/* allocate targ_bits for granule */
|
|
|
322 |
ResvMaxBits (gfp, mean_bits, &tbits, &extra_bits);
|
|
|
323 |
max_bits=tbits+extra_bits;
|
|
|
324 |
|
|
|
325 |
bits=0;
|
|
|
326 |
|
|
|
327 |
for (ch=0 ; ch < gfc->channels_out ; ch ++) {
|
|
|
328 |
/******************************************************************
|
|
|
329 |
* allocate bits for each channel
|
|
|
330 |
******************************************************************/
|
|
|
331 |
cod_info = &l3_side->gr[gr].ch[ch].tt;
|
|
|
332 |
|
|
|
333 |
targ_bits[ch]=Min(MAX_BITS, tbits/gfc->channels_out);
|
|
|
334 |
|
|
|
335 |
if (gfc->nsPsy.use) {
|
|
|
336 |
add_bits[ch] = targ_bits[ch]*pe[gr][ch]/700.0-targ_bits[ch];
|
|
|
337 |
} else {
|
|
|
338 |
add_bits[ch]=(pe[gr][ch]-750)/1.4;
|
|
|
339 |
/* short blocks us a little extra, no matter what the pe */
|
|
|
340 |
if (cod_info->block_type==SHORT_TYPE) {
|
|
|
341 |
if (add_bits[ch]<mean_bits/4) add_bits[ch]=mean_bits/4;
|
|
|
342 |
}
|
|
|
343 |
|
|
|
344 |
/* at most increase bits by 1.5*average */
|
|
|
345 |
if (add_bits[ch] > .75*mean_bits) add_bits[ch]=mean_bits*.75;
|
|
|
346 |
if (add_bits[ch] < 0) add_bits[ch]=0;
|
|
|
347 |
|
|
|
348 |
if ((targ_bits[ch]+add_bits[ch]) > MAX_BITS)
|
|
|
349 |
add_bits[ch]=Max(0, MAX_BITS-targ_bits[ch]);
|
|
|
350 |
}
|
|
|
351 |
|
|
|
352 |
bits += add_bits[ch];
|
|
|
353 |
}
|
|
|
354 |
if (bits > extra_bits)
|
|
|
355 |
for (ch=0 ; ch < gfc->channels_out ; ch ++) {
|
|
|
356 |
add_bits[ch] = (extra_bits*add_bits[ch])/bits;
|
|
|
357 |
}
|
|
|
358 |
|
|
|
359 |
for (ch=0 ; ch < gfc->channels_out ; ch ++) {
|
|
|
360 |
targ_bits[ch] = targ_bits[ch] + add_bits[ch];
|
|
|
361 |
extra_bits -= add_bits[ch];
|
|
|
362 |
}
|
|
|
363 |
return max_bits;
|
|
|
364 |
}
|
|
|
365 |
|
|
|
366 |
|
|
|
367 |
|
|
|
368 |
|
|
|
369 |
void reduce_side(int targ_bits[2],FLOAT8 ms_ener_ratio,int mean_bits,int max_bits)
|
|
|
370 |
{
|
|
|
371 |
int move_bits;
|
|
|
372 |
FLOAT fac;
|
|
|
373 |
|
|
|
374 |
|
|
|
375 |
/* ms_ener_ratio = 0: allocate 66/33 mid/side fac=.33
|
|
|
376 |
* ms_ener_ratio =.5: allocate 50/50 mid/side fac= 0 */
|
|
|
377 |
/* 75/25 split is fac=.5 */
|
|
|
378 |
/* float fac = .50*(.5-ms_ener_ratio[gr])/.5;*/
|
|
|
379 |
fac = .33*(.5-ms_ener_ratio)/.5;
|
|
|
380 |
if (fac<0) fac=0;
|
|
|
381 |
if (fac>.5) fac=.5;
|
|
|
382 |
|
|
|
383 |
/* number of bits to move from side channel to mid channel */
|
|
|
384 |
/* move_bits = fac*targ_bits[1]; */
|
|
|
385 |
move_bits = fac*.5*(targ_bits[0]+targ_bits[1]);
|
|
|
386 |
|
|
|
387 |
if (move_bits > MAX_BITS - targ_bits[0]) {
|
|
|
388 |
move_bits = MAX_BITS - targ_bits[0];
|
|
|
389 |
}
|
|
|
390 |
if (move_bits<0) move_bits=0;
|
|
|
391 |
|
|
|
392 |
if (targ_bits[1] >= 125) {
|
|
|
393 |
/* dont reduce side channel below 125 bits */
|
|
|
394 |
if (targ_bits[1]-move_bits > 125) {
|
|
|
395 |
|
|
|
396 |
/* if mid channel already has 2x more than average, dont bother */
|
|
|
397 |
/* mean_bits = bits per granule (for both channels) */
|
|
|
398 |
if (targ_bits[0] < mean_bits)
|
|
|
399 |
targ_bits[0] += move_bits;
|
|
|
400 |
targ_bits[1] -= move_bits;
|
|
|
401 |
} else {
|
|
|
402 |
targ_bits[0] += targ_bits[1] - 125;
|
|
|
403 |
targ_bits[1] = 125;
|
|
|
404 |
}
|
|
|
405 |
}
|
|
|
406 |
|
|
|
407 |
move_bits=targ_bits[0]+targ_bits[1];
|
|
|
408 |
if (move_bits > max_bits) {
|
|
|
409 |
targ_bits[0]=(max_bits*targ_bits[0])/move_bits;
|
|
|
410 |
targ_bits[1]=(max_bits*targ_bits[1])/move_bits;
|
|
|
411 |
}
|
|
|
412 |
}
|
|
|
413 |
|
|
|
414 |
#if 0
|
|
|
415 |
FLOAT8 dreinorm (FLOAT8 a, FLOAT8 b, FLOAT8 c)
|
|
|
416 |
{
|
|
|
417 |
return pow(pow(a,3.)+pow(b,3.)+pow(c,3.),1./3.);
|
|
|
418 |
}
|
|
|
419 |
#endif
|
|
|
420 |
|
|
|
421 |
/*************************************************************************/
|
|
|
422 |
/* calc_xmin */
|
|
|
423 |
/*************************************************************************/
|
|
|
424 |
|
|
|
425 |
/*
|
|
|
426 |
Calculate the allowed distortion for each scalefactor band,
|
|
|
427 |
as determined by the psychoacoustic model.
|
|
|
428 |
xmin(sb) = ratio(sb) * en(sb) / bw(sb)
|
|
|
429 |
|
|
|
430 |
returns number of sfb's with energy > ATH
|
|
|
431 |
*/
|
|
|
432 |
int calc_xmin(
|
|
|
433 |
lame_global_flags *gfp,
|
|
|
434 |
const FLOAT8 xr [576],
|
|
|
435 |
const III_psy_ratio * const ratio,
|
|
|
436 |
const gr_info * const cod_info,
|
|
|
437 |
III_psy_xmin * const l3_xmin )
|
|
|
438 |
{
|
|
|
439 |
lame_internal_flags *gfc=gfp->internal_flags;
|
|
|
440 |
int sfb,j,start, end, bw,l, b, ath_over=0;
|
|
|
441 |
FLOAT8 en0, xmin, ener;
|
|
|
442 |
|
|
|
443 |
if (cod_info->block_type==SHORT_TYPE) {
|
|
|
444 |
|
|
|
445 |
for ( j=0, sfb = 0; sfb < SBMAX_s; sfb++ ) {
|
|
|
446 |
start = gfc->scalefac_band.s[ sfb ];
|
|
|
447 |
end = gfc->scalefac_band.s[ sfb + 1 ];
|
|
|
448 |
bw = end - start;
|
|
|
449 |
for ( b = 0; b < 3; b++ ) {
|
|
|
450 |
for (en0 = 0.0, l = start; l < end; l++) {
|
|
|
451 |
ener = xr[j++];
|
|
|
452 |
ener = ener * ener;
|
|
|
453 |
en0 += ener;
|
|
|
454 |
}
|
|
|
455 |
en0 /= bw;
|
|
|
456 |
|
|
|
457 |
if (gfp->ATHonly || gfp->ATHshort) {
|
|
|
458 |
xmin = gfc->ATH->adjust * gfc->ATH->s[sfb];
|
|
|
459 |
} else {
|
|
|
460 |
xmin = ratio->en.s[sfb][b];
|
|
|
461 |
if (xmin > 0.0)
|
|
|
462 |
xmin = en0 * ratio->thm.s[sfb][b] * gfc->masking_lower / xmin;
|
|
|
463 |
xmin = Max(gfc->ATH->adjust * gfc->ATH->s[sfb], xmin);
|
|
|
464 |
}
|
|
|
465 |
l3_xmin->s[sfb][b] = xmin * bw;
|
|
|
466 |
|
|
|
467 |
if (gfc->nsPsy.use) {
|
|
|
468 |
if (sfb <= 5) {
|
|
|
469 |
l3_xmin->s[sfb][b] *= gfc->nsPsy.bass;
|
|
|
470 |
} else if (sfb <= 10) {
|
|
|
471 |
l3_xmin->s[sfb][b] *= gfc->nsPsy.alto;
|
|
|
472 |
} else {
|
|
|
473 |
l3_xmin->s[sfb][b] *= gfc->nsPsy.treble;
|
|
|
474 |
}
|
|
|
475 |
}
|
|
|
476 |
|
|
|
477 |
if (en0 > gfc->ATH->adjust * gfc->ATH->s[sfb]) ath_over++;
|
|
|
478 |
if (gfc->nsPsy.use && (gfp->VBR == vbr_off || gfp->VBR == vbr_abr) && gfp->quality <= 1)
|
|
|
479 |
l3_xmin->s[sfb][b] *= 0.001;
|
|
|
480 |
}
|
|
|
481 |
}
|
|
|
482 |
|
|
|
483 |
if (gfp->useTemporal) {
|
|
|
484 |
for (sfb = 0; sfb < SBMAX_s; sfb++ ) {
|
|
|
485 |
for ( b = 1; b < 3; b++ ) {
|
|
|
486 |
xmin = l3_xmin->s[sfb][b] * (1.0 - gfc->decay)
|
|
|
487 |
+ l3_xmin->s[sfb][b-1] * gfc->decay;
|
|
|
488 |
if (l3_xmin->s[sfb][b] < xmin)
|
|
|
489 |
l3_xmin->s[sfb][b] = xmin;
|
|
|
490 |
}
|
|
|
491 |
}
|
|
|
492 |
}
|
|
|
493 |
|
|
|
494 |
}else{
|
|
|
495 |
if (gfc->nsPsy.use) {
|
|
|
496 |
for ( sfb = 0; sfb < SBMAX_l; sfb++ ){
|
|
|
497 |
start = gfc->scalefac_band.l[ sfb ];
|
|
|
498 |
end = gfc->scalefac_band.l[ sfb+1 ];
|
|
|
499 |
|
|
|
500 |
for (en0 = 0.0, l = start; l < end; l++ ) {
|
|
|
501 |
ener = xr[l] * xr[l];
|
|
|
502 |
en0 += ener;
|
|
|
503 |
}
|
|
|
504 |
|
|
|
505 |
if (gfp->ATHonly) {
|
|
|
506 |
xmin=gfc->ATH->adjust * gfc->ATH->l[sfb];
|
|
|
507 |
} else {
|
|
|
508 |
xmin = ratio->en.l[sfb];
|
|
|
509 |
if (xmin > 0.0)
|
|
|
510 |
xmin = en0 * ratio->thm.l[sfb] * gfc->masking_lower / xmin;
|
|
|
511 |
xmin=Max(gfc->ATH->adjust * gfc->ATH->l[sfb], xmin);
|
|
|
512 |
}
|
|
|
513 |
l3_xmin->l[sfb]=xmin;
|
|
|
514 |
|
|
|
515 |
if (sfb <= 6) {
|
|
|
516 |
l3_xmin->l[sfb] *= gfc->nsPsy.bass;
|
|
|
517 |
} else if (sfb <= 13) {
|
|
|
518 |
l3_xmin->l[sfb] *= gfc->nsPsy.alto;
|
|
|
519 |
} else {
|
|
|
520 |
l3_xmin->l[sfb] *= gfc->nsPsy.treble;
|
|
|
521 |
}
|
|
|
522 |
|
|
|
523 |
if (en0 > gfc->ATH->adjust * gfc->ATH->l[sfb]) ath_over++;
|
|
|
524 |
if ((gfp->VBR == vbr_off || gfp->VBR == vbr_abr) && gfp->quality <= 1)
|
|
|
525 |
l3_xmin->l[sfb] *= 0.001;
|
|
|
526 |
}
|
|
|
527 |
} else {
|
|
|
528 |
for ( sfb = 0; sfb < SBMAX_l; sfb++ ){
|
|
|
529 |
start = gfc->scalefac_band.l[ sfb ];
|
|
|
530 |
end = gfc->scalefac_band.l[ sfb+1 ];
|
|
|
531 |
bw = end - start;
|
|
|
532 |
|
|
|
533 |
for (en0 = 0.0, l = start; l < end; l++ ) {
|
|
|
534 |
ener = xr[l] * xr[l];
|
|
|
535 |
en0 += ener;
|
|
|
536 |
}
|
|
|
537 |
en0 /= bw;
|
|
|
538 |
|
|
|
539 |
if (gfp->ATHonly) {
|
|
|
540 |
xmin=gfc->ATH->adjust * gfc->ATH->l[sfb];
|
|
|
541 |
} else {
|
|
|
542 |
xmin = ratio->en.l[sfb];
|
|
|
543 |
if (xmin > 0.0)
|
|
|
544 |
xmin = en0 * ratio->thm.l[sfb] * gfc->masking_lower / xmin;
|
|
|
545 |
xmin=Max(gfc->ATH->adjust * gfc->ATH->l[sfb], xmin);
|
|
|
546 |
}
|
|
|
547 |
l3_xmin->l[sfb]=xmin*bw;
|
|
|
548 |
|
|
|
549 |
if (en0 > gfc->ATH->adjust * gfc->ATH->l[sfb]) ath_over++;
|
|
|
550 |
}
|
|
|
551 |
}
|
|
|
552 |
}
|
|
|
553 |
return ath_over;
|
|
|
554 |
}
|
|
|
555 |
|
|
|
556 |
/*************************************************************************/
|
|
|
557 |
/* calc_noise */
|
|
|
558 |
/*************************************************************************/
|
|
|
559 |
|
|
|
560 |
// -oo dB => -1.00
|
|
|
561 |
// - 6 dB => -0.97
|
|
|
562 |
// - 3 dB => -0.80
|
|
|
563 |
// - 2 dB => -0.64
|
|
|
564 |
// - 1 dB => -0.38
|
|
|
565 |
// 0 dB => 0.00
|
|
|
566 |
// + 1 dB => +0.49
|
|
|
567 |
// + 2 dB => +1.06
|
|
|
568 |
// + 3 dB => +1.68
|
|
|
569 |
// + 6 dB => +3.69
|
|
|
570 |
// +10 dB => +6.45
|
|
|
571 |
|
|
|
572 |
double penalties ( double noise )
|
|
|
573 |
{
|
|
|
574 |
return log ( 0.368 + 0.632 * noise * noise * noise );
|
|
|
575 |
}
|
|
|
576 |
|
|
|
577 |
/* mt 5/99: Function: Improved calc_noise for a single channel */
|
|
|
578 |
|
|
|
579 |
int calc_noise(
|
|
|
580 |
const lame_internal_flags * const gfc,
|
|
|
581 |
const FLOAT8 xr [576],
|
|
|
582 |
const int ix [576],
|
|
|
583 |
const gr_info * const cod_info,
|
|
|
584 |
const III_psy_xmin * const l3_xmin,
|
|
|
585 |
const III_scalefac_t * const scalefac,
|
|
|
586 |
III_psy_xmin * xfsf,
|
|
|
587 |
calc_noise_result * const res )
|
|
|
588 |
{
|
|
|
589 |
int sfb,start, end, j,l, i, over=0;
|
|
|
590 |
FLOAT8 sum;
|
|
|
591 |
|
|
|
592 |
int count=0;
|
|
|
593 |
FLOAT8 noise,noise_db;
|
|
|
594 |
FLOAT8 over_noise = 1; /* 0 dB relative to masking */
|
|
|
595 |
FLOAT8 over_noise_db = 0;
|
|
|
596 |
FLOAT8 tot_noise = 1; /* 0 dB relative to masking */
|
|
|
597 |
FLOAT8 tot_noise_db = 0; /* 0 dB relative to masking */
|
|
|
598 |
FLOAT8 max_noise = 1E-20; /* -200 dB relative to masking */
|
|
|
599 |
double klemm_noise = 1E-37;
|
|
|
600 |
|
|
|
601 |
if (cod_info->block_type == SHORT_TYPE) {
|
|
|
602 |
int max_index = gfc->sfb21_extra ? SBMAX_s : SBPSY_s;
|
|
|
603 |
|
|
|
604 |
for ( j=0, sfb = 0; sfb < max_index; sfb++ ) {
|
|
|
605 |
start = gfc->scalefac_band.s[ sfb ];
|
|
|
606 |
end = gfc->scalefac_band.s[ sfb+1 ];
|
|
|
607 |
for ( i = 0; i < 3; i++ ) {
|
|
|
608 |
FLOAT8 step;
|
|
|
609 |
int s;
|
|
|
610 |
|
|
|
611 |
s = (scalefac->s[sfb][i] << (cod_info->scalefac_scale + 1))
|
|
|
612 |
+ cod_info->subblock_gain[i] * 8;
|
|
|
613 |
s = cod_info->global_gain - s;
|
|
|
614 |
|
|
|
615 |
assert(s<Q_MAX);
|
|
|
616 |
assert(s>=0);
|
|
|
617 |
step = POW20(s);
|
|
|
618 |
sum = 0.0;
|
|
|
619 |
l = start;
|
|
|
620 |
do {
|
|
|
621 |
FLOAT8 temp;
|
|
|
622 |
temp = pow43[ix[j]];
|
|
|
623 |
temp *= step;
|
|
|
624 |
temp -= fabs(xr[j]);
|
|
|
625 |
++j;
|
|
|
626 |
sum += temp * temp;
|
|
|
627 |
l++;
|
|
|
628 |
} while (l < end);
|
|
|
629 |
noise = xfsf->s[sfb][i] = sum / l3_xmin->s[sfb][i];
|
|
|
630 |
|
|
|
631 |
max_noise = Max(max_noise,noise);
|
|
|
632 |
klemm_noise += penalties (noise);
|
|
|
633 |
|
|
|
634 |
noise_db=10*log10(Max(noise,1E-20));
|
|
|
635 |
/* multiplying here is adding in dB, but will overflow */
|
|
|
636 |
//tot_noise *= Max(noise, 1E-20);
|
|
|
637 |
tot_noise_db += noise_db;
|
|
|
638 |
|
|
|
639 |
if (noise > 1) {
|
|
|
640 |
over++;
|
|
|
641 |
/* multiplying here is adding in dB, but can overflow */
|
|
|
642 |
//over_noise *= noise;
|
|
|
643 |
over_noise_db += noise_db;
|
|
|
644 |
}
|
|
|
645 |
count++;
|
|
|
646 |
}
|
|
|
647 |
}
|
|
|
648 |
}else{ /* cod_info->block_type == SHORT_TYPE */
|
|
|
649 |
int max_index = gfc->sfb21_extra ? SBMAX_l : SBPSY_l;
|
|
|
650 |
|
|
|
651 |
for ( sfb = 0; sfb < max_index; sfb++ ) {
|
|
|
652 |
FLOAT8 step;
|
|
|
653 |
int s = scalefac->l[sfb];
|
|
|
654 |
|
|
|
655 |
if (cod_info->preflag)
|
|
|
656 |
s += pretab[sfb];
|
|
|
657 |
|
|
|
658 |
s = cod_info->global_gain - (s << (cod_info->scalefac_scale + 1));
|
|
|
659 |
assert(s<Q_MAX);
|
|
|
660 |
assert(s>=0);
|
|
|
661 |
step = POW20(s);
|
|
|
662 |
|
|
|
663 |
start = gfc->scalefac_band.l[ sfb ];
|
|
|
664 |
end = gfc->scalefac_band.l[ sfb+1 ];
|
|
|
665 |
|
|
|
666 |
for ( sum = 0.0, l = start; l < end; l++ ) {
|
|
|
667 |
FLOAT8 temp;
|
|
|
668 |
temp = fabs(xr[l]) - pow43[ix[l]] * step;
|
|
|
669 |
sum += temp * temp;
|
|
|
670 |
}
|
|
|
671 |
noise = xfsf->l[sfb] = sum / l3_xmin->l[sfb];
|
|
|
672 |
max_noise=Max(max_noise,noise);
|
|
|
673 |
klemm_noise += penalties (noise);
|
|
|
674 |
|
|
|
675 |
noise_db=10*log10(Max(noise,1E-20));
|
|
|
676 |
/* multiplying here is adding in dB, but can overflow */
|
|
|
677 |
//tot_noise *= Max(noise, 1E-20);
|
|
|
678 |
tot_noise_db += noise_db;
|
|
|
679 |
|
|
|
680 |
if (noise > 1) {
|
|
|
681 |
over++;
|
|
|
682 |
/* multiplying here is adding in dB -but can overflow */
|
|
|
683 |
//over_noise *= noise;
|
|
|
684 |
over_noise_db += noise_db;
|
|
|
685 |
}
|
|
|
686 |
|
|
|
687 |
count++;
|
|
|
688 |
}
|
|
|
689 |
} /* cod_info->block_type == SHORT_TYPE */
|
|
|
690 |
|
|
|
691 |
/* normalization at this point by "count" is not necessary, since
|
|
|
692 |
* the values are only used to compare with previous values */
|
|
|
693 |
res->tot_count = count;
|
|
|
694 |
res->over_count = over;
|
|
|
695 |
|
|
|
696 |
/* convert to db. DO NOT CHANGE THESE */
|
|
|
697 |
/* tot_noise = is really the average over each sfb of:
|
|
|
698 |
[noise(db) - allowed_noise(db)]
|
|
|
699 |
|
|
|
700 |
and over_noise is the same average, only over only the
|
|
|
701 |
bands with noise > allowed_noise.
|
|
|
702 |
|
|
|
703 |
*/
|
|
|
704 |
|
|
|
705 |
//res->tot_noise = 10.*log10(Max(1e-20,tot_noise ));
|
|
|
706 |
//res->over_noise = 10.*log10(Max(1e+00,over_noise));
|
|
|
707 |
res->tot_noise = tot_noise_db;
|
|
|
708 |
res->over_noise = over_noise_db;
|
|
|
709 |
res->max_noise = 10.*log10(Max(1e-20,max_noise ));
|
|
|
710 |
res->klemm_noise = 10.*log10(Max(1e-20,klemm_noise));
|
|
|
711 |
|
|
|
712 |
return over;
|
|
|
713 |
}
|
|
|
714 |
|
|
|
715 |
|
|
|
716 |
|
|
|
717 |
|
|
|
718 |
|
|
|
719 |
|
|
|
720 |
|
|
|
721 |
|
|
|
722 |
|
|
|
723 |
|
|
|
724 |
|
|
|
725 |
|
|
|
726 |
|
|
|
727 |
|
|
|
728 |
/************************************************************************
|
|
|
729 |
*
|
|
|
730 |
* set_pinfo()
|
|
|
731 |
*
|
|
|
732 |
* updates plotting data
|
|
|
733 |
*
|
|
|
734 |
* Mark Taylor 2000-??-??
|
|
|
735 |
*
|
|
|
736 |
* Robert Hegemann: moved noise/distortion calc into it
|
|
|
737 |
*
|
|
|
738 |
************************************************************************/
|
|
|
739 |
|
|
|
740 |
static
|
|
|
741 |
void set_pinfo (
|
|
|
742 |
lame_global_flags *gfp,
|
|
|
743 |
const gr_info * const cod_info,
|
|
|
744 |
const III_psy_ratio * const ratio,
|
|
|
745 |
const III_scalefac_t * const scalefac,
|
|
|
746 |
const FLOAT8 xr[576],
|
|
|
747 |
const int l3_enc[576],
|
|
|
748 |
const int gr,
|
|
|
749 |
const int ch )
|
|
|
750 |
{
|
|
|
751 |
lame_internal_flags *gfc=gfp->internal_flags;
|
|
|
752 |
int sfb;
|
|
|
753 |
int j,i,l,start,end,bw;
|
|
|
754 |
FLOAT8 en0,en1;
|
|
|
755 |
FLOAT ifqstep = ( cod_info->scalefac_scale == 0 ) ? .5 : 1.0;
|
|
|
756 |
|
|
|
757 |
|
|
|
758 |
III_psy_xmin l3_xmin;
|
|
|
759 |
calc_noise_result noise;
|
|
|
760 |
III_psy_xmin xfsf;
|
|
|
761 |
|
|
|
762 |
calc_xmin (gfp,xr, ratio, cod_info, &l3_xmin);
|
|
|
763 |
|
|
|
764 |
calc_noise (gfc, xr, l3_enc, cod_info, &l3_xmin, scalefac, &xfsf, &noise);
|
|
|
765 |
|
|
|
766 |
if (cod_info->block_type == SHORT_TYPE) {
|
|
|
767 |
for (j=0, sfb = 0; sfb < SBMAX_s; sfb++ ) {
|
|
|
768 |
start = gfc->scalefac_band.s[ sfb ];
|
|
|
769 |
end = gfc->scalefac_band.s[ sfb + 1 ];
|
|
|
770 |
bw = end - start;
|
|
|
771 |
for ( i = 0; i < 3; i++ ) {
|
|
|
772 |
for ( en0 = 0.0, l = start; l < end; l++ ) {
|
|
|
773 |
en0 += xr[j] * xr[j];
|
|
|
774 |
++j;
|
|
|
775 |
}
|
|
|
776 |
en0=Max(en0/bw,1e-20);
|
|
|
777 |
|
|
|
778 |
|
|
|
779 |
#if 0
|
|
|
780 |
{
|
|
|
781 |
double tot1,tot2;
|
|
|
782 |
if (sfb<SBMAX_s-1) {
|
|
|
783 |
if (sfb==0) {
|
|
|
784 |
tot1=0;
|
|
|
785 |
tot2=0;
|
|
|
786 |
}
|
|
|
787 |
tot1 += en0;
|
|
|
788 |
tot2 += ratio->en.s[sfb][i];
|
|
|
789 |
|
|
|
790 |
DEBUGF("%i %i sfb=%i mdct=%f fft=%f fft-mdct=%f db \n",
|
|
|
791 |
gr,ch,sfb,
|
|
|
792 |
10*log10(Max(1e-25,ratio->en.s[sfb][i])),
|
|
|
793 |
10*log10(Max(1e-25,en0)),
|
|
|
794 |
10*log10((Max(1e-25,en0)/Max(1e-25,ratio->en.s[sfb][i]))));
|
|
|
795 |
|
|
|
796 |
if (sfb==SBMAX_s-2) {
|
|
|
797 |
DEBUGF("%i %i toti %f %f ratio=%f db \n",gr,ch,
|
|
|
798 |
10*log10(Max(1e-25,tot2)),
|
|
|
799 |
10*log(Max(1e-25,tot1)),
|
|
|
800 |
10*log10(Max(1e-25,tot1)/(Max(1e-25,tot2))));
|
|
|
801 |
|
|
|
802 |
}
|
|
|
803 |
}
|
|
|
804 |
/*
|
|
|
805 |
masking: multiplied by en0/fft_energy
|
|
|
806 |
average seems to be about -135db.
|
|
|
807 |
*/
|
|
|
808 |
}
|
|
|
809 |
#endif
|
|
|
810 |
|
|
|
811 |
|
|
|
812 |
/* convert to MDCT units */
|
|
|
813 |
en1=1e15; /* scaling so it shows up on FFT plot */
|
|
|
814 |
gfc->pinfo->xfsf_s[gr][ch][3*sfb+i]
|
|
|
815 |
= en1*xfsf.s[sfb][i]*l3_xmin.s[sfb][i]/bw;
|
|
|
816 |
gfc->pinfo->en_s[gr][ch][3*sfb+i] = en1*en0;
|
|
|
817 |
|
|
|
818 |
if (ratio->en.s[sfb][i]>0)
|
|
|
819 |
en0 = en0/ratio->en.s[sfb][i];
|
|
|
820 |
else
|
|
|
821 |
en0=0;
|
|
|
822 |
if (gfp->ATHonly || gfp->ATHshort)
|
|
|
823 |
en0=0;
|
|
|
824 |
|
|
|
825 |
gfc->pinfo->thr_s[gr][ch][3*sfb+i] =
|
|
|
826 |
en1*Max(en0*ratio->thm.s[sfb][i],gfc->ATH->s[sfb]);
|
|
|
827 |
|
|
|
828 |
|
|
|
829 |
/* there is no scalefactor bands >= SBPSY_s */
|
|
|
830 |
if (sfb < SBPSY_s) {
|
|
|
831 |
gfc->pinfo->LAMEsfb_s[gr][ch][3*sfb+i]=
|
|
|
832 |
-ifqstep*scalefac->s[sfb][i];
|
|
|
833 |
} else {
|
|
|
834 |
gfc->pinfo->LAMEsfb_s[gr][ch][3*sfb+i]=0;
|
|
|
835 |
}
|
|
|
836 |
gfc->pinfo->LAMEsfb_s[gr][ch][3*sfb+i] -=
|
|
|
837 |
2*cod_info->subblock_gain[i];
|
|
|
838 |
}
|
|
|
839 |
}
|
|
|
840 |
} else {
|
|
|
841 |
for ( sfb = 0; sfb < SBMAX_l; sfb++ ) {
|
|
|
842 |
start = gfc->scalefac_band.l[ sfb ];
|
|
|
843 |
end = gfc->scalefac_band.l[ sfb+1 ];
|
|
|
844 |
bw = end - start;
|
|
|
845 |
for ( en0 = 0.0, l = start; l < end; l++ )
|
|
|
846 |
en0 += xr[l] * xr[l];
|
|
|
847 |
if (!gfc->nsPsy.use) en0/=bw;
|
|
|
848 |
/*
|
|
|
849 |
DEBUGF("diff = %f \n",10*log10(Max(ratio[gr][ch].en.l[sfb],1e-20))
|
|
|
850 |
-(10*log10(en0)+150));
|
|
|
851 |
*/
|
|
|
852 |
|
|
|
853 |
#if 0
|
|
|
854 |
{
|
|
|
855 |
double tot1,tot2;
|
|
|
856 |
if (sfb==0) {
|
|
|
857 |
tot1=0;
|
|
|
858 |
tot2=0;
|
|
|
859 |
}
|
|
|
860 |
tot1 += en0;
|
|
|
861 |
tot2 += ratio->en.l[sfb];
|
|
|
862 |
|
|
|
863 |
|
|
|
864 |
DEBUGF("%i %i sfb=%i mdct=%f fft=%f fft-mdct=%f db \n",
|
|
|
865 |
gr,ch,sfb,
|
|
|
866 |
10*log10(Max(1e-25,ratio->en.l[sfb])),
|
|
|
867 |
10*log10(Max(1e-25,en0)),
|
|
|
868 |
10*log10((Max(1e-25,en0)/Max(1e-25,ratio->en.l[sfb]))));
|
|
|
869 |
|
|
|
870 |
if (sfb==SBMAX_l-1) {
|
|
|
871 |
DEBUGF("%i %i toti %f %f ratio=%f db \n",
|
|
|
872 |
gr,ch,
|
|
|
873 |
10*log10(Max(1e-25,tot2)),
|
|
|
874 |
10*log(Max(1e-25,tot1)),
|
|
|
875 |
10*log10(Max(1e-25,tot1)/(Max(1e-25,tot2))));
|
|
|
876 |
}
|
|
|
877 |
/*
|
|
|
878 |
masking: multiplied by en0/fft_energy
|
|
|
879 |
average seems to be about -147db.
|
|
|
880 |
*/
|
|
|
881 |
}
|
|
|
882 |
#endif
|
|
|
883 |
|
|
|
884 |
|
|
|
885 |
/* convert to MDCT units */
|
|
|
886 |
en1=1e15; /* scaling so it shows up on FFT plot */
|
|
|
887 |
gfc->pinfo->xfsf[gr][ch][sfb] = en1*xfsf.l[sfb]*l3_xmin.l[sfb]/bw;
|
|
|
888 |
gfc->pinfo->en[gr][ch][sfb] = en1*en0;
|
|
|
889 |
if (ratio->en.l[sfb]>0)
|
|
|
890 |
en0 = en0/ratio->en.l[sfb];
|
|
|
891 |
else
|
|
|
892 |
en0=0;
|
|
|
893 |
if (gfp->ATHonly)
|
|
|
894 |
en0=0;
|
|
|
895 |
gfc->pinfo->thr[gr][ch][sfb] =
|
|
|
896 |
en1*Max(en0*ratio->thm.l[sfb],gfc->ATH->l[sfb]);
|
|
|
897 |
|
|
|
898 |
/* there is no scalefactor bands >= SBPSY_l */
|
|
|
899 |
if (sfb<SBPSY_l) {
|
|
|
900 |
if (scalefac->l[sfb]<0) /* scfsi! */
|
|
|
901 |
gfc->pinfo->LAMEsfb[gr][ch][sfb] =
|
|
|
902 |
gfc->pinfo->LAMEsfb[0][ch][sfb];
|
|
|
903 |
else
|
|
|
904 |
gfc->pinfo->LAMEsfb[gr][ch][sfb] = -ifqstep*scalefac->l[sfb];
|
|
|
905 |
}else{
|
|
|
906 |
gfc->pinfo->LAMEsfb[gr][ch][sfb] = 0;
|
|
|
907 |
}
|
|
|
908 |
|
|
|
909 |
if (cod_info->preflag && sfb>=11)
|
|
|
910 |
gfc->pinfo->LAMEsfb[gr][ch][sfb] -= ifqstep*pretab[sfb];
|
|
|
911 |
} /* for sfb */
|
|
|
912 |
} /* block type long */
|
|
|
913 |
gfc->pinfo->LAMEqss [gr][ch] = cod_info->global_gain;
|
|
|
914 |
gfc->pinfo->LAMEmainbits[gr][ch] = cod_info->part2_3_length;
|
|
|
915 |
gfc->pinfo->LAMEsfbits [gr][ch] = cod_info->part2_length;
|
|
|
916 |
|
|
|
917 |
gfc->pinfo->over [gr][ch] = noise.over_count;
|
|
|
918 |
gfc->pinfo->max_noise [gr][ch] = noise.max_noise;
|
|
|
919 |
gfc->pinfo->over_noise[gr][ch] = noise.over_noise;
|
|
|
920 |
gfc->pinfo->tot_noise [gr][ch] = noise.tot_noise;
|
|
|
921 |
}
|
|
|
922 |
|
|
|
923 |
|
|
|
924 |
/************************************************************************
|
|
|
925 |
*
|
|
|
926 |
* set_frame_pinfo()
|
|
|
927 |
*
|
|
|
928 |
* updates plotting data for a whole frame
|
|
|
929 |
*
|
|
|
930 |
* Robert Hegemann 2000-10-21
|
|
|
931 |
*
|
|
|
932 |
************************************************************************/
|
|
|
933 |
|
|
|
934 |
void set_frame_pinfo(
|
|
|
935 |
lame_global_flags *gfp,
|
|
|
936 |
FLOAT8 xr [2][2][576],
|
|
|
937 |
III_psy_ratio ratio [2][2],
|
|
|
938 |
int l3_enc [2][2][576],
|
|
|
939 |
III_scalefac_t scalefac [2][2] )
|
|
|
940 |
{
|
|
|
941 |
lame_internal_flags *gfc=gfp->internal_flags;
|
|
|
942 |
unsigned int gr, ch, sfb;
|
|
|
943 |
int act_l3enc[576];
|
|
|
944 |
III_scalefac_t act_scalefac [2];
|
|
|
945 |
int scsfi[2] = {0,0};
|
|
|
946 |
|
|
|
947 |
|
|
|
948 |
gfc->masking_lower = 1.0;
|
|
|
949 |
|
|
|
950 |
/* reconstruct the scalefactors in case SCSFI was used
|
|
|
951 |
*/
|
|
|
952 |
for (ch = 0; ch < gfc->channels_out; ch ++) {
|
|
|
953 |
for (sfb = 0; sfb < SBMAX_l; sfb ++) {
|
|
|
954 |
if (scalefac[1][ch].l[sfb] == -1) {/* scfsi */
|
|
|
955 |
act_scalefac[ch].l[sfb] = scalefac[0][ch].l[sfb];
|
|
|
956 |
scsfi[ch] = 1;
|
|
|
957 |
} else {
|
|
|
958 |
act_scalefac[ch].l[sfb] = scalefac[1][ch].l[sfb];
|
|
|
959 |
}
|
|
|
960 |
}
|
|
|
961 |
}
|
|
|
962 |
|
|
|
963 |
/* for every granule and channel patch l3_enc and set info
|
|
|
964 |
*/
|
|
|
965 |
for (gr = 0; gr < gfc->mode_gr; gr ++) {
|
|
|
966 |
for (ch = 0; ch < gfc->channels_out; ch ++) {
|
|
|
967 |
int i;
|
|
|
968 |
gr_info *cod_info = &gfc->l3_side.gr[gr].ch[ch].tt;
|
|
|
969 |
|
|
|
970 |
/* revert back the sign of l3enc */
|
|
|
971 |
for ( i = 0; i < 576; i++) {
|
|
|
972 |
if (xr[gr][ch][i] < 0)
|
|
|
973 |
act_l3enc[i] = -l3_enc[gr][ch][i];
|
|
|
974 |
else
|
|
|
975 |
act_l3enc[i] = +l3_enc[gr][ch][i];
|
|
|
976 |
}
|
|
|
977 |
if (gr == 1 && scsfi[ch])
|
|
|
978 |
set_pinfo (gfp, cod_info, &ratio[gr][ch], &act_scalefac[ch],
|
|
|
979 |
xr[gr][ch], act_l3enc, gr, ch);
|
|
|
980 |
else
|
|
|
981 |
set_pinfo (gfp, cod_info, &ratio[gr][ch], &scalefac[gr][ch],
|
|
|
982 |
xr[gr][ch], act_l3enc, gr, ch);
|
|
|
983 |
} /* for ch */
|
|
|
984 |
} /* for gr */
|
|
|
985 |
}
|
|
|
986 |
|
|
|
987 |
|
|
|
988 |
|
|
|
989 |
|
|
|
990 |
/*********************************************************************
|
|
|
991 |
* nonlinear quantization of xr
|
|
|
992 |
* More accurate formula than the ISO formula. Takes into account
|
|
|
993 |
* the fact that we are quantizing xr -> ix, but we want ix^4/3 to be
|
|
|
994 |
* as close as possible to x^4/3. (taking the nearest int would mean
|
|
|
995 |
* ix is as close as possible to xr, which is different.)
|
|
|
996 |
* From Segher Boessenkool <segher@eastsite.nl> 11/1999
|
|
|
997 |
* ASM optimization from
|
|
|
998 |
* Mathew Hendry <scampi@dial.pipex.com> 11/1999
|
|
|
999 |
* Acy Stapp <AStapp@austin.rr.com> 11/1999
|
|
|
1000 |
* Takehiro Tominaga <tominaga@isoternet.org> 11/1999
|
|
|
1001 |
* 9/00: ASM code removed in favor of IEEE754 hack. If you need
|
|
|
1002 |
* the ASM code, check CVS circa Aug 2000.
|
|
|
1003 |
*********************************************************************/
|
|
|
1004 |
|
|
|
1005 |
|
|
|
1006 |
#ifdef TAKEHIRO_IEEE754_HACK
|
|
|
1007 |
|
|
|
1008 |
typedef union {
|
|
|
1009 |
float f;
|
|
|
1010 |
int i;
|
|
|
1011 |
} fi_union;
|
|
|
1012 |
|
|
|
1013 |
#define MAGIC_FLOAT (65536*(128))
|
|
|
1014 |
#define MAGIC_INT 0x4b000000
|
|
|
1015 |
|
|
|
1016 |
void quantize_xrpow(const FLOAT8 xp[576], int pi[576], FLOAT8 istep)
|
|
|
1017 |
{
|
|
|
1018 |
/* quantize on xr^(3/4) instead of xr */
|
|
|
1019 |
int j;
|
|
|
1020 |
fi_union *fi;
|
|
|
1021 |
|
|
|
1022 |
fi = (fi_union *)pi;
|
|
|
1023 |
for (j = 576 / 4 - 1; j >= 0; --j) {
|
|
|
1024 |
double x0 = istep * xp[0];
|
|
|
1025 |
double x1 = istep * xp[1];
|
|
|
1026 |
double x2 = istep * xp[2];
|
|
|
1027 |
double x3 = istep * xp[3];
|
|
|
1028 |
|
|
|
1029 |
x0 += MAGIC_FLOAT; fi[0].f = x0;
|
|
|
1030 |
x1 += MAGIC_FLOAT; fi[1].f = x1;
|
|
|
1031 |
x2 += MAGIC_FLOAT; fi[2].f = x2;
|
|
|
1032 |
x3 += MAGIC_FLOAT; fi[3].f = x3;
|
|
|
1033 |
|
|
|
1034 |
fi[0].f = x0 + (adj43asm - MAGIC_INT)[fi[0].i];
|
|
|
1035 |
fi[1].f = x1 + (adj43asm - MAGIC_INT)[fi[1].i];
|
|
|
1036 |
fi[2].f = x2 + (adj43asm - MAGIC_INT)[fi[2].i];
|
|
|
1037 |
fi[3].f = x3 + (adj43asm - MAGIC_INT)[fi[3].i];
|
|
|
1038 |
|
|
|
1039 |
fi[0].i -= MAGIC_INT;
|
|
|
1040 |
fi[1].i -= MAGIC_INT;
|
|
|
1041 |
fi[2].i -= MAGIC_INT;
|
|
|
1042 |
fi[3].i -= MAGIC_INT;
|
|
|
1043 |
fi += 4;
|
|
|
1044 |
xp += 4;
|
|
|
1045 |
}
|
|
|
1046 |
}
|
|
|
1047 |
|
|
|
1048 |
# define ROUNDFAC -0.0946
|
|
|
1049 |
void quantize_xrpow_ISO(const FLOAT8 xp[576], int pi[576], FLOAT8 istep)
|
|
|
1050 |
{
|
|
|
1051 |
/* quantize on xr^(3/4) instead of xr */
|
|
|
1052 |
int j;
|
|
|
1053 |
fi_union *fi;
|
|
|
1054 |
|
|
|
1055 |
fi = (fi_union *)pi;
|
|
|
1056 |
for (j=576/4 - 1;j>=0;j--) {
|
|
|
1057 |
fi[0].f = istep * xp[0] + (ROUNDFAC + MAGIC_FLOAT);
|
|
|
1058 |
fi[1].f = istep * xp[1] + (ROUNDFAC + MAGIC_FLOAT);
|
|
|
1059 |
fi[2].f = istep * xp[2] + (ROUNDFAC + MAGIC_FLOAT);
|
|
|
1060 |
fi[3].f = istep * xp[3] + (ROUNDFAC + MAGIC_FLOAT);
|
|
|
1061 |
|
|
|
1062 |
fi[0].i -= MAGIC_INT;
|
|
|
1063 |
fi[1].i -= MAGIC_INT;
|
|
|
1064 |
fi[2].i -= MAGIC_INT;
|
|
|
1065 |
fi[3].i -= MAGIC_INT;
|
|
|
1066 |
fi+=4;
|
|
|
1067 |
xp+=4;
|
|
|
1068 |
}
|
|
|
1069 |
}
|
|
|
1070 |
|
|
|
1071 |
#else
|
|
|
1072 |
|
|
|
1073 |
/*********************************************************************
|
|
|
1074 |
* XRPOW_FTOI is a macro to convert floats to ints.
|
|
|
1075 |
* if XRPOW_FTOI(x) = nearest_int(x), then QUANTFAC(x)=adj43asm[x]
|
|
|
1076 |
* ROUNDFAC= -0.0946
|
|
|
1077 |
*
|
|
|
1078 |
* if XRPOW_FTOI(x) = floor(x), then QUANTFAC(x)=asj43[x]
|
|
|
1079 |
* ROUNDFAC=0.4054
|
|
|
1080 |
*
|
|
|
1081 |
* Note: using floor() or (int) is extermely slow. On machines where
|
|
|
1082 |
* the TAKEHIRO_IEEE754_HACK code above does not work, it is worthwile
|
|
|
1083 |
* to write some ASM for XRPOW_FTOI().
|
|
|
1084 |
*********************************************************************/
|
|
|
1085 |
#define XRPOW_FTOI(src,dest) ((dest) = (int)(src))
|
|
|
1086 |
#define QUANTFAC(rx) adj43[rx]
|
|
|
1087 |
#define ROUNDFAC 0.4054
|
|
|
1088 |
|
|
|
1089 |
|
|
|
1090 |
void quantize_xrpow(const FLOAT8 xr[576], int ix[576], FLOAT8 istep) {
|
|
|
1091 |
/* quantize on xr^(3/4) instead of xr */
|
|
|
1092 |
/* from Wilfried.Behne@t-online.de. Reported to be 2x faster than
|
|
|
1093 |
the above code (when not using ASM) on PowerPC */
|
|
|
1094 |
int j;
|
|
|
1095 |
|
|
|
1096 |
for ( j = 576/8; j > 0; --j) {
|
|
|
1097 |
FLOAT8 x1, x2, x3, x4, x5, x6, x7, x8;
|
|
|
1098 |
int rx1, rx2, rx3, rx4, rx5, rx6, rx7, rx8;
|
|
|
1099 |
x1 = *xr++ * istep;
|
|
|
1100 |
x2 = *xr++ * istep;
|
|
|
1101 |
XRPOW_FTOI(x1, rx1);
|
|
|
1102 |
x3 = *xr++ * istep;
|
|
|
1103 |
XRPOW_FTOI(x2, rx2);
|
|
|
1104 |
x4 = *xr++ * istep;
|
|
|
1105 |
XRPOW_FTOI(x3, rx3);
|
|
|
1106 |
x5 = *xr++ * istep;
|
|
|
1107 |
XRPOW_FTOI(x4, rx4);
|
|
|
1108 |
x6 = *xr++ * istep;
|
|
|
1109 |
XRPOW_FTOI(x5, rx5);
|
|
|
1110 |
x7 = *xr++ * istep;
|
|
|
1111 |
XRPOW_FTOI(x6, rx6);
|
|
|
1112 |
x8 = *xr++ * istep;
|
|
|
1113 |
XRPOW_FTOI(x7, rx7);
|
|
|
1114 |
x1 += QUANTFAC(rx1);
|
|
|
1115 |
XRPOW_FTOI(x8, rx8);
|
|
|
1116 |
x2 += QUANTFAC(rx2);
|
|
|
1117 |
XRPOW_FTOI(x1,*ix++);
|
|
|
1118 |
x3 += QUANTFAC(rx3);
|
|
|
1119 |
XRPOW_FTOI(x2,*ix++);
|
|
|
1120 |
x4 += QUANTFAC(rx4);
|
|
|
1121 |
XRPOW_FTOI(x3,*ix++);
|
|
|
1122 |
x5 += QUANTFAC(rx5);
|
|
|
1123 |
XRPOW_FTOI(x4,*ix++);
|
|
|
1124 |
x6 += QUANTFAC(rx6);
|
|
|
1125 |
XRPOW_FTOI(x5,*ix++);
|
|
|
1126 |
x7 += QUANTFAC(rx7);
|
|
|
1127 |
XRPOW_FTOI(x6,*ix++);
|
|
|
1128 |
x8 += QUANTFAC(rx8);
|
|
|
1129 |
XRPOW_FTOI(x7,*ix++);
|
|
|
1130 |
XRPOW_FTOI(x8,*ix++);
|
|
|
1131 |
}
|
|
|
1132 |
}
|
|
|
1133 |
|
|
|
1134 |
|
|
|
1135 |
|
|
|
1136 |
|
|
|
1137 |
|
|
|
1138 |
|
|
|
1139 |
void quantize_xrpow_ISO( const FLOAT8 xr[576], int ix[576], FLOAT8 istep )
|
|
|
1140 |
{
|
|
|
1141 |
/* quantize on xr^(3/4) instead of xr */
|
|
|
1142 |
const FLOAT8 compareval0 = (1.0 - 0.4054)/istep;
|
|
|
1143 |
int j;
|
|
|
1144 |
/* depending on architecture, it may be worth calculating a few more
|
|
|
1145 |
compareval's.
|
|
|
1146 |
|
|
|
1147 |
eg. compareval1 = (2.0 - 0.4054/istep);
|
|
|
1148 |
.. and then after the first compare do this ...
|
|
|
1149 |
if compareval1>*xr then ix = 1;
|
|
|
1150 |
|
|
|
1151 |
On a pentium166, it's only worth doing the one compare (as done here),
|
|
|
1152 |
as the second compare becomes more expensive than just calculating
|
|
|
1153 |
the value. Architectures with slow FP operations may want to add some
|
|
|
1154 |
more comparevals. try it and send your diffs statistically speaking
|
|
|
1155 |
|
|
|
1156 |
73% of all xr*istep values give ix=0
|
|
|
1157 |
16% will give 1
|
|
|
1158 |
4% will give 2
|
|
|
1159 |
*/
|
|
|
1160 |
for (j=576;j>0;j--) {
|
|
|
1161 |
if (compareval0 > *xr) {
|
|
|
1162 |
*(ix++) = 0;
|
|
|
1163 |
xr++;
|
|
|
1164 |
} else {
|
|
|
1165 |
/* *(ix++) = (int)( istep*(*(xr++)) + 0.4054); */
|
|
|
1166 |
XRPOW_FTOI( istep*(*(xr++)) + ROUNDFAC , *(ix++) );
|
|
|
1167 |
}
|
|
|
1168 |
}
|
|
|
1169 |
}
|
|
|
1170 |
|
|
|
1171 |
#endif
|