2 |
- |
1 |
/* Copyright (C) 1989, 1996, 1997, 1998, 1999 Aladdin Enterprises. All rights reserved.
|
|
|
2 |
|
|
|
3 |
This software is provided AS-IS with no warranty, either express or
|
|
|
4 |
implied.
|
|
|
5 |
|
|
|
6 |
This software is distributed under license and may not be copied,
|
|
|
7 |
modified or distributed except as expressly authorized under the terms
|
|
|
8 |
of the license contained in the file LICENSE in this distribution.
|
|
|
9 |
|
|
|
10 |
For more information about licensing, please refer to
|
|
|
11 |
http://www.ghostscript.com/licensing/. For information on
|
|
|
12 |
commercial licensing, go to http://www.artifex.com/licensing/ or
|
|
|
13 |
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
|
|
|
14 |
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
|
|
|
15 |
*/
|
|
|
16 |
|
|
|
17 |
/*$Id: gsht.c,v 1.23 2005/03/14 18:08:36 dan Exp $ */
|
|
|
18 |
/* setscreen operator for Ghostscript library */
|
|
|
19 |
#include "memory_.h"
|
|
|
20 |
#include "string_.h"
|
|
|
21 |
#include <stdlib.h> /* for qsort */
|
|
|
22 |
#include "gx.h"
|
|
|
23 |
#include "gserrors.h"
|
|
|
24 |
#include "gsstruct.h"
|
|
|
25 |
#include "gsutil.h" /* for gs_next_ids */
|
|
|
26 |
#include "gxarith.h" /* for igcd */
|
|
|
27 |
#include "gzstate.h"
|
|
|
28 |
#include "gxdevice.h" /* for gzht.h */
|
|
|
29 |
#include "gzht.h"
|
|
|
30 |
#include "gswts.h"
|
|
|
31 |
|
|
|
32 |
/* Forward declarations */
|
|
|
33 |
void gx_set_effective_transfer(gs_state *);
|
|
|
34 |
|
|
|
35 |
/*
|
|
|
36 |
* *HACK ALERT*
|
|
|
37 |
*
|
|
|
38 |
* Value stored in the width field of a well-tempered screen halftone
|
|
|
39 |
* order, to indicate that the wts field of this order points to the
|
|
|
40 |
* same structure as an earlier order. This is used to suppress
|
|
|
41 |
* multiple realeases of shared wts_screen_t orders.
|
|
|
42 |
*
|
|
|
43 |
* The width field is available for this purpose at it is nominally
|
|
|
44 |
* unused in a well-tempered screening halftone.
|
|
|
45 |
*/
|
|
|
46 |
private const ushort ht_wts_suppress_release = (ushort)(-1);
|
|
|
47 |
|
|
|
48 |
|
|
|
49 |
/* Structure types */
|
|
|
50 |
public_st_ht_order();
|
|
|
51 |
private_st_ht_order_component();
|
|
|
52 |
public_st_ht_order_comp_element();
|
|
|
53 |
public_st_halftone();
|
|
|
54 |
public_st_device_halftone();
|
|
|
55 |
|
|
|
56 |
/* GC procedures */
|
|
|
57 |
|
|
|
58 |
private
|
|
|
59 |
ENUM_PTRS_WITH(ht_order_enum_ptrs, gx_ht_order *porder) return 0;
|
|
|
60 |
case 0: ENUM_RETURN((porder->data_memory ? porder->levels : 0));
|
|
|
61 |
case 1: ENUM_RETURN((porder->data_memory ? porder->bit_data : 0));
|
|
|
62 |
case 2: ENUM_RETURN(porder->cache);
|
|
|
63 |
case 3: ENUM_RETURN(porder->transfer);
|
|
|
64 |
ENUM_PTRS_END
|
|
|
65 |
private
|
|
|
66 |
RELOC_PTRS_WITH(ht_order_reloc_ptrs, gx_ht_order *porder)
|
|
|
67 |
{
|
|
|
68 |
if (porder->data_memory) {
|
|
|
69 |
RELOC_VAR(porder->levels);
|
|
|
70 |
RELOC_VAR(porder->bit_data);
|
|
|
71 |
}
|
|
|
72 |
RELOC_VAR(porder->cache);
|
|
|
73 |
RELOC_VAR(porder->transfer);
|
|
|
74 |
}
|
|
|
75 |
RELOC_PTRS_END
|
|
|
76 |
|
|
|
77 |
private
|
|
|
78 |
ENUM_PTRS_WITH(halftone_enum_ptrs, gs_halftone *hptr) return 0;
|
|
|
79 |
case 0:
|
|
|
80 |
switch (hptr->type)
|
|
|
81 |
{
|
|
|
82 |
case ht_type_spot:
|
|
|
83 |
ENUM_RETURN((hptr->params.spot.transfer == 0 ?
|
|
|
84 |
hptr->params.spot.transfer_closure.data :
|
|
|
85 |
0));
|
|
|
86 |
case ht_type_threshold:
|
|
|
87 |
ENUM_RETURN_CONST_STRING_PTR(gs_halftone, params.threshold.thresholds);
|
|
|
88 |
case ht_type_threshold2:
|
|
|
89 |
return ENUM_CONST_BYTESTRING(&hptr->params.threshold2.thresholds);
|
|
|
90 |
case ht_type_client_order:
|
|
|
91 |
ENUM_RETURN(hptr->params.client_order.client_data);
|
|
|
92 |
case ht_type_multiple:
|
|
|
93 |
case ht_type_multiple_colorscreen:
|
|
|
94 |
ENUM_RETURN(hptr->params.multiple.components);
|
|
|
95 |
case ht_type_none:
|
|
|
96 |
case ht_type_screen:
|
|
|
97 |
case ht_type_colorscreen:
|
|
|
98 |
return 0;
|
|
|
99 |
}
|
|
|
100 |
case 1:
|
|
|
101 |
switch (hptr->type) {
|
|
|
102 |
case ht_type_threshold:
|
|
|
103 |
ENUM_RETURN((hptr->params.threshold.transfer == 0 ?
|
|
|
104 |
hptr->params.threshold.transfer_closure.data :
|
|
|
105 |
0));
|
|
|
106 |
case ht_type_threshold2:
|
|
|
107 |
ENUM_RETURN(hptr->params.threshold2.transfer_closure.data);
|
|
|
108 |
case ht_type_client_order:
|
|
|
109 |
ENUM_RETURN(hptr->params.client_order.transfer_closure.data);
|
|
|
110 |
default:
|
|
|
111 |
return 0;
|
|
|
112 |
}
|
|
|
113 |
ENUM_PTRS_END
|
|
|
114 |
|
|
|
115 |
private RELOC_PTRS_WITH(halftone_reloc_ptrs, gs_halftone *hptr)
|
|
|
116 |
{
|
|
|
117 |
switch (hptr->type) {
|
|
|
118 |
case ht_type_spot:
|
|
|
119 |
if (hptr->params.spot.transfer == 0)
|
|
|
120 |
RELOC_PTR(gs_halftone, params.spot.transfer_closure.data);
|
|
|
121 |
break;
|
|
|
122 |
case ht_type_threshold:
|
|
|
123 |
RELOC_CONST_STRING_PTR(gs_halftone, params.threshold.thresholds);
|
|
|
124 |
if (hptr->params.threshold.transfer == 0)
|
|
|
125 |
RELOC_PTR(gs_halftone, params.threshold.transfer_closure.data);
|
|
|
126 |
break;
|
|
|
127 |
case ht_type_threshold2:
|
|
|
128 |
RELOC_CONST_BYTESTRING_VAR(hptr->params.threshold2.thresholds);
|
|
|
129 |
RELOC_OBJ_VAR(hptr->params.threshold2.transfer_closure.data);
|
|
|
130 |
break;
|
|
|
131 |
case ht_type_client_order:
|
|
|
132 |
RELOC_PTR(gs_halftone, params.client_order.client_data);
|
|
|
133 |
RELOC_PTR(gs_halftone, params.client_order.transfer_closure.data);
|
|
|
134 |
break;
|
|
|
135 |
case ht_type_multiple:
|
|
|
136 |
case ht_type_multiple_colorscreen:
|
|
|
137 |
RELOC_PTR(gs_halftone, params.multiple.components);
|
|
|
138 |
break;
|
|
|
139 |
case ht_type_none:
|
|
|
140 |
case ht_type_screen:
|
|
|
141 |
case ht_type_colorscreen:
|
|
|
142 |
break;
|
|
|
143 |
}
|
|
|
144 |
}
|
|
|
145 |
RELOC_PTRS_END
|
|
|
146 |
|
|
|
147 |
/* setscreen */
|
|
|
148 |
int
|
|
|
149 |
gs_setscreen(gs_state * pgs, gs_screen_halftone * phsp)
|
|
|
150 |
{
|
|
|
151 |
gs_screen_enum senum;
|
|
|
152 |
int code = gx_ht_process_screen(&senum, pgs, phsp,
|
|
|
153 |
gs_currentaccuratescreens());
|
|
|
154 |
|
|
|
155 |
if (code < 0)
|
|
|
156 |
return code;
|
|
|
157 |
return gs_screen_install(&senum);
|
|
|
158 |
}
|
|
|
159 |
|
|
|
160 |
/* currentscreen */
|
|
|
161 |
int
|
|
|
162 |
gs_currentscreen(const gs_state * pgs, gs_screen_halftone * phsp)
|
|
|
163 |
{
|
|
|
164 |
switch (pgs->halftone->type) {
|
|
|
165 |
case ht_type_screen:
|
|
|
166 |
*phsp = pgs->halftone->params.screen;
|
|
|
167 |
return 0;
|
|
|
168 |
case ht_type_colorscreen:
|
|
|
169 |
*phsp = pgs->halftone->params.colorscreen.screens.colored.gray;
|
|
|
170 |
return 0;
|
|
|
171 |
default:
|
|
|
172 |
return_error(gs_error_undefined);
|
|
|
173 |
}
|
|
|
174 |
}
|
|
|
175 |
|
|
|
176 |
/* .currentscreenlevels */
|
|
|
177 |
int
|
|
|
178 |
gs_currentscreenlevels(const gs_state * pgs)
|
|
|
179 |
{
|
|
|
180 |
int gi = 0;
|
|
|
181 |
|
|
|
182 |
if (pgs->device != 0)
|
|
|
183 |
gi = pgs->device->color_info.gray_index;
|
|
|
184 |
if (gi != GX_CINFO_COMP_NO_INDEX)
|
|
|
185 |
return pgs->dev_ht->components[gi].corder.num_levels;
|
|
|
186 |
else
|
|
|
187 |
return pgs->dev_ht->components[0].corder.num_levels;
|
|
|
188 |
}
|
|
|
189 |
|
|
|
190 |
/* .setscreenphase */
|
|
|
191 |
int
|
|
|
192 |
gx_imager_setscreenphase(gs_imager_state * pis, int x, int y,
|
|
|
193 |
gs_color_select_t select)
|
|
|
194 |
{
|
|
|
195 |
if (select == gs_color_select_all) {
|
|
|
196 |
int i;
|
|
|
197 |
|
|
|
198 |
for (i = 0; i < gs_color_select_count; ++i)
|
|
|
199 |
gx_imager_setscreenphase(pis, x, y, (gs_color_select_t) i);
|
|
|
200 |
return 0;
|
|
|
201 |
} else if (select < 0 || select >= gs_color_select_count)
|
|
|
202 |
return_error(gs_error_rangecheck);
|
|
|
203 |
pis->screen_phase[select].x = x;
|
|
|
204 |
pis->screen_phase[select].y = y;
|
|
|
205 |
return 0;
|
|
|
206 |
}
|
|
|
207 |
int
|
|
|
208 |
gs_setscreenphase(gs_state * pgs, int x, int y, gs_color_select_t select)
|
|
|
209 |
{
|
|
|
210 |
int code = gx_imager_setscreenphase((gs_imager_state *) pgs, x, y,
|
|
|
211 |
select);
|
|
|
212 |
|
|
|
213 |
/*
|
|
|
214 |
* If we're only setting the source phase, we don't need to do
|
|
|
215 |
* unset_dev_color, because the source phase doesn't affect painting
|
|
|
216 |
* with the current color.
|
|
|
217 |
*/
|
|
|
218 |
if (code >= 0 && (select == gs_color_select_texture ||
|
|
|
219 |
select == gs_color_select_all)
|
|
|
220 |
)
|
|
|
221 |
gx_unset_dev_color(pgs);
|
|
|
222 |
return code;
|
|
|
223 |
}
|
|
|
224 |
|
|
|
225 |
int
|
|
|
226 |
gs_currentscreenphase_pis(const gs_imager_state * pis, gs_int_point * pphase,
|
|
|
227 |
gs_color_select_t select)
|
|
|
228 |
{
|
|
|
229 |
if (select < 0 || select >= gs_color_select_count)
|
|
|
230 |
return_error(gs_error_rangecheck);
|
|
|
231 |
*pphase = pis->screen_phase[select];
|
|
|
232 |
return 0;
|
|
|
233 |
}
|
|
|
234 |
|
|
|
235 |
/* .currentscreenphase */
|
|
|
236 |
int
|
|
|
237 |
gs_currentscreenphase(const gs_state * pgs, gs_int_point * pphase,
|
|
|
238 |
gs_color_select_t select)
|
|
|
239 |
{
|
|
|
240 |
return gs_currentscreenphase_pis((const gs_imager_state *)pgs, pphase, select);
|
|
|
241 |
}
|
|
|
242 |
|
|
|
243 |
/* currenthalftone */
|
|
|
244 |
int
|
|
|
245 |
gs_currenthalftone(gs_state * pgs, gs_halftone * pht)
|
|
|
246 |
{
|
|
|
247 |
*pht = *pgs->halftone;
|
|
|
248 |
return 0;
|
|
|
249 |
}
|
|
|
250 |
|
|
|
251 |
/* ------ Internal routines ------ */
|
|
|
252 |
|
|
|
253 |
/* Process one screen plane. */
|
|
|
254 |
int
|
|
|
255 |
gx_ht_process_screen_memory(gs_screen_enum * penum, gs_state * pgs,
|
|
|
256 |
gs_screen_halftone * phsp, bool accurate, gs_memory_t * mem)
|
|
|
257 |
{
|
|
|
258 |
gs_point pt;
|
|
|
259 |
int code = gs_screen_init_memory(penum, pgs, phsp, accurate, mem);
|
|
|
260 |
|
|
|
261 |
if (code < 0)
|
|
|
262 |
return code;
|
|
|
263 |
while ((code = gs_screen_currentpoint(penum, &pt)) == 0)
|
|
|
264 |
if ((code = gs_screen_next(penum, (*phsp->spot_function) (pt.x, pt.y))) < 0)
|
|
|
265 |
return code;
|
|
|
266 |
return 0;
|
|
|
267 |
}
|
|
|
268 |
|
|
|
269 |
/*
|
|
|
270 |
* Internal procedure to allocate and initialize either an internally
|
|
|
271 |
* generated or a client-defined halftone order. For spot halftones,
|
|
|
272 |
* the client is responsible for calling gx_compute_cell_values.
|
|
|
273 |
*
|
|
|
274 |
* Note: this function is used for old-style halftones only. WTS
|
|
|
275 |
* halftones are allocated in gs_sethalftone_try_wts().
|
|
|
276 |
*/
|
|
|
277 |
int
|
|
|
278 |
gx_ht_alloc_ht_order(gx_ht_order * porder, uint width, uint height,
|
|
|
279 |
uint num_levels, uint num_bits, uint strip_shift,
|
|
|
280 |
const gx_ht_order_procs_t *procs, gs_memory_t * mem)
|
|
|
281 |
{
|
|
|
282 |
porder->wse = NULL;
|
|
|
283 |
porder->wts = NULL;
|
|
|
284 |
porder->width = width;
|
|
|
285 |
porder->height = height;
|
|
|
286 |
porder->raster = bitmap_raster(width);
|
|
|
287 |
porder->shift = strip_shift;
|
|
|
288 |
porder->orig_height = porder->height;
|
|
|
289 |
porder->orig_shift = porder->shift;
|
|
|
290 |
porder->full_height = ht_order_full_height(porder);
|
|
|
291 |
porder->num_levels = num_levels;
|
|
|
292 |
porder->num_bits = num_bits;
|
|
|
293 |
porder->procs = procs;
|
|
|
294 |
porder->data_memory = mem;
|
|
|
295 |
|
|
|
296 |
if (num_levels > 0) {
|
|
|
297 |
porder->levels =
|
|
|
298 |
(uint *)gs_alloc_byte_array(mem, porder->num_levels, sizeof(uint),
|
|
|
299 |
"alloc_ht_order_data(levels)");
|
|
|
300 |
if (porder->levels == 0)
|
|
|
301 |
return_error(gs_error_VMerror);
|
|
|
302 |
} else
|
|
|
303 |
porder->levels = 0;
|
|
|
304 |
|
|
|
305 |
if (num_bits > 0) {
|
|
|
306 |
porder->bit_data =
|
|
|
307 |
gs_alloc_byte_array(mem, porder->num_bits,
|
|
|
308 |
porder->procs->bit_data_elt_size,
|
|
|
309 |
"alloc_ht_order_data(bit_data)");
|
|
|
310 |
if (porder->bit_data == 0) {
|
|
|
311 |
gs_free_object(mem, porder->levels, "alloc_ht_order_data(levels)");
|
|
|
312 |
porder->levels = 0;
|
|
|
313 |
return_error(gs_error_VMerror);
|
|
|
314 |
}
|
|
|
315 |
} else
|
|
|
316 |
porder->bit_data = 0;
|
|
|
317 |
|
|
|
318 |
porder->cache = 0;
|
|
|
319 |
porder->transfer = 0;
|
|
|
320 |
return 0;
|
|
|
321 |
}
|
|
|
322 |
|
|
|
323 |
/*
|
|
|
324 |
* Procedure to copy a halftone order.
|
|
|
325 |
*/
|
|
|
326 |
private int
|
|
|
327 |
gx_ht_copy_ht_order(gx_ht_order * pdest, gx_ht_order * psrc, gs_memory_t * mem)
|
|
|
328 |
{
|
|
|
329 |
int code;
|
|
|
330 |
|
|
|
331 |
*pdest = *psrc;
|
|
|
332 |
|
|
|
333 |
code = gx_ht_alloc_ht_order(pdest, psrc->width, psrc->height,
|
|
|
334 |
psrc->num_levels, psrc->num_bits, psrc->shift,
|
|
|
335 |
psrc->procs, mem);
|
|
|
336 |
if (code < 0)
|
|
|
337 |
return code;
|
|
|
338 |
if (pdest->levels != 0)
|
|
|
339 |
memcpy(pdest->levels, psrc->levels, psrc->num_levels * sizeof(uint));
|
|
|
340 |
if (pdest->bit_data != 0)
|
|
|
341 |
memcpy(pdest->bit_data, psrc->bit_data,
|
|
|
342 |
psrc->num_bits * psrc->procs->bit_data_elt_size);
|
|
|
343 |
pdest->wse = psrc->wse;
|
|
|
344 |
pdest->transfer = psrc->transfer;
|
|
|
345 |
rc_increment(pdest->transfer);
|
|
|
346 |
return 0;
|
|
|
347 |
}
|
|
|
348 |
|
|
|
349 |
/*
|
|
|
350 |
* Set the destination component to match the source component, and
|
|
|
351 |
* "assume ownership" of all of the refrernced data structures.
|
|
|
352 |
*/
|
|
|
353 |
private void
|
|
|
354 |
gx_ht_move_ht_order(gx_ht_order * pdest, gx_ht_order * psrc)
|
|
|
355 |
{
|
|
|
356 |
uint width = psrc->width, height = psrc->height, shift = psrc->shift;
|
|
|
357 |
|
|
|
358 |
pdest->params = psrc->params;
|
|
|
359 |
pdest->wse = psrc->wse;
|
|
|
360 |
pdest->wts = 0;
|
|
|
361 |
pdest->width = width;
|
|
|
362 |
pdest->height = height;
|
|
|
363 |
pdest->raster = bitmap_raster(width);
|
|
|
364 |
pdest->shift = shift;
|
|
|
365 |
pdest->orig_height = height;
|
|
|
366 |
pdest->orig_shift = shift;
|
|
|
367 |
pdest->full_height = ht_order_full_height(pdest);
|
|
|
368 |
pdest->num_levels = psrc->num_levels;
|
|
|
369 |
pdest->num_bits = psrc->num_bits;
|
|
|
370 |
pdest->procs = psrc->procs;
|
|
|
371 |
pdest->data_memory = psrc->data_memory;
|
|
|
372 |
pdest->levels = psrc->levels;
|
|
|
373 |
pdest->bit_data = psrc->bit_data;
|
|
|
374 |
pdest->cache = psrc->cache; /* should be 0 */
|
|
|
375 |
pdest->transfer = psrc->transfer;
|
|
|
376 |
}
|
|
|
377 |
|
|
|
378 |
|
|
|
379 |
/* Allocate and initialize the contents of a halftone order. */
|
|
|
380 |
/* The client must have set the defining values in porder->params. */
|
|
|
381 |
int
|
|
|
382 |
gx_ht_alloc_order(gx_ht_order * porder, uint width, uint height,
|
|
|
383 |
uint strip_shift, uint num_levels, gs_memory_t * mem)
|
|
|
384 |
{
|
|
|
385 |
gx_ht_order order;
|
|
|
386 |
int code;
|
|
|
387 |
|
|
|
388 |
order = *porder;
|
|
|
389 |
gx_compute_cell_values(&order.params);
|
|
|
390 |
code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
|
|
|
391 |
width * height, strip_shift,
|
|
|
392 |
&ht_order_procs_default, mem);
|
|
|
393 |
if (code < 0)
|
|
|
394 |
return code;
|
|
|
395 |
*porder = order;
|
|
|
396 |
return 0;
|
|
|
397 |
}
|
|
|
398 |
|
|
|
399 |
/*
|
|
|
400 |
* Allocate and initialize a threshold order, which may use the short
|
|
|
401 |
* representation.
|
|
|
402 |
*/
|
|
|
403 |
int
|
|
|
404 |
gx_ht_alloc_threshold_order(gx_ht_order * porder, uint width, uint height,
|
|
|
405 |
uint num_levels, gs_memory_t * mem)
|
|
|
406 |
{
|
|
|
407 |
gx_ht_order order;
|
|
|
408 |
uint num_bits = width * height;
|
|
|
409 |
const gx_ht_order_procs_t *procs =
|
|
|
410 |
(num_bits > 2000 && num_bits <= max_ushort ?
|
|
|
411 |
&ht_order_procs_short : &ht_order_procs_default);
|
|
|
412 |
int code;
|
|
|
413 |
|
|
|
414 |
order = *porder;
|
|
|
415 |
gx_compute_cell_values(&order.params);
|
|
|
416 |
code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
|
|
|
417 |
width * height, 0, procs, mem);
|
|
|
418 |
if (code < 0)
|
|
|
419 |
return code;
|
|
|
420 |
*porder = order;
|
|
|
421 |
return 0;
|
|
|
422 |
}
|
|
|
423 |
|
|
|
424 |
/* Allocate and initialize the contents of a client-defined halftone order. */
|
|
|
425 |
int
|
|
|
426 |
gx_ht_alloc_client_order(gx_ht_order * porder, uint width, uint height,
|
|
|
427 |
uint num_levels, uint num_bits, gs_memory_t * mem)
|
|
|
428 |
{
|
|
|
429 |
gx_ht_order order;
|
|
|
430 |
int code;
|
|
|
431 |
|
|
|
432 |
order = *porder;
|
|
|
433 |
order.params.M = width, order.params.N = 0;
|
|
|
434 |
order.params.R = 1;
|
|
|
435 |
order.params.M1 = height, order.params.N1 = 0;
|
|
|
436 |
order.params.R1 = 1;
|
|
|
437 |
gx_compute_cell_values(&order.params);
|
|
|
438 |
code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
|
|
|
439 |
num_bits, 0, &ht_order_procs_default, mem);
|
|
|
440 |
if (code < 0)
|
|
|
441 |
return code;
|
|
|
442 |
*porder = order;
|
|
|
443 |
return 0;
|
|
|
444 |
}
|
|
|
445 |
|
|
|
446 |
/* Compare keys ("masks", actually sample values) for qsort. */
|
|
|
447 |
private int
|
|
|
448 |
compare_samples(const void *p1, const void *p2)
|
|
|
449 |
{
|
|
|
450 |
ht_sample_t m1 = ((const gx_ht_bit *)p1)->mask;
|
|
|
451 |
ht_sample_t m2 = ((const gx_ht_bit *)p2)->mask;
|
|
|
452 |
|
|
|
453 |
return (m1 < m2 ? -1 : m1 > m2 ? 1 : 0);
|
|
|
454 |
}
|
|
|
455 |
/* Sort the halftone order by sample value. */
|
|
|
456 |
void
|
|
|
457 |
gx_sort_ht_order(gx_ht_bit * recs, uint N)
|
|
|
458 |
{
|
|
|
459 |
int i;
|
|
|
460 |
|
|
|
461 |
/* Tag each sample with its index, for sorting. */
|
|
|
462 |
for (i = 0; i < N; i++)
|
|
|
463 |
recs[i].offset = i;
|
|
|
464 |
qsort((void *)recs, N, sizeof(*recs), compare_samples);
|
|
|
465 |
#ifdef DEBUG
|
|
|
466 |
if (gs_debug_c('H')) {
|
|
|
467 |
uint i;
|
|
|
468 |
|
|
|
469 |
dlputs("[H]Sorted samples:\n");
|
|
|
470 |
for (i = 0; i < N; i++)
|
|
|
471 |
dlprintf3("%5u: %5u: %u\n",
|
|
|
472 |
i, recs[i].offset, recs[i].mask);
|
|
|
473 |
}
|
|
|
474 |
#endif
|
|
|
475 |
}
|
|
|
476 |
|
|
|
477 |
/*
|
|
|
478 |
* Construct the halftone order from a sampled spot function. Only width x
|
|
|
479 |
* strip samples have been filled in; we must replicate the resulting sorted
|
|
|
480 |
* order vertically, shifting it by shift each time. See gxdht.h regarding
|
|
|
481 |
* the invariants that must be restored.
|
|
|
482 |
*/
|
|
|
483 |
void
|
|
|
484 |
gx_ht_construct_spot_order(gx_ht_order * porder)
|
|
|
485 |
{
|
|
|
486 |
uint width = porder->width;
|
|
|
487 |
uint num_levels = porder->num_levels; /* = width x strip */
|
|
|
488 |
uint strip = num_levels / width;
|
|
|
489 |
gx_ht_bit *bits = (gx_ht_bit *)porder->bit_data;
|
|
|
490 |
uint *levels = porder->levels;
|
|
|
491 |
uint shift = porder->orig_shift;
|
|
|
492 |
uint full_height = porder->full_height;
|
|
|
493 |
uint num_bits = porder->num_bits;
|
|
|
494 |
uint copies = num_bits / (width * strip);
|
|
|
495 |
gx_ht_bit *bp = bits + num_bits - 1;
|
|
|
496 |
uint i;
|
|
|
497 |
|
|
|
498 |
gx_sort_ht_order(bits, num_levels);
|
|
|
499 |
if_debug5('h',
|
|
|
500 |
"[h]spot order: num_levels=%u w=%u h=%u strip=%u shift=%u\n",
|
|
|
501 |
num_levels, width, porder->orig_height, strip, shift);
|
|
|
502 |
/* Fill in the levels array, replicating the bits vertically */
|
|
|
503 |
/* if needed. */
|
|
|
504 |
for (i = num_levels; i > 0;) {
|
|
|
505 |
uint offset = bits[--i].offset;
|
|
|
506 |
uint x = offset % width;
|
|
|
507 |
uint hy = offset - x;
|
|
|
508 |
uint k;
|
|
|
509 |
|
|
|
510 |
levels[i] = i * copies;
|
|
|
511 |
for (k = 0; k < copies;
|
|
|
512 |
k++, bp--, hy += num_levels, x = (x + width - shift) % width
|
|
|
513 |
)
|
|
|
514 |
bp->offset = hy + x;
|
|
|
515 |
}
|
|
|
516 |
/* If we have a complete halftone, restore the invariant. */
|
|
|
517 |
if (num_bits == width * full_height) {
|
|
|
518 |
porder->height = full_height;
|
|
|
519 |
porder->shift = 0;
|
|
|
520 |
}
|
|
|
521 |
gx_ht_construct_bits(porder);
|
|
|
522 |
}
|
|
|
523 |
|
|
|
524 |
/* Construct a single offset/mask. */
|
|
|
525 |
void
|
|
|
526 |
gx_ht_construct_bit(gx_ht_bit * bit, int width, int bit_num)
|
|
|
527 |
{
|
|
|
528 |
uint padding = bitmap_raster(width) * 8 - width;
|
|
|
529 |
int pix = bit_num;
|
|
|
530 |
ht_mask_t mask;
|
|
|
531 |
byte *pb;
|
|
|
532 |
|
|
|
533 |
pix += pix / width * padding;
|
|
|
534 |
bit->offset = (pix >> 3) & -size_of(mask);
|
|
|
535 |
mask = (ht_mask_t) 1 << (~pix & (ht_mask_bits - 1));
|
|
|
536 |
/* Replicate the mask bits. */
|
|
|
537 |
pix = ht_mask_bits - width;
|
|
|
538 |
while ((pix -= width) >= 0)
|
|
|
539 |
mask |= mask >> width;
|
|
|
540 |
/* Store the mask, reversing bytes if necessary. */
|
|
|
541 |
bit->mask = 0;
|
|
|
542 |
for (pb = (byte *) & bit->mask + (sizeof(mask) - 1);
|
|
|
543 |
mask != 0;
|
|
|
544 |
mask >>= 8, pb--
|
|
|
545 |
)
|
|
|
546 |
*pb = (byte) mask;
|
|
|
547 |
}
|
|
|
548 |
|
|
|
549 |
/* Construct offset/masks from the whitening order. */
|
|
|
550 |
/* porder->bits[i].offset contains the index of the bit position */
|
|
|
551 |
/* that is i'th in the whitening order. */
|
|
|
552 |
void
|
|
|
553 |
gx_ht_construct_bits(gx_ht_order * porder)
|
|
|
554 |
{
|
|
|
555 |
uint i;
|
|
|
556 |
gx_ht_bit *phb;
|
|
|
557 |
|
|
|
558 |
for (i = 0, phb = (gx_ht_bit *)porder->bit_data;
|
|
|
559 |
i < porder->num_bits;
|
|
|
560 |
i++, phb++)
|
|
|
561 |
gx_ht_construct_bit(phb, porder->width, phb->offset);
|
|
|
562 |
#ifdef DEBUG
|
|
|
563 |
if (gs_debug_c('H')) {
|
|
|
564 |
dlprintf1("[H]Halftone order bits 0x%lx:\n", (ulong)porder->bit_data);
|
|
|
565 |
for (i = 0, phb = (gx_ht_bit *)porder->bit_data;
|
|
|
566 |
i < porder->num_bits;
|
|
|
567 |
i++, phb++)
|
|
|
568 |
dlprintf3("%4d: %u:0x%lx\n", i, phb->offset,
|
|
|
569 |
(ulong) phb->mask);
|
|
|
570 |
}
|
|
|
571 |
#endif
|
|
|
572 |
}
|
|
|
573 |
|
|
|
574 |
/* Release a gx_device_halftone by freeing its components. */
|
|
|
575 |
/* (Don't free the gx_device_halftone itself.) */
|
|
|
576 |
void
|
|
|
577 |
gx_ht_order_release(gx_ht_order * porder, gs_memory_t * mem, bool free_cache)
|
|
|
578 |
{
|
|
|
579 |
/* "free cache" is a proxy for "differs from default" */
|
|
|
580 |
if (free_cache) {
|
|
|
581 |
if (porder->cache != 0)
|
|
|
582 |
gx_ht_free_cache(mem, porder->cache);
|
|
|
583 |
else if (porder->wse != 0)
|
|
|
584 |
gs_wts_free_enum(porder->wse);
|
|
|
585 |
}
|
|
|
586 |
porder->cache = 0;
|
|
|
587 |
if (porder->wts != 0 && porder->width != ht_wts_suppress_release)
|
|
|
588 |
gs_wts_free_screen(porder->wts);
|
|
|
589 |
porder->wts = 0;
|
|
|
590 |
rc_decrement(porder->transfer, "gx_ht_order_release(transfer)");
|
|
|
591 |
porder->transfer = 0;
|
|
|
592 |
if (porder->data_memory != 0) {
|
|
|
593 |
gs_free_object(porder->data_memory, porder->bit_data,
|
|
|
594 |
"gx_ht_order_release(bit_data)");
|
|
|
595 |
gs_free_object(porder->data_memory, porder->levels,
|
|
|
596 |
"gx_ht_order_release(levels)");
|
|
|
597 |
}
|
|
|
598 |
porder->levels = 0;
|
|
|
599 |
porder->bit_data = 0;
|
|
|
600 |
}
|
|
|
601 |
|
|
|
602 |
void
|
|
|
603 |
gx_device_halftone_release(gx_device_halftone * pdht, gs_memory_t * mem)
|
|
|
604 |
{
|
|
|
605 |
if (pdht->components) {
|
|
|
606 |
int i;
|
|
|
607 |
|
|
|
608 |
/* One of the components might be the same as the default */
|
|
|
609 |
/* order, so check that we don't free it twice. */
|
|
|
610 |
for (i = 0; i < pdht->num_comp; ++i)
|
|
|
611 |
if (pdht->components[i].corder.bit_data !=
|
|
|
612 |
pdht->order.bit_data
|
|
|
613 |
) { /* Currently, all orders except the default one */
|
|
|
614 |
/* own their caches. */
|
|
|
615 |
gx_ht_order_release(&pdht->components[i].corder, mem, true);
|
|
|
616 |
}
|
|
|
617 |
gs_free_object(mem, pdht->components,
|
|
|
618 |
"gx_dev_ht_release(components)");
|
|
|
619 |
pdht->components = 0;
|
|
|
620 |
pdht->num_comp = 0;
|
|
|
621 |
}
|
|
|
622 |
gx_ht_order_release(&pdht->order, mem, false);
|
|
|
623 |
}
|
|
|
624 |
|
|
|
625 |
/*
|
|
|
626 |
* This routine will take a color name (defined by a ptr and size) and
|
|
|
627 |
* check if this is a valid colorant name for the current device. If
|
|
|
628 |
* so then the device's colorant number is returned.
|
|
|
629 |
*
|
|
|
630 |
* Two other checks are also made. If the name is "Default" then a value
|
|
|
631 |
* of GX_DEVICE_COLOR_MAX_COMPONENTS is returned. This is done to
|
|
|
632 |
* simplify the handling of default halftones. Note: The device also
|
|
|
633 |
* uses GX_DEVICE_COLOR_MAX_COMPONENTS to indicate colorants which are
|
|
|
634 |
* known but not being used due to the SeparationOrder parameter. In this
|
|
|
635 |
* case we return -1 since the colorant is not currently being used by the
|
|
|
636 |
* device.
|
|
|
637 |
*
|
|
|
638 |
* If the halftone type is colorscreen or multiple colorscreen, then we
|
|
|
639 |
* also check for Red/Cyan, Green/Magenta, Blue/Yellow, and Gray/Black
|
|
|
640 |
* component name pairs. This is done since the setcolorscreen and
|
|
|
641 |
* sethalftone types 2 and 4 imply the dual name sets.
|
|
|
642 |
*
|
|
|
643 |
* A negative value is returned if the color name is not found.
|
|
|
644 |
*/
|
|
|
645 |
int
|
|
|
646 |
gs_color_name_component_number(gx_device * dev, const char * pname,
|
|
|
647 |
int name_size, int halftonetype)
|
|
|
648 |
{
|
|
|
649 |
int num_colorant;
|
|
|
650 |
|
|
|
651 |
#define check_colorant_name(dev, name) \
|
|
|
652 |
((*dev_proc(dev, get_color_comp_index)) (dev, name, strlen(name), NO_COMP_NAME_TYPE))
|
|
|
653 |
|
|
|
654 |
#define check_colorant_name_length(dev, name, length) \
|
|
|
655 |
((*dev_proc(dev, get_color_comp_index)) (dev, name, length, NO_COMP_NAME_TYPE))
|
|
|
656 |
|
|
|
657 |
#define check_name(str, pname, length) \
|
|
|
658 |
((strlen(str) == length) && (strncmp(pname, str, length) == 0))
|
|
|
659 |
|
|
|
660 |
/*
|
|
|
661 |
* Check if this is a device colorant.
|
|
|
662 |
*/
|
|
|
663 |
num_colorant = check_colorant_name_length(dev, pname, name_size);
|
|
|
664 |
if (num_colorant >= 0) {
|
|
|
665 |
/*
|
|
|
666 |
* The device will return GX_DEVICE_COLOR_MAX_COMPONENTS if the
|
|
|
667 |
* colorant is logically present in the device but not being used
|
|
|
668 |
* because a SeparationOrder parameter is specified. Since we are
|
|
|
669 |
* using this value to indicate 'Default', we use -1 to indicate
|
|
|
670 |
* that the colorant is not really being used.
|
|
|
671 |
*/
|
|
|
672 |
if (num_colorant == GX_DEVICE_COLOR_MAX_COMPONENTS)
|
|
|
673 |
num_colorant = -1;
|
|
|
674 |
return num_colorant;
|
|
|
675 |
}
|
|
|
676 |
|
|
|
677 |
/*
|
|
|
678 |
* Check if this is the default component
|
|
|
679 |
*/
|
|
|
680 |
if (check_name("Default", pname, name_size))
|
|
|
681 |
return GX_DEVICE_COLOR_MAX_COMPONENTS;
|
|
|
682 |
|
|
|
683 |
/* Halftones set by setcolorscreen, and (we think) */
|
|
|
684 |
/* Type 2 and Type 4 halftones, are supposed to work */
|
|
|
685 |
/* for both RGB and CMYK, so we need a special check here. */
|
|
|
686 |
if (halftonetype == ht_type_colorscreen ||
|
|
|
687 |
halftonetype == ht_type_multiple_colorscreen) {
|
|
|
688 |
if (check_name("Red", pname, name_size))
|
|
|
689 |
num_colorant = check_colorant_name(dev, "Cyan");
|
|
|
690 |
else if (check_name("Green", pname, name_size))
|
|
|
691 |
num_colorant = check_colorant_name(dev, "Magenta");
|
|
|
692 |
else if (check_name("Blue", pname, name_size))
|
|
|
693 |
num_colorant = check_colorant_name(dev, "Yellow");
|
|
|
694 |
else if (check_name("Gray", pname, name_size))
|
|
|
695 |
num_colorant = check_colorant_name(dev, "Black");
|
|
|
696 |
|
|
|
697 |
#undef check_colorant_name
|
|
|
698 |
#undef check_colorant_name_length
|
|
|
699 |
#undef check_name
|
|
|
700 |
|
|
|
701 |
}
|
|
|
702 |
return num_colorant;
|
|
|
703 |
}
|
|
|
704 |
|
|
|
705 |
/*
|
|
|
706 |
* See gs_color_name_component_number for main description.
|
|
|
707 |
*
|
|
|
708 |
* This version converts a name index value into a string and size and
|
|
|
709 |
* then call gs_color_name_component_number.
|
|
|
710 |
*/
|
|
|
711 |
int
|
|
|
712 |
gs_cname_to_colorant_number(gs_state * pgs, byte * pname, uint name_size,
|
|
|
713 |
int halftonetype)
|
|
|
714 |
{
|
|
|
715 |
gx_device * dev = pgs->device;
|
|
|
716 |
|
|
|
717 |
return gs_color_name_component_number(dev, (char *)pname, name_size,
|
|
|
718 |
halftonetype);
|
|
|
719 |
}
|
|
|
720 |
|
|
|
721 |
/*
|
|
|
722 |
* Install a device halftone into the imager state.
|
|
|
723 |
*
|
|
|
724 |
* To allow halftones to be shared between graphic states, the imager
|
|
|
725 |
* state contains a pointer to a device halftone structure. Thus, when
|
|
|
726 |
* we say a halftone is "in" the imager state, we are only claiming
|
|
|
727 |
* that the halftone pointer in the imager state points to that halftone.
|
|
|
728 |
*
|
|
|
729 |
* Though the operand halftone uses the same structure as the halftone
|
|
|
730 |
* "in" the imager state, not all of its fields are filled in, and the
|
|
|
731 |
* organization of components differs. Specifically, the following fields
|
|
|
732 |
* are not filled in:
|
|
|
733 |
*
|
|
|
734 |
* rc The operand device halftone has only a transient existence,
|
|
|
735 |
* its reference count information is not initialized. In many
|
|
|
736 |
* cases, the operand device halftone structure is allocated
|
|
|
737 |
* on the stack by clients.
|
|
|
738 |
*
|
|
|
739 |
* id A halftone is not considered to have an identity until it
|
|
|
740 |
* is installed in the imager state. This is a design error
|
|
|
741 |
* which reflects the PostScript origins of this code. In
|
|
|
742 |
* PostScript, it is impossible to check if two halftone
|
|
|
743 |
* specifications (sets of operands to setscreen/setcolorscreen
|
|
|
744 |
* or halftone dictionaries) are the same. Hence, the only way
|
|
|
745 |
* a halftone could be identified was by the graphic state in
|
|
|
746 |
* which it was included. In PCL it is possible to directly
|
|
|
747 |
* identify a halftone specification, but currently there is
|
|
|
748 |
* no way to use this knowledge in the graphic library.
|
|
|
749 |
*
|
|
|
750 |
* (An altogether more reasonable approach would be to apply
|
|
|
751 |
* id's to halftone orders.)
|
|
|
752 |
*
|
|
|
753 |
* type This is filled in by the type operand. It is used by
|
|
|
754 |
* PostScript's currentscreen/currentcolorscreen operators to
|
|
|
755 |
* determine if a sampling procedure or a halftone dictionary
|
|
|
756 |
* should be pushed onto the stack. More importantly, it is
|
|
|
757 |
* also used to determine if specific halftone components can
|
|
|
758 |
* be used for either the additive or subtractive version of
|
|
|
759 |
* that component in the process color model. For example, a
|
|
|
760 |
* RedThreshold in a HalftoneType 4 dictionary can be applied
|
|
|
761 |
* to either the component "Red" or the component "Cyan", but
|
|
|
762 |
* the value of the key "Red" in a HalftoneType 5 dictionary
|
|
|
763 |
* can only be used for a "Red" component (not a "Cyan"
|
|
|
764 |
* component).
|
|
|
765 |
*
|
|
|
766 |
* num_comp For the operand halftone, this is the number of halftone
|
|
|
767 |
* components included in the specification. For the device
|
|
|
768 |
* halftone in the imager state, this is always the same as
|
|
|
769 |
* the number of color model components (see num_dev_comp).
|
|
|
770 |
*
|
|
|
771 |
* num_dev_comp The number of components in the device process color model
|
|
|
772 |
* when the operand halftone was created. With some compositor
|
|
|
773 |
* devices (for example PDF 1.4) we can have differences in the
|
|
|
774 |
* process color model of the compositor versus the output device.
|
|
|
775 |
* These compositor devices do not halftone.
|
|
|
776 |
*
|
|
|
777 |
* components For the operand halftone, this field is non-null only if
|
|
|
778 |
* multiple halftones are provided. In that case, the size
|
|
|
779 |
* of the array pointed is the same as the number of
|
|
|
780 |
* components provided. One of these components will usually
|
|
|
781 |
* be the same as that identified by the "order" field.
|
|
|
782 |
*
|
|
|
783 |
* For the device halftone in the imager state, this field is
|
|
|
784 |
* always non-null, and the size of the array pointed to will
|
|
|
785 |
* be the same as the number of components in the process
|
|
|
786 |
* color model.
|
|
|
787 |
*
|
|
|
788 |
* lcm_width, These fields provide the least common multiple of the
|
|
|
789 |
* lcm_height halftone dimensions of the individual component orders.
|
|
|
790 |
* They represent the dimensions of the smallest tile that
|
|
|
791 |
* repeats for all color components (this is of interest
|
|
|
792 |
* because Ghostscript uses a "chunky" raster format for all
|
|
|
793 |
* drawing procedures). These fields cannot be set in the
|
|
|
794 |
* operand device halftone as we do not yet know which of
|
|
|
795 |
* the halftone components will actually be used.
|
|
|
796 |
*
|
|
|
797 |
* Conversely, the "order" field is significant only in the operand device
|
|
|
798 |
* halftone. There it represents the default halftone component, which will
|
|
|
799 |
* be used for all device color components for which a named halftone is
|
|
|
800 |
* not available. It is ignored (filled with 0's) in the device halftone
|
|
|
801 |
* in the imager state.
|
|
|
802 |
*
|
|
|
803 |
* The ordering of entries and the set of fields initialized in the
|
|
|
804 |
* components array also vary between the operand device halftone and
|
|
|
805 |
* the device halftone in the imager state.
|
|
|
806 |
*
|
|
|
807 |
* If the components array is present in the operand device halftone, the
|
|
|
808 |
* cname field in each entry of the array will contain a name index
|
|
|
809 |
* identifying the colorant name, and the comp_number field will provide the
|
|
|
810 |
* index of the corresponding component in the process color model. The
|
|
|
811 |
* order of entries in the components array is essentially arbitrary,
|
|
|
812 |
* but in some common cases will reflect the order in which the halftone
|
|
|
813 |
* specification is provided. By convention, if no explicit default order
|
|
|
814 |
* is provided (i.e.: via a HalftoneType 5 dictionary), the first
|
|
|
815 |
* entry of the array will be the same as the "order" (default) field.
|
|
|
816 |
*
|
|
|
817 |
* For the device halftone in the imager state, the components array is
|
|
|
818 |
* always present, but the cname and comp_number fields of individual
|
|
|
819 |
* entries are ignored. The order of the entries in the array always
|
|
|
820 |
* matches the order of components in the device color model.
|
|
|
821 |
*
|
|
|
822 |
* The distinction between the operand device halftone and the one in
|
|
|
823 |
* the graphic state extends even to the individual fields of the
|
|
|
824 |
* gx_ht_order structure incorporated in the order field of the halftone
|
|
|
825 |
* and the corder field of the elements of the components array. The
|
|
|
826 |
* fields of this structure that are handled differently in the operand
|
|
|
827 |
* and imager state device halftones are:
|
|
|
828 |
*
|
|
|
829 |
* params Provides a set of parameters that are required for
|
|
|
830 |
* converting a halftone specification to a single
|
|
|
831 |
* component order. This field is used only in the
|
|
|
832 |
* operand device halftone; it is not set in the device
|
|
|
833 |
* halftone in the imager state.
|
|
|
834 |
*
|
|
|
835 |
* wse Points to an "enumerator" instance, used to construct
|
|
|
836 |
* a well-tempered screen. This is only required while
|
|
|
837 |
* the well-tempered screen is being constructed. This
|
|
|
838 |
* field is always a null pointer in the device halftone
|
|
|
839 |
* in the imager state.
|
|
|
840 |
*
|
|
|
841 |
* wts Points to the "constructed" form of a well-tempered
|
|
|
842 |
* screen. The "construction" operation occurs as part
|
|
|
843 |
* of the installation process. Hence, this should
|
|
|
844 |
* always be a null pointer in the operand device
|
|
|
845 |
* halftone.
|
|
|
846 |
*
|
|
|
847 |
* orig_height, The height and shift values of the halftone cell,
|
|
|
848 |
* orig_shift prior to any replication. These fields are currently
|
|
|
849 |
* unused, and will always be the same as the height
|
|
|
850 |
* and width fields in the device halftone in the
|
|
|
851 |
* imager state.
|
|
|
852 |
*
|
|
|
853 |
* full_height The height of the smallest replicated tile whose shift
|
|
|
854 |
* value is 0. This is calculated as part of the
|
|
|
855 |
* installation process; it may be set in the operand
|
|
|
856 |
* device halftone, but its value is ignored.
|
|
|
857 |
*
|
|
|
858 |
*
|
|
|
859 |
* data_memory Points to the memory structure used to allocate the
|
|
|
860 |
* levels and bit_data arrays. The handling of this field
|
|
|
861 |
* is a bit complicated. For orders that are "taken over"
|
|
|
862 |
* by the installation process, this field will have the
|
|
|
863 |
* same value in the operand device halftone and the
|
|
|
864 |
* device halftone in the imager state. For halftones
|
|
|
865 |
* that are copied by the installation process, this
|
|
|
866 |
* field will have the same value as the memory field in
|
|
|
867 |
* the imager state (the two are usually the same).
|
|
|
868 |
*
|
|
|
869 |
* cache Pointer to a cache of tiles representing various
|
|
|
870 |
* levels of the halftone. This may or may not be
|
|
|
871 |
* provided in the operand device halftone (in principle
|
|
|
872 |
* this should always be a null pointer in the operand
|
|
|
873 |
* device halftone, but this is not the manner in which
|
|
|
874 |
* the cache was handled historically).
|
|
|
875 |
*
|
|
|
876 |
* screen_params This structure contains transformation information
|
|
|
877 |
* that is required when reading the sample data for a
|
|
|
878 |
* screen. It is no longer required once the halftone
|
|
|
879 |
* order has been constructed.
|
|
|
880 |
*
|
|
|
881 |
* In addition to what is noted above, this procedure is made somewhat
|
|
|
882 |
* more complex than expected due to memory management considerations. To
|
|
|
883 |
* clarify this, it is necessary to consider the properties of the pieces
|
|
|
884 |
* that constitute a device halftone.
|
|
|
885 |
*
|
|
|
886 |
* The gx_device_halftone structure itself is shareable and uses
|
|
|
887 |
* reference counts.
|
|
|
888 |
*
|
|
|
889 |
* The gx_ht_order_component array (components array entry) is in
|
|
|
890 |
* principle shareable, though it does not provide any reference
|
|
|
891 |
* counting mechanism. Hence any sharing needs to be done with
|
|
|
892 |
* caution.
|
|
|
893 |
*
|
|
|
894 |
* Individual component orders are not shareable, as they are part of
|
|
|
895 |
* the gx_ht_order_commponent structure (a major design error).
|
|
|
896 |
*
|
|
|
897 |
* The levels, bit_data, and cache structures referenced by the
|
|
|
898 |
* gx_ht_order structure are in principle shareable, but they also do
|
|
|
899 |
* not provide any reference counting mechanism. Traditionally, one set
|
|
|
900 |
* of two component orders could share these structures, using the
|
|
|
901 |
* halftone's "order" field and various scattered bits of special case
|
|
|
902 |
* code. This practice has been ended because it did not extend to
|
|
|
903 |
* sharing amongst more than two components.
|
|
|
904 |
*
|
|
|
905 |
* The gx_transfer_map structure referenced by the gx_ht_order structure
|
|
|
906 |
* is shareable, and uses reference counts. Traditionally this structure
|
|
|
907 |
* was not shared, but this is no longer the case.
|
|
|
908 |
*
|
|
|
909 |
* As noted, the rc field of the operand halftone is not initialized, so
|
|
|
910 |
* this procedure cannot simply take ownership of the operand device
|
|
|
911 |
* halftone structure (i.e.: an ostensibly shareable structure is not
|
|
|
912 |
* shareable). Hence, this procedure will always create a new copy of the
|
|
|
913 |
* gx_device_halftone structure, either by allocating a new structure or
|
|
|
914 |
* re-using the structure already referenced by the imager state. This
|
|
|
915 |
* feature must be retained, as in several cases the calling code will
|
|
|
916 |
* allocate the operand device halftone structure on the stack.
|
|
|
917 |
*
|
|
|
918 |
* Traditionally, this procedure took ownership of all of the structures
|
|
|
919 |
* referenced by the operand device halftone structure. This implied
|
|
|
920 |
* that all structures referenced by the gx_device_halftone structure
|
|
|
921 |
* needed to be allocated on the heap, and should not be released once
|
|
|
922 |
* the call to gx_imager_dev_ht_install completes.
|
|
|
923 |
*
|
|
|
924 |
* There were two problems with this approach:
|
|
|
925 |
*
|
|
|
926 |
* 1. In the event of an error, the calling code most likely would have
|
|
|
927 |
* to release referenced components, as the imager state had not yet
|
|
|
928 |
* take ownership of them. In many cases, the code did not do this.
|
|
|
929 |
*
|
|
|
930 |
* 2. When the structures referenced by a single order needed to be
|
|
|
931 |
* shared amongst more than one component, there was no easy way to
|
|
|
932 |
* discover this sharing when the imager state's device halftone
|
|
|
933 |
* subsequently needed to be released. Hence, objects would be
|
|
|
934 |
* released multiple times.
|
|
|
935 |
*
|
|
|
936 |
* Subsequently, the code in this routine was changed to copy most of
|
|
|
937 |
* the referenced structures (everything except the transfer functions).
|
|
|
938 |
* Unfortunately, the calling code was not changed, which caused memory
|
|
|
939 |
* leaks.
|
|
|
940 |
*
|
|
|
941 |
* The approach now taken uses a mixture of the two approaches.
|
|
|
942 |
* Ownership to structures referenced by the operand device halftone is
|
|
|
943 |
* assumed by the device halftone in the imager state where this is
|
|
|
944 |
* possible. In these cases, the corresponding references are removed in
|
|
|
945 |
* the operand device halftone (hence, this operand is no longer
|
|
|
946 |
* qualified as const). When a structure is required but ownership cannot
|
|
|
947 |
* be assumed, a copy is made and the reference in the operand device
|
|
|
948 |
* halftone is left undisturbed. The calling code has also been modified
|
|
|
949 |
* to release any remaining referenced structures when this routine
|
|
|
950 |
* returns, whether or not an error is indicated.
|
|
|
951 |
*/
|
|
|
952 |
int
|
|
|
953 |
gx_imager_dev_ht_install(
|
|
|
954 |
gs_imager_state * pis,
|
|
|
955 |
gx_device_halftone * pdht,
|
|
|
956 |
gs_halftone_type type,
|
|
|
957 |
const gx_device * dev )
|
|
|
958 |
{
|
|
|
959 |
gx_device_halftone dht;
|
|
|
960 |
int num_comps = pdht->num_dev_comp;
|
|
|
961 |
int i, code = 0;
|
|
|
962 |
bool used_default = false;
|
|
|
963 |
int lcm_width = 1, lcm_height = 1;
|
|
|
964 |
gs_wts_screen_enum_t * wse0 = pdht->order.wse;
|
|
|
965 |
wts_screen_t * wts0 = 0;
|
|
|
966 |
bool mem_diff = pdht->rc.memory != pis->memory;
|
|
|
967 |
|
|
|
968 |
/* construct the new device halftone structure */
|
|
|
969 |
memset(&dht.order, 0, sizeof(dht.order));
|
|
|
970 |
/* the rc field is filled in later */
|
|
|
971 |
dht.id = gs_next_ids(pis->memory, 1);
|
|
|
972 |
dht.type = type;
|
|
|
973 |
dht.components = gs_alloc_struct_array(
|
|
|
974 |
pis->memory,
|
|
|
975 |
num_comps,
|
|
|
976 |
gx_ht_order_component,
|
|
|
977 |
&st_ht_order_component_element,
|
|
|
978 |
"gx_imager_dev_ht_install(components)" );
|
|
|
979 |
if (dht.components == NULL)
|
|
|
980 |
return_error(gs_error_VMerror);
|
|
|
981 |
dht.num_comp = dht.num_dev_comp = num_comps;
|
|
|
982 |
/* lcm_width, lcm_height are filled in later */
|
|
|
983 |
|
|
|
984 |
/* initialize the components array */
|
|
|
985 |
memset(dht.components, 0, num_comps * sizeof(dht.components[0]));
|
|
|
986 |
for (i = 0; i < num_comps; i++)
|
|
|
987 |
dht.components[i].comp_number = -1;
|
|
|
988 |
|
|
|
989 |
/*
|
|
|
990 |
* Duplicate any of the non-default components, but do not create copies
|
|
|
991 |
* of the levels or bit_data arrays. If all goes according to plan, the
|
|
|
992 |
* imager state's device halftone will assume ownership of these arrays
|
|
|
993 |
* by clearing the corresponding pointers in the operand halftone's
|
|
|
994 |
* orders.
|
|
|
995 |
*/
|
|
|
996 |
if (pdht->components != 0) {
|
|
|
997 |
int input_ncomps = pdht->num_comp;
|
|
|
998 |
|
|
|
999 |
for (i = 0; i < input_ncomps && code >= 0; i++) {
|
|
|
1000 |
gx_ht_order_component * p_s_comp = &pdht->components[i];
|
|
|
1001 |
gx_ht_order * p_s_order = &p_s_comp->corder;
|
|
|
1002 |
int comp_num = p_s_comp->comp_number;
|
|
|
1003 |
|
|
|
1004 |
if (comp_num >= 0 && comp_num < GX_DEVICE_COLOR_MAX_COMPONENTS) {
|
|
|
1005 |
gx_ht_order * p_d_order = &dht.components[comp_num].corder;
|
|
|
1006 |
|
|
|
1007 |
/* indicate that this order has been filled in */
|
|
|
1008 |
dht.components[comp_num].comp_number = comp_num;
|
|
|
1009 |
|
|
|
1010 |
/*
|
|
|
1011 |
* The component can be used only if it is from the
|
|
|
1012 |
* proper memory
|
|
|
1013 |
*/
|
|
|
1014 |
if (mem_diff)
|
|
|
1015 |
code = gx_ht_copy_ht_order( p_d_order,
|
|
|
1016 |
p_s_order,
|
|
|
1017 |
pis->memory );
|
|
|
1018 |
else {
|
|
|
1019 |
/* check if this is also the default component */
|
|
|
1020 |
used_default = used_default ||
|
|
|
1021 |
p_s_order->bit_data == pdht->order.bit_data;
|
|
|
1022 |
|
|
|
1023 |
gx_ht_move_ht_order(p_d_order, p_s_order);
|
|
|
1024 |
}
|
|
|
1025 |
}
|
|
|
1026 |
}
|
|
|
1027 |
}
|
|
|
1028 |
|
|
|
1029 |
/*
|
|
|
1030 |
* Copy the default order to any remaining components.
|
|
|
1031 |
*
|
|
|
1032 |
* For well-tempered screens, generate the wts_screen_t structure
|
|
|
1033 |
* for each component that corresponds to the sample information
|
|
|
1034 |
* that has been gathered.
|
|
|
1035 |
*
|
|
|
1036 |
* Some caution is necessary here, as multiple component orders may
|
|
|
1037 |
* have wse fields pointing to the same gs_wts_creeen_enum_t
|
|
|
1038 |
* structure. This structure should only be released once. If
|
|
|
1039 |
* multiple components have such a wse value, it will be the same as
|
|
|
1040 |
* pdht->order.wse pointer, so we can just release that pointer once
|
|
|
1041 |
* when done.
|
|
|
1042 |
*
|
|
|
1043 |
* If serveral component orders have the same wse value, this code
|
|
|
1044 |
* will create just one wts_screen_t structure. In a somewhat ugly
|
|
|
1045 |
* hack, the width field (which is otherwise unused) will be set to
|
|
|
1046 |
* 0xffff for all components other than the first component that
|
|
|
1047 |
* makes use of a give wts_screen_t structure. gx_ht_order_release
|
|
|
1048 |
* will check this field to see if it should release the structure
|
|
|
1049 |
* pointed to by the wts field of a component order.
|
|
|
1050 |
*
|
|
|
1051 |
* Components that are not well-tempered screens require a cache.
|
|
|
1052 |
* In practice, either all or non of the components will be well-
|
|
|
1053 |
* tempered screens, but we ignore that fact here.
|
|
|
1054 |
*
|
|
|
1055 |
* While engaged in all of these other activities, also calculate
|
|
|
1056 |
* the lcm_width and lcm_heigth values (only for non-well-tempered
|
|
|
1057 |
* components).
|
|
|
1058 |
*/
|
|
|
1059 |
for (i = 0; i < num_comps && code >= 0; i++) {
|
|
|
1060 |
gx_ht_order * porder = &dht.components[i].corder;
|
|
|
1061 |
gs_wts_screen_enum_t * wse;
|
|
|
1062 |
|
|
|
1063 |
if (dht.components[i].comp_number != i) {
|
|
|
1064 |
if (used_default || mem_diff)
|
|
|
1065 |
code = gx_ht_copy_ht_order(porder, &pdht->order, pis->memory);
|
|
|
1066 |
else {
|
|
|
1067 |
gx_ht_move_ht_order(porder, &pdht->order);
|
|
|
1068 |
used_default = true;
|
|
|
1069 |
}
|
|
|
1070 |
dht.components[i].comp_number = i;
|
|
|
1071 |
}
|
|
|
1072 |
if ((wse = porder->wse) != 0) {
|
|
|
1073 |
wts_screen_t * wts = 0;
|
|
|
1074 |
|
|
|
1075 |
porder->width = 0;
|
|
|
1076 |
porder->wse = 0;
|
|
|
1077 |
if (wse != wse0)
|
|
|
1078 |
wts = wts_screen_from_enum(wse);
|
|
|
1079 |
else {
|
|
|
1080 |
if (wts0 == 0)
|
|
|
1081 |
wts0 = wts_screen_from_enum(wse);
|
|
|
1082 |
else
|
|
|
1083 |
porder->width = ht_wts_suppress_release;
|
|
|
1084 |
wts = wts0;
|
|
|
1085 |
}
|
|
|
1086 |
if (wts == 0)
|
|
|
1087 |
code = gs_error_VMerror;
|
|
|
1088 |
else
|
|
|
1089 |
porder->wts = wts;
|
|
|
1090 |
} else {
|
|
|
1091 |
uint w = porder->width, h = porder->full_height;
|
|
|
1092 |
int dw = igcd(lcm_width, w), dh = igcd(lcm_height, h);
|
|
|
1093 |
|
|
|
1094 |
lcm_width /= dw;
|
|
|
1095 |
lcm_height /= dh;
|
|
|
1096 |
lcm_width = (w > max_int / lcm_width ? max_int : lcm_width * w);
|
|
|
1097 |
lcm_height = (h > max_int / lcm_height ? max_int : lcm_height * h);
|
|
|
1098 |
|
|
|
1099 |
if (porder->cache == 0) {
|
|
|
1100 |
uint tile_bytes, num_tiles;
|
|
|
1101 |
gx_ht_cache * pcache;
|
|
|
1102 |
|
|
|
1103 |
tile_bytes = porder->raster
|
|
|
1104 |
* (porder->num_bits / porder->width);
|
|
|
1105 |
num_tiles = 1 + max_tile_cache_bytes / tile_bytes;
|
|
|
1106 |
pcache = gx_ht_alloc_cache( pis->memory,
|
|
|
1107 |
num_tiles,
|
|
|
1108 |
tile_bytes * num_tiles );
|
|
|
1109 |
if (pcache == NULL)
|
|
|
1110 |
code = gs_error_VMerror;
|
|
|
1111 |
else {
|
|
|
1112 |
porder->cache = pcache;
|
|
|
1113 |
gx_ht_init_cache(pis->memory, pcache, porder);
|
|
|
1114 |
}
|
|
|
1115 |
}
|
|
|
1116 |
}
|
|
|
1117 |
}
|
|
|
1118 |
dht.lcm_width = lcm_width;
|
|
|
1119 |
dht.lcm_height = lcm_height;
|
|
|
1120 |
|
|
|
1121 |
/*
|
|
|
1122 |
* If everything is OK so far, allocate a unique copy of the device
|
|
|
1123 |
* halftone reference by the imager state.
|
|
|
1124 |
*
|
|
|
1125 |
* This code requires a special check for the case in which the
|
|
|
1126 |
* deivce halftone referenced by the imager state is already unique.
|
|
|
1127 |
* In this case, we must explicitly release just the components array
|
|
|
1128 |
* (and any structures it refers to) of the existing halftone. This
|
|
|
1129 |
* cannot be done automatically, as the rc_unshare_struct macro only
|
|
|
1130 |
* ensures that a unique instance of the top-level structure is
|
|
|
1131 |
* created, not that any substructure references are updated.
|
|
|
1132 |
*
|
|
|
1133 |
* Though this is scheduled to be changed, for the time being the
|
|
|
1134 |
* command list renderer may invoke this code with pdht == psi->dev_ht
|
|
|
1135 |
* (in which case we know pis->dev_ht.rc.ref_count == 1). Special
|
|
|
1136 |
* handling is required in that case, to avoid releasing structures
|
|
|
1137 |
* we still need.
|
|
|
1138 |
*/
|
|
|
1139 |
if (code >= 0) {
|
|
|
1140 |
gx_device_halftone * pisdht = pis->dev_ht;
|
|
|
1141 |
rc_header tmp_rc;
|
|
|
1142 |
|
|
|
1143 |
if (pisdht != 0 && pisdht->rc.ref_count == 1) {
|
|
|
1144 |
if (pdht != pisdht)
|
|
|
1145 |
gx_device_halftone_release(pisdht, pisdht->rc.memory);
|
|
|
1146 |
} else {
|
|
|
1147 |
rc_unshare_struct( pis->dev_ht,
|
|
|
1148 |
gx_device_halftone,
|
|
|
1149 |
&st_device_halftone,
|
|
|
1150 |
pis->memory,
|
|
|
1151 |
BEGIN code = gs_error_VMerror; goto err; END,
|
|
|
1152 |
"gx_imager_dev_ht_install" );
|
|
|
1153 |
pisdht = pis->dev_ht;
|
|
|
1154 |
}
|
|
|
1155 |
|
|
|
1156 |
/*
|
|
|
1157 |
* Everything worked. "Assume ownership" of the appropriate
|
|
|
1158 |
* portions of the source device halftone by clearing the
|
|
|
1159 |
* associated references. This includes explicitly releasing
|
|
|
1160 |
* any gs_wts_screen_enum_t structures. Since we might have
|
|
|
1161 |
* pdht == pis->dev_ht, this must done before updating pis->dev_ht.
|
|
|
1162 |
*
|
|
|
1163 |
* If the default order has been used for a device component, and
|
|
|
1164 |
* any of the source component orders share their levels or bit_data
|
|
|
1165 |
* arrays with the default order, clear the pointers in those orders
|
|
|
1166 |
* now. This is necessary because the default order's pointers will
|
|
|
1167 |
* be cleared immediately below, so subsequently it will not be
|
|
|
1168 |
* possible to tell if that this information is being shared.
|
|
|
1169 |
*/
|
|
|
1170 |
if (pdht->components != 0) {
|
|
|
1171 |
int input_ncomps = pdht->num_comp;
|
|
|
1172 |
|
|
|
1173 |
for (i = 0; i < input_ncomps; i++) {
|
|
|
1174 |
gx_ht_order_component * p_s_comp = &pdht->components[i];
|
|
|
1175 |
gx_ht_order * p_s_order = &p_s_comp->corder;
|
|
|
1176 |
int comp_num = p_s_comp->comp_number;
|
|
|
1177 |
|
|
|
1178 |
if ( comp_num >= 0 &&
|
|
|
1179 |
comp_num < GX_DEVICE_COLOR_MAX_COMPONENTS ) {
|
|
|
1180 |
if (p_s_order->wse != 0)
|
|
|
1181 |
gs_wts_free_enum(p_s_order->wse);
|
|
|
1182 |
memset(p_s_order, 0, sizeof(*p_s_order));
|
|
|
1183 |
} else if ( comp_num == GX_DEVICE_COLOR_MAX_COMPONENTS &&
|
|
|
1184 |
used_default )
|
|
|
1185 |
memset(p_s_order, 0, sizeof(*p_s_order));
|
|
|
1186 |
}
|
|
|
1187 |
}
|
|
|
1188 |
if (used_default) {
|
|
|
1189 |
if (wse0 != 0)
|
|
|
1190 |
gs_wts_free_enum(wse0);
|
|
|
1191 |
memset(&pdht->order, 0, sizeof(pdht->order));
|
|
|
1192 |
}
|
|
|
1193 |
|
|
|
1194 |
tmp_rc = pisdht->rc;
|
|
|
1195 |
*pisdht = dht;
|
|
|
1196 |
pisdht->rc = tmp_rc;
|
|
|
1197 |
|
|
|
1198 |
/* update the effective transfer function array */
|
|
|
1199 |
gx_imager_set_effective_xfer(pis);
|
|
|
1200 |
|
|
|
1201 |
return 0;
|
|
|
1202 |
}
|
|
|
1203 |
|
|
|
1204 |
/* something went amiss; release all copied components */
|
|
|
1205 |
err:
|
|
|
1206 |
for (i = 0; i < num_comps; i++) {
|
|
|
1207 |
gx_ht_order_component * pcomp = &dht.components[i];
|
|
|
1208 |
gx_ht_order * porder = &pcomp->corder;
|
|
|
1209 |
|
|
|
1210 |
if (pcomp->comp_number == -1)
|
|
|
1211 |
gx_ht_order_release(porder, pis->memory, true);
|
|
|
1212 |
}
|
|
|
1213 |
gs_free_object(pis->memory, dht.components, "gx_imager_dev_ht_install");
|
|
|
1214 |
|
|
|
1215 |
return code;
|
|
|
1216 |
}
|
|
|
1217 |
|
|
|
1218 |
/*
|
|
|
1219 |
* Install a new halftone in the graphics state. Note that we copy the top
|
|
|
1220 |
* level of the gs_halftone and the gx_device_halftone, and take ownership
|
|
|
1221 |
* of any substructures.
|
|
|
1222 |
*/
|
|
|
1223 |
int
|
|
|
1224 |
gx_ht_install(gs_state * pgs, const gs_halftone * pht,
|
|
|
1225 |
gx_device_halftone * pdht)
|
|
|
1226 |
{
|
|
|
1227 |
gs_memory_t *mem = pht->rc.memory;
|
|
|
1228 |
gs_halftone *old_ht = pgs->halftone;
|
|
|
1229 |
gs_halftone *new_ht;
|
|
|
1230 |
int code;
|
|
|
1231 |
|
|
|
1232 |
pdht->num_dev_comp = pgs->device->color_info.num_components;
|
|
|
1233 |
if (old_ht != 0 && old_ht->rc.memory == mem &&
|
|
|
1234 |
old_ht->rc.ref_count == 1
|
|
|
1235 |
)
|
|
|
1236 |
new_ht = old_ht;
|
|
|
1237 |
else
|
|
|
1238 |
rc_alloc_struct_1(new_ht, gs_halftone, &st_halftone,
|
|
|
1239 |
mem, return_error(gs_error_VMerror),
|
|
|
1240 |
"gx_ht_install(new halftone)");
|
|
|
1241 |
code = gx_imager_dev_ht_install((gs_imager_state *) pgs,
|
|
|
1242 |
pdht, pht->type, gs_currentdevice_inline(pgs));
|
|
|
1243 |
if (code < 0) {
|
|
|
1244 |
if (new_ht != old_ht)
|
|
|
1245 |
gs_free_object(mem, new_ht, "gx_ht_install(new halftone)");
|
|
|
1246 |
return code;
|
|
|
1247 |
}
|
|
|
1248 |
|
|
|
1249 |
/*
|
|
|
1250 |
* Discard and unused components and the components array of the
|
|
|
1251 |
* operand device halftone
|
|
|
1252 |
*/
|
|
|
1253 |
gx_device_halftone_release(pdht, pdht->rc.memory);
|
|
|
1254 |
|
|
|
1255 |
if (new_ht != old_ht)
|
|
|
1256 |
rc_decrement(old_ht, "gx_ht_install(old halftone)");
|
|
|
1257 |
{
|
|
|
1258 |
rc_header rc;
|
|
|
1259 |
|
|
|
1260 |
rc = new_ht->rc;
|
|
|
1261 |
*new_ht = *pht;
|
|
|
1262 |
new_ht->rc = rc;
|
|
|
1263 |
}
|
|
|
1264 |
pgs->halftone = new_ht;
|
|
|
1265 |
gx_unset_dev_color(pgs);
|
|
|
1266 |
return 0;
|
|
|
1267 |
}
|
|
|
1268 |
|
|
|
1269 |
/*
|
|
|
1270 |
* This macro will determine the colorant number of a given color name.
|
|
|
1271 |
* A value of -1 indicates that the name is not valid.
|
|
|
1272 |
*/
|
|
|
1273 |
#define check_colorant_name(name, dev) \
|
|
|
1274 |
((*dev_proc(dev, get_color_comp_index)) (dev, name, strlen(name), NO_NAME_TYPE))
|
|
|
1275 |
|
|
|
1276 |
/* Reestablish the effective transfer functions, taking into account */
|
|
|
1277 |
/* any overrides from halftone dictionaries. */
|
|
|
1278 |
void
|
|
|
1279 |
gx_imager_set_effective_xfer(gs_imager_state * pis)
|
|
|
1280 |
{
|
|
|
1281 |
const gx_device_halftone *pdht = pis->dev_ht;
|
|
|
1282 |
gx_transfer_map *pmap;
|
|
|
1283 |
int i, component_num;
|
|
|
1284 |
|
|
|
1285 |
for (i = 0; i < GX_DEVICE_COLOR_MAX_COMPONENTS; i++)
|
|
|
1286 |
pis->effective_transfer[i] = pis->set_transfer.gray; /* default */
|
|
|
1287 |
|
|
|
1288 |
/* Check if we have a transfer functions from setcolortransfer */
|
|
|
1289 |
if (pis->set_transfer.red) {
|
|
|
1290 |
component_num = pis->set_transfer.red_component_num;
|
|
|
1291 |
if (component_num >= 0)
|
|
|
1292 |
pis->effective_transfer[component_num] = pis->set_transfer.red;;
|
|
|
1293 |
}
|
|
|
1294 |
if (pis->set_transfer.green) {
|
|
|
1295 |
component_num = pis->set_transfer.green_component_num;
|
|
|
1296 |
if (component_num >= 0)
|
|
|
1297 |
pis->effective_transfer[component_num] = pis->set_transfer.green;
|
|
|
1298 |
}
|
|
|
1299 |
if (pis->set_transfer.blue) {
|
|
|
1300 |
component_num = pis->set_transfer.blue_component_num;
|
|
|
1301 |
if (component_num >= 0)
|
|
|
1302 |
pis->effective_transfer[component_num] = pis->set_transfer.blue;
|
|
|
1303 |
}
|
|
|
1304 |
|
|
|
1305 |
if (pdht == NULL)
|
|
|
1306 |
return; /* not initialized yet */
|
|
|
1307 |
|
|
|
1308 |
for (i = 0; i < pdht->num_comp; i++) {
|
|
|
1309 |
pmap = pdht->components[i].corder.transfer;
|
|
|
1310 |
if (pmap != NULL)
|
|
|
1311 |
pis->effective_transfer[i] = pmap;
|
|
|
1312 |
}
|
|
|
1313 |
}
|
|
|
1314 |
|
|
|
1315 |
void
|
|
|
1316 |
gx_set_effective_transfer(gs_state * pgs)
|
|
|
1317 |
{
|
|
|
1318 |
gx_imager_set_effective_xfer((gs_imager_state *) pgs);
|
|
|
1319 |
}
|