2 |
- |
1 |
/* Copyright (C) 1989-2003 artofcode LLC. All rights reserved.
|
|
|
2 |
|
|
|
3 |
This software is provided AS-IS with no warranty, either express or
|
|
|
4 |
implied.
|
|
|
5 |
|
|
|
6 |
This software is distributed under license and may not be copied,
|
|
|
7 |
modified or distributed except as expressly authorized under the terms
|
|
|
8 |
of the license contained in the file LICENSE in this distribution.
|
|
|
9 |
|
|
|
10 |
For more information about licensing, please refer to
|
|
|
11 |
http://www.ghostscript.com/licensing/. For information on
|
|
|
12 |
commercial licensing, go to http://www.artifex.com/licensing/ or
|
|
|
13 |
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
|
|
|
14 |
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
|
|
|
15 |
*/
|
|
|
16 |
|
|
|
17 |
/* $Id: gxfill.c,v 1.122 2005/08/22 14:29:18 igor Exp $ */
|
|
|
18 |
/* A topological spot decomposition algorithm with dropout prevention. */
|
|
|
19 |
/*
|
|
|
20 |
This is a dramaticly reorganized and improved revision of the
|
|
|
21 |
filling algorithm, iwhich was nitially coded by Henry Stiles.
|
|
|
22 |
The main improvements are:
|
|
|
23 |
1. A dropout prevention for character fill.
|
|
|
24 |
2. The spot topology analysys support
|
|
|
25 |
for True Type grid fitting.
|
|
|
26 |
3. Fixed the contiguty of a spot covering
|
|
|
27 |
for shading fills with no dropouts.
|
|
|
28 |
*/
|
|
|
29 |
/* See PSEUDO_RASTERISATION and "pseudo_rasterization".
|
|
|
30 |
about the dropout previntion logics. */
|
|
|
31 |
/* See is_spotan about the spot topology analyzis support. */
|
|
|
32 |
/* Also defining lower-level path filling procedures */
|
|
|
33 |
|
|
|
34 |
#include "gx.h"
|
|
|
35 |
#include "gserrors.h"
|
|
|
36 |
#include "gsstruct.h"
|
|
|
37 |
#include "gxfixed.h"
|
|
|
38 |
#include "gxdevice.h"
|
|
|
39 |
#include "gzpath.h"
|
|
|
40 |
#include "gzcpath.h"
|
|
|
41 |
#include "gxdcolor.h"
|
|
|
42 |
#include "gxhttile.h"
|
|
|
43 |
#include "gxistate.h"
|
|
|
44 |
#include "gxpaint.h" /* for prototypes */
|
|
|
45 |
#include "gxfdrop.h"
|
|
|
46 |
#include "gxfill.h"
|
|
|
47 |
#include "gsptype2.h"
|
|
|
48 |
#include "gdevddrw.h"
|
|
|
49 |
#include "gzspotan.h" /* Only for gx_san_trap_store. */
|
|
|
50 |
#include "memory_.h"
|
|
|
51 |
#include "stdint_.h"
|
|
|
52 |
#include "vdtrace.h"
|
|
|
53 |
/*
|
|
|
54 |
#include "gxfilltr.h" - Do not remove this comment. "gxfilltr.h" is included below.
|
|
|
55 |
#include "gxfillsl.h" - Do not remove this comment. "gxfillsl.h" is included below.
|
|
|
56 |
#include "gxfillts.h" - Do not remove this comment. "gxfillts.h" is included below.
|
|
|
57 |
*/
|
|
|
58 |
|
|
|
59 |
#ifdef DEBUG
|
|
|
60 |
/* Define the statistics structure instance. */
|
|
|
61 |
stats_fill_t stats_fill;
|
|
|
62 |
#endif
|
|
|
63 |
|
|
|
64 |
/* A predicate for spot insideness. */
|
|
|
65 |
/* rule = -1 for winding number rule, i.e. */
|
|
|
66 |
/* we are inside if the winding number is non-zero; */
|
|
|
67 |
/* rule = 1 for even-odd rule, i.e. */
|
|
|
68 |
/* we are inside if the winding number is odd. */
|
|
|
69 |
#define INSIDE_PATH_P(inside, rule) ((inside & rule) != 0)
|
|
|
70 |
|
|
|
71 |
|
|
|
72 |
/* ---------------- Active line management ---------------- */
|
|
|
73 |
|
|
|
74 |
|
|
|
75 |
/*
|
|
|
76 |
* Define the ordering criterion for active lines that overlap in Y.
|
|
|
77 |
* Return -1, 0, or 1 if lp1 precedes, coincides with, or follows lp2.
|
|
|
78 |
*
|
|
|
79 |
* The lines' x_current values are correct for some Y value that crosses
|
|
|
80 |
* both of them and that is not both the start of one and the end of the
|
|
|
81 |
* other. (Neither line is horizontal.) We want the ordering at this
|
|
|
82 |
* Y value, or, of the x_current values are equal, greater Y values
|
|
|
83 |
* (if any: this Y value might be the end of both lines).
|
|
|
84 |
*/
|
|
|
85 |
private int
|
|
|
86 |
x_order(const active_line *lp1, const active_line *lp2)
|
|
|
87 |
{
|
|
|
88 |
bool s1;
|
|
|
89 |
|
|
|
90 |
INCR(order);
|
|
|
91 |
if (lp1->x_current < lp2->x_current)
|
|
|
92 |
return -1;
|
|
|
93 |
else if (lp1->x_current > lp2->x_current)
|
|
|
94 |
return 1;
|
|
|
95 |
/*
|
|
|
96 |
* We need to compare the slopes of the lines. Start by
|
|
|
97 |
* checking one fast case, where the slopes have opposite signs.
|
|
|
98 |
*/
|
|
|
99 |
if ((s1 = lp1->start.x < lp1->end.x) != (lp2->start.x < lp2->end.x))
|
|
|
100 |
return (s1 ? 1 : -1);
|
|
|
101 |
/*
|
|
|
102 |
* We really do have to compare the slopes. Fortunately, this isn't
|
|
|
103 |
* needed very often. We want the sign of the comparison
|
|
|
104 |
* dx1/dy1 - dx2/dy2, or (since we know dy1 and dy2 are positive)
|
|
|
105 |
* dx1 * dy2 - dx2 * dy1. In principle, we can't simply do this using
|
|
|
106 |
* doubles, since we need complete accuracy and doubles don't have
|
|
|
107 |
* enough fraction bits. However, with the usual 20+12-bit fixeds and
|
|
|
108 |
* 64-bit doubles, both of the factors would have to exceed 2^15
|
|
|
109 |
* device space pixels for the result to be inaccurate, so we
|
|
|
110 |
* simply disregard this possibility. ****** FIX SOMEDAY ******
|
|
|
111 |
*/
|
|
|
112 |
INCR(slow_order);
|
|
|
113 |
{
|
|
|
114 |
fixed dx1 = lp1->end.x - lp1->start.x,
|
|
|
115 |
dy1 = lp1->end.y - lp1->start.y;
|
|
|
116 |
fixed dx2 = lp2->end.x - lp2->start.x,
|
|
|
117 |
dy2 = lp2->end.y - lp2->start.y;
|
|
|
118 |
double diff = (double)dx1 * dy2 - (double)dx2 * dy1;
|
|
|
119 |
|
|
|
120 |
return (diff < 0 ? -1 : diff > 0 ? 1 : 0);
|
|
|
121 |
}
|
|
|
122 |
}
|
|
|
123 |
|
|
|
124 |
/*
|
|
|
125 |
* The active_line structure isn't really simple, but since its instances
|
|
|
126 |
* only exist temporarily during a fill operation, we don't have to
|
|
|
127 |
* worry about a garbage collection occurring.
|
|
|
128 |
*/
|
|
|
129 |
gs_private_st_simple(st_active_line, active_line, "active_line");
|
|
|
130 |
|
|
|
131 |
#ifdef DEBUG
|
|
|
132 |
/* Internal procedures for printing and checking active lines. */
|
|
|
133 |
private void
|
|
|
134 |
print_active_line(const char *label, const active_line * alp)
|
|
|
135 |
{
|
|
|
136 |
dlprintf5("[f]%s 0x%lx(%d): x_current=%f x_next=%f\n",
|
|
|
137 |
label, (ulong) alp, alp->direction,
|
|
|
138 |
fixed2float(alp->x_current), fixed2float(alp->x_next));
|
|
|
139 |
dlprintf5(" start=(%f,%f) pt_end=0x%lx(%f,%f)\n",
|
|
|
140 |
fixed2float(alp->start.x), fixed2float(alp->start.y),
|
|
|
141 |
(ulong) alp->pseg,
|
|
|
142 |
fixed2float(alp->end.x), fixed2float(alp->end.y));
|
|
|
143 |
dlprintf2(" prev=0x%lx next=0x%lx\n",
|
|
|
144 |
(ulong) alp->prev, (ulong) alp->next);
|
|
|
145 |
}
|
|
|
146 |
private void
|
|
|
147 |
print_line_list(const active_line * flp)
|
|
|
148 |
{
|
|
|
149 |
const active_line *lp;
|
|
|
150 |
|
|
|
151 |
for (lp = flp; lp != 0; lp = lp->next) {
|
|
|
152 |
fixed xc = lp->x_current, xn = lp->x_next;
|
|
|
153 |
|
|
|
154 |
dlprintf3("[f]0x%lx(%d): x_current/next=%g",
|
|
|
155 |
(ulong) lp, lp->direction,
|
|
|
156 |
fixed2float(xc));
|
|
|
157 |
if (xn != xc)
|
|
|
158 |
dprintf1("/%g", fixed2float(xn));
|
|
|
159 |
dputc('\n');
|
|
|
160 |
}
|
|
|
161 |
}
|
|
|
162 |
inline private void
|
|
|
163 |
print_al(const char *label, const active_line * alp)
|
|
|
164 |
{
|
|
|
165 |
if (gs_debug_c('F'))
|
|
|
166 |
print_active_line(label, alp);
|
|
|
167 |
}
|
|
|
168 |
#else
|
|
|
169 |
#define print_al(label,alp) DO_NOTHING
|
|
|
170 |
#endif
|
|
|
171 |
|
|
|
172 |
private inline bool
|
|
|
173 |
is_spotan_device(gx_device * dev)
|
|
|
174 |
{
|
|
|
175 |
return dev->memory != NULL &&
|
|
|
176 |
gs_object_type(dev->memory, dev) == &st_device_spot_analyzer;
|
|
|
177 |
}
|
|
|
178 |
|
|
|
179 |
/* Forward declarations */
|
|
|
180 |
private void free_line_list(line_list *);
|
|
|
181 |
private int add_y_list(gx_path *, line_list *);
|
|
|
182 |
private int add_y_line_aux(const segment * prev_lp, const segment * lp,
|
|
|
183 |
const gs_fixed_point *curr, const gs_fixed_point *prev, int dir, line_list *ll);
|
|
|
184 |
private void insert_x_new(active_line *, line_list *);
|
|
|
185 |
private bool end_x_line(active_line *, const line_list *, bool);
|
|
|
186 |
private void step_al(active_line *alp, bool move_iterator);
|
|
|
187 |
|
|
|
188 |
|
|
|
189 |
#define FILL_LOOP_PROC(proc) int proc(line_list *, fixed band_mask)
|
|
|
190 |
private FILL_LOOP_PROC(spot_into_scan_lines);
|
|
|
191 |
private FILL_LOOP_PROC(spot_into_trapezoids);
|
|
|
192 |
|
|
|
193 |
/*
|
|
|
194 |
* This is the general path filling algorithm.
|
|
|
195 |
* It uses the center-of-pixel rule for filling
|
|
|
196 |
* (except for pseudo_rasterization - see below).
|
|
|
197 |
* We can implement Microsoft's upper-left-corner-of-pixel rule
|
|
|
198 |
* by subtracting (0.5, 0.5) from all the coordinates in the path.
|
|
|
199 |
*
|
|
|
200 |
* The adjust parameters are a hack for keeping regions
|
|
|
201 |
* from coming out too faint: they specify an amount by which to expand
|
|
|
202 |
* the sides of every filled region.
|
|
|
203 |
* Setting adjust = fixed_half is supposed to produce the effect of Adobe's
|
|
|
204 |
* any-part-of-pixel rule, but it doesn't quite, because of the
|
|
|
205 |
* closed/open interval rule for regions. We detect this as a special case
|
|
|
206 |
* and do the slightly ugly things necessary to make it work.
|
|
|
207 |
*/
|
|
|
208 |
|
|
|
209 |
/* Initialize the line list for a path. */
|
|
|
210 |
private inline void
|
|
|
211 |
init_line_list(line_list *ll, gs_memory_t * mem)
|
|
|
212 |
{
|
|
|
213 |
ll->memory = mem;
|
|
|
214 |
ll->active_area = 0;
|
|
|
215 |
ll->next_active = ll->local_active;
|
|
|
216 |
ll->limit = ll->next_active + MAX_LOCAL_ACTIVE;
|
|
|
217 |
ll->close_count = 0;
|
|
|
218 |
ll->y_list = 0;
|
|
|
219 |
ll->y_line = 0;
|
|
|
220 |
ll->h_list0 = ll->h_list1 = 0;
|
|
|
221 |
ll->margin_set0.margin_list = ll->margin_set1.margin_list = 0;
|
|
|
222 |
ll->margin_set0.margin_touched = ll->margin_set1.margin_touched = 0;
|
|
|
223 |
ll->margin_set0.y = ll->margin_set1.y = 0; /* A stub against indeterminism. Don't use it. */
|
|
|
224 |
ll->free_margin_list = 0;
|
|
|
225 |
ll->local_margin_alloc_count = 0;
|
|
|
226 |
ll->margin_set0.sect = ll->local_section0;
|
|
|
227 |
ll->margin_set1.sect = ll->local_section1;
|
|
|
228 |
/* Do not initialize ll->bbox_left, ll->bbox_width - they were set in advance. */
|
|
|
229 |
INCR(fill);
|
|
|
230 |
}
|
|
|
231 |
|
|
|
232 |
|
|
|
233 |
/* Unlink any line_close segments added temporarily. */
|
|
|
234 |
private inline void
|
|
|
235 |
unclose_path(gx_path * ppath, int count)
|
|
|
236 |
{
|
|
|
237 |
subpath *psub;
|
|
|
238 |
|
|
|
239 |
for (psub = ppath->first_subpath; count != 0;
|
|
|
240 |
psub = (subpath *) psub->last->next
|
|
|
241 |
)
|
|
|
242 |
if (psub->last == (segment *) & psub->closer) {
|
|
|
243 |
segment *prev = psub->closer.prev, *next = psub->closer.next;
|
|
|
244 |
|
|
|
245 |
prev->next = next;
|
|
|
246 |
if (next)
|
|
|
247 |
next->prev = prev;
|
|
|
248 |
psub->last = prev;
|
|
|
249 |
count--;
|
|
|
250 |
}
|
|
|
251 |
}
|
|
|
252 |
|
|
|
253 |
/*
|
|
|
254 |
* Tweak the fill adjustment if necessary so that (nearly) empty
|
|
|
255 |
* rectangles are guaranteed to produce some output. This is a hack
|
|
|
256 |
* to work around a bug in the Microsoft Windows PostScript driver,
|
|
|
257 |
* which draws thin lines by filling zero-width rectangles, and in
|
|
|
258 |
* some other drivers that try to fill epsilon-width rectangles.
|
|
|
259 |
*/
|
|
|
260 |
void
|
|
|
261 |
gx_adjust_if_empty(const gs_fixed_rect * pbox, gs_fixed_point * adjust)
|
|
|
262 |
{
|
|
|
263 |
/*
|
|
|
264 |
* For extremely large coordinates, the obvious subtractions could
|
|
|
265 |
* overflow. We can work around this easily by noting that since
|
|
|
266 |
* we know q.{x,y} >= p.{x,y}, the subtraction overflows iff the
|
|
|
267 |
* result is negative.
|
|
|
268 |
*/
|
|
|
269 |
const fixed
|
|
|
270 |
dx = pbox->q.x - pbox->p.x, dy = pbox->q.y - pbox->p.y;
|
|
|
271 |
|
|
|
272 |
if (dx < fixed_half && dx > 0 && (dy >= int2fixed(2) || dy < 0)) {
|
|
|
273 |
adjust->x = arith_rshift_1(fixed_1 + fixed_epsilon - dx);
|
|
|
274 |
if_debug1('f', "[f]thin adjust_x=%g\n",
|
|
|
275 |
fixed2float(adjust->x));
|
|
|
276 |
} else if (dy < fixed_half && dy > 0 && (dx >= int2fixed(2) || dx < 0)) {
|
|
|
277 |
adjust->y = arith_rshift_1(fixed_1 + fixed_epsilon - dy);
|
|
|
278 |
if_debug1('f', "[f]thin adjust_y=%g\n",
|
|
|
279 |
fixed2float(adjust->y));
|
|
|
280 |
}
|
|
|
281 |
}
|
|
|
282 |
|
|
|
283 |
/*
|
|
|
284 |
* The general fill path algorithm.
|
|
|
285 |
*/
|
|
|
286 |
private int
|
|
|
287 |
gx_general_fill_path(gx_device * pdev, const gs_imager_state * pis,
|
|
|
288 |
gx_path * ppath, const gx_fill_params * params,
|
|
|
289 |
const gx_device_color * pdevc, const gx_clip_path * pcpath)
|
|
|
290 |
{
|
|
|
291 |
gs_fixed_point adjust;
|
|
|
292 |
gs_logical_operation_t lop = pis->log_op;
|
|
|
293 |
gs_fixed_rect ibox, bbox, sbox;
|
|
|
294 |
gx_device_clip cdev;
|
|
|
295 |
gx_device *dev = pdev;
|
|
|
296 |
gx_device *save_dev = dev;
|
|
|
297 |
gx_path ffpath;
|
|
|
298 |
gx_path *pfpath;
|
|
|
299 |
int code;
|
|
|
300 |
int max_fill_band = dev->max_fill_band;
|
|
|
301 |
#define NO_BAND_MASK ((fixed)(-1) << (sizeof(fixed) * 8 - 1))
|
|
|
302 |
const bool is_character = params->adjust.x == -1; /* See gxistate.h */
|
|
|
303 |
bool fill_by_trapezoids;
|
|
|
304 |
bool pseudo_rasterization;
|
|
|
305 |
bool big_path = ppath->subpath_count > 50;
|
|
|
306 |
fill_options fo;
|
|
|
307 |
line_list lst;
|
|
|
308 |
|
|
|
309 |
*(const fill_options **)&lst.fo = &fo; /* break 'const'. */
|
|
|
310 |
/*
|
|
|
311 |
* Compute the bounding box before we flatten the path.
|
|
|
312 |
* This can save a lot of time if the path has curves.
|
|
|
313 |
* If the path is neither fully within nor fully outside
|
|
|
314 |
* the quick-check boxes, we could recompute the bounding box
|
|
|
315 |
* and make the checks again after flattening the path,
|
|
|
316 |
* but right now we don't bother.
|
|
|
317 |
*/
|
|
|
318 |
gx_path_bbox(ppath, &ibox);
|
|
|
319 |
# define SMALL_CHARACTER 500
|
|
|
320 |
pseudo_rasterization = (is_character &&
|
|
|
321 |
!is_spotan_device(dev) &&
|
|
|
322 |
ibox.q.y - ibox.p.y < SMALL_CHARACTER * fixed_scale &&
|
|
|
323 |
ibox.q.x - ibox.p.x < SMALL_CHARACTER * fixed_scale);
|
|
|
324 |
if (is_character)
|
|
|
325 |
adjust.x = adjust.y = 0;
|
|
|
326 |
else
|
|
|
327 |
adjust = params->adjust;
|
|
|
328 |
if (params->fill_zero_width && !pseudo_rasterization)
|
|
|
329 |
gx_adjust_if_empty(&ibox, &adjust);
|
|
|
330 |
lst.bbox_left = fixed2int(ibox.p.x - adjust.x - fixed_epsilon);
|
|
|
331 |
lst.bbox_width = fixed2int(fixed_ceiling(ibox.q.x + adjust.x)) - lst.bbox_left;
|
|
|
332 |
if (vd_enabled) {
|
|
|
333 |
fixed x0 = int2fixed(fixed2int(ibox.p.x - adjust.x - fixed_epsilon));
|
|
|
334 |
fixed x1 = int2fixed(fixed2int(ibox.q.x + adjust.x + fixed_scale - fixed_epsilon));
|
|
|
335 |
fixed y0 = int2fixed(fixed2int(ibox.p.y - adjust.y - fixed_epsilon));
|
|
|
336 |
fixed y1 = int2fixed(fixed2int(ibox.q.y + adjust.y + fixed_scale - fixed_epsilon)), k;
|
|
|
337 |
|
|
|
338 |
for (k = x0; k <= x1; k += fixed_scale)
|
|
|
339 |
vd_bar(k, y0, k, y1, 1, RGB(128, 128, 128));
|
|
|
340 |
for (k = y0; k <= y1; k += fixed_scale)
|
|
|
341 |
vd_bar(x0, k, x1, k, 1, RGB(128, 128, 128));
|
|
|
342 |
}
|
|
|
343 |
/* Check the bounding boxes. */
|
|
|
344 |
if_debug6('f', "[f]adjust=%g,%g bbox=(%g,%g),(%g,%g)\n",
|
|
|
345 |
fixed2float(adjust.x), fixed2float(adjust.y),
|
|
|
346 |
fixed2float(ibox.p.x), fixed2float(ibox.p.y),
|
|
|
347 |
fixed2float(ibox.q.x), fixed2float(ibox.q.y));
|
|
|
348 |
if (pcpath)
|
|
|
349 |
gx_cpath_inner_box(pcpath, &bbox);
|
|
|
350 |
else
|
|
|
351 |
(*dev_proc(dev, get_clipping_box)) (dev, &bbox);
|
|
|
352 |
if (!rect_within(ibox, bbox)) {
|
|
|
353 |
/*
|
|
|
354 |
* Intersect the path box and the clip bounding box.
|
|
|
355 |
* If the intersection is empty, this fill is a no-op.
|
|
|
356 |
*/
|
|
|
357 |
if (pcpath)
|
|
|
358 |
gx_cpath_outer_box(pcpath, &bbox);
|
|
|
359 |
if_debug4('f', " outer_box=(%g,%g),(%g,%g)\n",
|
|
|
360 |
fixed2float(bbox.p.x), fixed2float(bbox.p.y),
|
|
|
361 |
fixed2float(bbox.q.x), fixed2float(bbox.q.y));
|
|
|
362 |
rect_intersect(ibox, bbox);
|
|
|
363 |
if (ibox.p.x - adjust.x >= ibox.q.x + adjust.x ||
|
|
|
364 |
ibox.p.y - adjust.y >= ibox.q.y + adjust.y
|
|
|
365 |
) { /* Intersection of boxes is empty! */
|
|
|
366 |
return 0;
|
|
|
367 |
}
|
|
|
368 |
/*
|
|
|
369 |
* The path is neither entirely inside the inner clip box
|
|
|
370 |
* nor entirely outside the outer clip box.
|
|
|
371 |
* If we had to flatten the path, this is where we would
|
|
|
372 |
* recompute its bbox and make the tests again,
|
|
|
373 |
* but we don't bother right now.
|
|
|
374 |
*
|
|
|
375 |
* If there is a clipping path, set up a clipping device.
|
|
|
376 |
*/
|
|
|
377 |
if (pcpath) {
|
|
|
378 |
dev = (gx_device *) & cdev;
|
|
|
379 |
gx_make_clip_device(&cdev, gx_cpath_list(pcpath));
|
|
|
380 |
cdev.target = save_dev;
|
|
|
381 |
cdev.max_fill_band = save_dev->max_fill_band;
|
|
|
382 |
(*dev_proc(dev, open_device)) (dev);
|
|
|
383 |
}
|
|
|
384 |
}
|
|
|
385 |
/*
|
|
|
386 |
* Compute the proper adjustment values.
|
|
|
387 |
* To get the effect of the any-part-of-pixel rule,
|
|
|
388 |
* we may have to tweak them slightly.
|
|
|
389 |
* NOTE: We changed the adjust_right/above value from 0.5+epsilon
|
|
|
390 |
* to 0.5 in release 5.01; even though this does the right thing
|
|
|
391 |
* in every case we could imagine, we aren't confident that it's
|
|
|
392 |
* correct. (The old values were definitely incorrect, since they
|
|
|
393 |
* caused 1-pixel-wide/high objects to color 2 pixels even if
|
|
|
394 |
* they fell exactly on pixel boundaries.)
|
|
|
395 |
*/
|
|
|
396 |
if (adjust.x == fixed_half)
|
|
|
397 |
fo.adjust_left = fixed_half - fixed_epsilon,
|
|
|
398 |
fo.adjust_right = fixed_half /* + fixed_epsilon */ ; /* see above */
|
|
|
399 |
else
|
|
|
400 |
fo.adjust_left = fo.adjust_right = adjust.x;
|
|
|
401 |
if (adjust.y == fixed_half)
|
|
|
402 |
fo.adjust_below = fixed_half - fixed_epsilon,
|
|
|
403 |
fo.adjust_above = fixed_half /* + fixed_epsilon */ ; /* see above */
|
|
|
404 |
else
|
|
|
405 |
fo.adjust_below = fo.adjust_above = adjust.y;
|
|
|
406 |
/* Initialize the active line list. */
|
|
|
407 |
init_line_list(&lst, ppath->memory);
|
|
|
408 |
sbox.p.x = ibox.p.x - adjust.x;
|
|
|
409 |
sbox.p.y = ibox.p.y - adjust.y;
|
|
|
410 |
sbox.q.x = ibox.q.x + adjust.x;
|
|
|
411 |
sbox.q.y = ibox.q.y + adjust.y;
|
|
|
412 |
fo.pseudo_rasterization = pseudo_rasterization;
|
|
|
413 |
fo.pdevc = pdevc;
|
|
|
414 |
fo.lop = lop;
|
|
|
415 |
fo.fixed_flat = float2fixed(params->flatness);
|
|
|
416 |
fo.ymin = ibox.p.y;
|
|
|
417 |
fo.ymax = ibox.q.y;
|
|
|
418 |
fo.dev = dev;
|
|
|
419 |
fo.lop = lop;
|
|
|
420 |
fo.pbox = &sbox;
|
|
|
421 |
fo.rule = params->rule;
|
|
|
422 |
fo.is_spotan = is_spotan_device(dev);
|
|
|
423 |
fo.fill_direct = color_writes_pure(pdevc, lop);
|
|
|
424 |
fo.fill_rect = (fo.fill_direct ? dev_proc(dev, fill_rectangle) : NULL);
|
|
|
425 |
fo.fill_trap = dev_proc(dev, fill_trapezoid);
|
|
|
426 |
|
|
|
427 |
/*
|
|
|
428 |
* We have a choice of two different filling algorithms:
|
|
|
429 |
* scan-line-based and trapezoid-based. They compare as follows:
|
|
|
430 |
*
|
|
|
431 |
* Scan Trap
|
|
|
432 |
* ---- ----
|
|
|
433 |
* skip +draw 0-height horizontal lines
|
|
|
434 |
* slow +fast rectangles
|
|
|
435 |
* +fast slow curves
|
|
|
436 |
* +yes no write pixels at most once when adjust != 0
|
|
|
437 |
*
|
|
|
438 |
* Normally we use the scan line algorithm for characters, where curve
|
|
|
439 |
* speed is important, and for non-idempotent RasterOps, where double
|
|
|
440 |
* pixel writing must be avoided, and the trapezoid algorithm otherwise.
|
|
|
441 |
* However, we always use the trapezoid algorithm for rectangles.
|
|
|
442 |
*/
|
|
|
443 |
fill_by_trapezoids =
|
|
|
444 |
(pseudo_rasterization || !gx_path_has_curves(ppath) ||
|
|
|
445 |
params->flatness >= 1.0 || fo.is_spotan);
|
|
|
446 |
if (fill_by_trapezoids && !fo.is_spotan && !lop_is_idempotent(lop)) {
|
|
|
447 |
gs_fixed_rect rbox;
|
|
|
448 |
|
|
|
449 |
if (gx_path_is_rectangular(ppath, &rbox)) {
|
|
|
450 |
int x0 = fixed2int_pixround(rbox.p.x - fo.adjust_left);
|
|
|
451 |
int y0 = fixed2int_pixround(rbox.p.y - fo.adjust_below);
|
|
|
452 |
int x1 = fixed2int_pixround(rbox.q.x + fo.adjust_right);
|
|
|
453 |
int y1 = fixed2int_pixround(rbox.q.y + fo.adjust_above);
|
|
|
454 |
|
|
|
455 |
return gx_fill_rectangle_device_rop(x0, y0, x1 - x0, y1 - y0,
|
|
|
456 |
pdevc, dev, lop);
|
|
|
457 |
}
|
|
|
458 |
if (fo.adjust_left | fo.adjust_right | fo.adjust_below | fo.adjust_above)
|
|
|
459 |
fill_by_trapezoids = false; /* avoid double writing pixels */
|
|
|
460 |
}
|
|
|
461 |
gx_path_init_local(&ffpath, ppath->memory);
|
|
|
462 |
if (!big_path && !gx_path_has_curves(ppath)) /* don't need to flatten */
|
|
|
463 |
pfpath = ppath;
|
|
|
464 |
else if (is_spotan_device(dev))
|
|
|
465 |
pfpath = ppath;
|
|
|
466 |
else if (!big_path && gx_path__check_curves(ppath, pco_small_curves, fo.fixed_flat))
|
|
|
467 |
pfpath = ppath;
|
|
|
468 |
else {
|
|
|
469 |
code = gx_path_copy_reducing(ppath, &ffpath, fo.fixed_flat, NULL,
|
|
|
470 |
pco_small_curves);
|
|
|
471 |
if (code < 0)
|
|
|
472 |
return code;
|
|
|
473 |
pfpath = &ffpath;
|
|
|
474 |
if (big_path) {
|
|
|
475 |
code = gx_path_merge_contacting_contours(pfpath);
|
|
|
476 |
if (code < 0)
|
|
|
477 |
return code;
|
|
|
478 |
}
|
|
|
479 |
}
|
|
|
480 |
fo.fill_by_trapezoids = fill_by_trapezoids;
|
|
|
481 |
if ((code = add_y_list(pfpath, &lst)) < 0)
|
|
|
482 |
goto nope;
|
|
|
483 |
{
|
|
|
484 |
FILL_LOOP_PROC((*fill_loop));
|
|
|
485 |
|
|
|
486 |
/* Some short-sighted compilers won't allow a conditional here.... */
|
|
|
487 |
if (fill_by_trapezoids)
|
|
|
488 |
fill_loop = spot_into_trapezoids;
|
|
|
489 |
else
|
|
|
490 |
fill_loop = spot_into_scan_lines;
|
|
|
491 |
if (lst.bbox_width > MAX_LOCAL_SECTION && fo.pseudo_rasterization) {
|
|
|
492 |
/*
|
|
|
493 |
* Note that execution pass here only for character size
|
|
|
494 |
* grater that MAX_LOCAL_SECTION and lesser than
|
|
|
495 |
* SMALL_CHARACTER. Therefore with !arch_small_memory
|
|
|
496 |
* the dynamic allocation only happens for characters
|
|
|
497 |
* wider than 100 pixels.
|
|
|
498 |
*/
|
|
|
499 |
lst.margin_set0.sect = (section *)gs_alloc_struct_array(pdev->memory, lst.bbox_width * 2,
|
|
|
500 |
section, &st_section, "section");
|
|
|
501 |
if (lst.margin_set0.sect == 0)
|
|
|
502 |
return_error(gs_error_VMerror);
|
|
|
503 |
lst.margin_set1.sect = lst.margin_set0.sect + lst.bbox_width;
|
|
|
504 |
}
|
|
|
505 |
if (fo.pseudo_rasterization) {
|
|
|
506 |
init_section(lst.margin_set0.sect, 0, lst.bbox_width);
|
|
|
507 |
init_section(lst.margin_set1.sect, 0, lst.bbox_width);
|
|
|
508 |
}
|
|
|
509 |
code = (*fill_loop)
|
|
|
510 |
(&lst, (max_fill_band == 0 ? NO_BAND_MASK : int2fixed(-max_fill_band)));
|
|
|
511 |
if (lst.margin_set0.sect != lst.local_section0 &&
|
|
|
512 |
lst.margin_set0.sect != lst.local_section1)
|
|
|
513 |
gs_free_object(pdev->memory, min(lst.margin_set0.sect, lst.margin_set1.sect), "section");
|
|
|
514 |
}
|
|
|
515 |
nope:if (lst.close_count != 0)
|
|
|
516 |
unclose_path(pfpath, lst.close_count);
|
|
|
517 |
free_line_list(&lst);
|
|
|
518 |
if (pfpath != ppath) /* had to flatten */
|
|
|
519 |
gx_path_free(pfpath, "gx_general_fill_path");
|
|
|
520 |
#ifdef DEBUG
|
|
|
521 |
if (gs_debug_c('f')) {
|
|
|
522 |
dlputs("[f] # alloc up down horiz step slowx iter find band bstep bfill\n");
|
|
|
523 |
dlprintf5(" %5ld %5ld %5ld %5ld %5ld",
|
|
|
524 |
stats_fill.fill, stats_fill.fill_alloc,
|
|
|
525 |
stats_fill.y_up, stats_fill.y_down,
|
|
|
526 |
stats_fill.horiz);
|
|
|
527 |
dlprintf4(" %5ld %5ld %5ld %5ld",
|
|
|
528 |
stats_fill.x_step, stats_fill.slow_x,
|
|
|
529 |
stats_fill.iter, stats_fill.find_y);
|
|
|
530 |
dlprintf3(" %5ld %5ld %5ld\n",
|
|
|
531 |
stats_fill.band, stats_fill.band_step,
|
|
|
532 |
stats_fill.band_fill);
|
|
|
533 |
dlputs("[f] afill slant shall sfill mqcrs order slowo\n");
|
|
|
534 |
dlprintf7(" %5ld %5ld %5ld %5ld %5ld %5ld %5ld\n",
|
|
|
535 |
stats_fill.afill, stats_fill.slant,
|
|
|
536 |
stats_fill.slant_shallow, stats_fill.sfill,
|
|
|
537 |
stats_fill.mq_cross, stats_fill.order,
|
|
|
538 |
stats_fill.slow_order);
|
|
|
539 |
}
|
|
|
540 |
#endif
|
|
|
541 |
return code;
|
|
|
542 |
}
|
|
|
543 |
|
|
|
544 |
/*
|
|
|
545 |
* Fill a path. This is the default implementation of the driver
|
|
|
546 |
* fill_path procedure.
|
|
|
547 |
*/
|
|
|
548 |
int
|
|
|
549 |
gx_default_fill_path(gx_device * pdev, const gs_imager_state * pis,
|
|
|
550 |
gx_path * ppath, const gx_fill_params * params,
|
|
|
551 |
const gx_device_color * pdevc, const gx_clip_path * pcpath)
|
|
|
552 |
{
|
|
|
553 |
int code;
|
|
|
554 |
|
|
|
555 |
if (gx_dc_is_pattern2_color(pdevc)) {
|
|
|
556 |
/* Optimization for shading fill :
|
|
|
557 |
The general path filling algorithm subdivides fill region with
|
|
|
558 |
trapezoid or rectangle subregions and then paints each subregion
|
|
|
559 |
with given color. If the color is shading, each subregion to be
|
|
|
560 |
subdivided into areas of constant color. But with radial
|
|
|
561 |
shading each area is a high order polygon, being
|
|
|
562 |
subdivided into smaller subregions, so as total number of
|
|
|
563 |
subregions grows huge. Faster processing is done here by changing
|
|
|
564 |
the order of subdivision cycles : we first subdivide the shading into
|
|
|
565 |
areas of constant color, then apply the general path filling algorithm
|
|
|
566 |
(i.e. subdivide each area into trapezoids or rectangles), using the
|
|
|
567 |
filling path as clip mask.
|
|
|
568 |
*/
|
|
|
569 |
|
|
|
570 |
gx_clip_path cpath_intersection;
|
|
|
571 |
gx_path path_intersection;
|
|
|
572 |
|
|
|
573 |
/* Shading fill algorithm uses "current path" parameter of the general
|
|
|
574 |
path filling algorithm as boundary of constant color area,
|
|
|
575 |
so we need to intersect the filling path with the clip path now,
|
|
|
576 |
reducing the number of pathes passed to it :
|
|
|
577 |
*/
|
|
|
578 |
gx_path_init_local(&path_intersection, pdev->memory);
|
|
|
579 |
gx_cpath_init_local_shared(&cpath_intersection, pcpath, pdev->memory);
|
|
|
580 |
if ((code = gx_cpath_intersect(&cpath_intersection, ppath, params->rule, (gs_imager_state *)pis)) >= 0)
|
|
|
581 |
code = gx_cpath_to_path(&cpath_intersection, &path_intersection);
|
|
|
582 |
|
|
|
583 |
/* Do fill : */
|
|
|
584 |
if (code >= 0)
|
|
|
585 |
code = gx_dc_pattern2_fill_path(pdevc, &path_intersection, NULL, pdev);
|
|
|
586 |
|
|
|
587 |
/* Destruct local data and return :*/
|
|
|
588 |
gx_path_free(&path_intersection, "shading_fill_path_intersection");
|
|
|
589 |
gx_cpath_free(&cpath_intersection, "shading_fill_cpath_intersection");
|
|
|
590 |
} else {
|
|
|
591 |
bool got_dc = false;
|
|
|
592 |
vd_save;
|
|
|
593 |
if (vd_allowed('F') || vd_allowed('f')) {
|
|
|
594 |
if (!vd_enabled) {
|
|
|
595 |
vd_get_dc( (params->adjust.x | params->adjust.y) ? 'F' : 'f');
|
|
|
596 |
got_dc = vd_enabled;
|
|
|
597 |
}
|
|
|
598 |
if (vd_enabled) {
|
|
|
599 |
vd_set_shift(0, 100);
|
|
|
600 |
vd_set_scale(VD_SCALE);
|
|
|
601 |
vd_set_origin(0, 0);
|
|
|
602 |
vd_erase(RGB(192, 192, 192));
|
|
|
603 |
}
|
|
|
604 |
} else
|
|
|
605 |
vd_disable;
|
|
|
606 |
code = gx_general_fill_path(pdev, pis, ppath, params, pdevc, pcpath);
|
|
|
607 |
if (got_dc)
|
|
|
608 |
vd_release_dc;
|
|
|
609 |
vd_restore;
|
|
|
610 |
}
|
|
|
611 |
return code;
|
|
|
612 |
}
|
|
|
613 |
|
|
|
614 |
/* Free the line list. */
|
|
|
615 |
private void
|
|
|
616 |
free_line_list(line_list *ll)
|
|
|
617 |
{
|
|
|
618 |
/* Free any individually allocated active_lines. */
|
|
|
619 |
gs_memory_t *mem = ll->memory;
|
|
|
620 |
active_line *alp;
|
|
|
621 |
|
|
|
622 |
while ((alp = ll->active_area) != 0) {
|
|
|
623 |
active_line *next = alp->alloc_next;
|
|
|
624 |
|
|
|
625 |
gs_free_object(mem, alp, "active line");
|
|
|
626 |
ll->active_area = next;
|
|
|
627 |
}
|
|
|
628 |
free_all_margins(ll);
|
|
|
629 |
}
|
|
|
630 |
|
|
|
631 |
private inline active_line *
|
|
|
632 |
make_al(line_list *ll)
|
|
|
633 |
{
|
|
|
634 |
active_line *alp = ll->next_active;
|
|
|
635 |
|
|
|
636 |
if (alp == ll->limit) { /* Allocate separately */
|
|
|
637 |
alp = gs_alloc_struct(ll->memory, active_line,
|
|
|
638 |
&st_active_line, "active line");
|
|
|
639 |
if (alp == 0)
|
|
|
640 |
return NULL;
|
|
|
641 |
alp->alloc_next = ll->active_area;
|
|
|
642 |
ll->active_area = alp;
|
|
|
643 |
INCR(fill_alloc);
|
|
|
644 |
} else
|
|
|
645 |
ll->next_active++;
|
|
|
646 |
return alp;
|
|
|
647 |
}
|
|
|
648 |
|
|
|
649 |
/* Insert the new line in the Y ordering */
|
|
|
650 |
private void
|
|
|
651 |
insert_y_line(line_list *ll, active_line *alp)
|
|
|
652 |
{
|
|
|
653 |
active_line *yp = ll->y_line;
|
|
|
654 |
active_line *nyp;
|
|
|
655 |
fixed y_start = alp->start.y;
|
|
|
656 |
|
|
|
657 |
vd_bar(alp->start.x, alp->start.y, alp->end.x, alp->end.y, 0, RGB(255, 0, 0));
|
|
|
658 |
if (yp == 0) {
|
|
|
659 |
alp->next = alp->prev = 0;
|
|
|
660 |
ll->y_list = alp;
|
|
|
661 |
} else if (y_start >= yp->start.y) { /* Insert the new line after y_line */
|
|
|
662 |
while (INCR_EXPR(y_up),
|
|
|
663 |
((nyp = yp->next) != NULL &&
|
|
|
664 |
y_start > nyp->start.y)
|
|
|
665 |
)
|
|
|
666 |
yp = nyp;
|
|
|
667 |
alp->next = nyp;
|
|
|
668 |
alp->prev = yp;
|
|
|
669 |
yp->next = alp;
|
|
|
670 |
if (nyp)
|
|
|
671 |
nyp->prev = alp;
|
|
|
672 |
} else { /* Insert the new line before y_line */
|
|
|
673 |
while (INCR_EXPR(y_down),
|
|
|
674 |
((nyp = yp->prev) != NULL &&
|
|
|
675 |
y_start < nyp->start.y)
|
|
|
676 |
)
|
|
|
677 |
yp = nyp;
|
|
|
678 |
alp->prev = nyp;
|
|
|
679 |
alp->next = yp;
|
|
|
680 |
yp->prev = alp;
|
|
|
681 |
if (nyp)
|
|
|
682 |
nyp->next = alp;
|
|
|
683 |
else
|
|
|
684 |
ll->y_list = alp;
|
|
|
685 |
}
|
|
|
686 |
ll->y_line = alp;
|
|
|
687 |
vd_bar(alp->start.x, alp->start.y, alp->end.x, alp->end.y, 1, RGB(0, 255, 0));
|
|
|
688 |
print_al("add ", alp);
|
|
|
689 |
}
|
|
|
690 |
|
|
|
691 |
typedef struct contour_cursor_s {
|
|
|
692 |
segment *prev, *pseg, *pfirst, *plast;
|
|
|
693 |
gx_flattened_iterator *fi;
|
|
|
694 |
bool more_flattened;
|
|
|
695 |
bool first_flattened;
|
|
|
696 |
int dir;
|
|
|
697 |
bool monotonic_y;
|
|
|
698 |
bool monotonic_x;
|
|
|
699 |
bool crossing;
|
|
|
700 |
} contour_cursor;
|
|
|
701 |
|
|
|
702 |
private inline int
|
|
|
703 |
compute_dir(const fill_options *fo, fixed y0, fixed y1)
|
|
|
704 |
{
|
|
|
705 |
if (max(y0, y1) < fo->ymin)
|
|
|
706 |
return 2;
|
|
|
707 |
if (min(y0, y1) > fo->ymax)
|
|
|
708 |
return 2;
|
|
|
709 |
return (y0 < y1 ? DIR_UP :
|
|
|
710 |
y0 > y1 ? DIR_DOWN : DIR_HORIZONTAL);
|
|
|
711 |
}
|
|
|
712 |
|
|
|
713 |
private inline int
|
|
|
714 |
add_y_curve_part(line_list *ll, segment *s0, segment *s1, int dir,
|
|
|
715 |
gx_flattened_iterator *fi, bool more1, bool step_back, bool monotonic_x)
|
|
|
716 |
{
|
|
|
717 |
active_line *alp = make_al(ll);
|
|
|
718 |
|
|
|
719 |
if (alp == NULL)
|
|
|
720 |
return_error(gs_error_VMerror);
|
|
|
721 |
alp->pseg = (dir == DIR_UP ? s1 : s0);
|
|
|
722 |
alp->direction = dir;
|
|
|
723 |
alp->fi = *fi;
|
|
|
724 |
alp->more_flattened = more1;
|
|
|
725 |
if (dir != DIR_UP && more1)
|
|
|
726 |
gx_flattened_iterator__switch_to_backscan(&alp->fi, more1);
|
|
|
727 |
if (step_back) {
|
|
|
728 |
do {
|
|
|
729 |
alp->more_flattened = gx_flattened_iterator__prev(&alp->fi);
|
|
|
730 |
if (compute_dir(ll->fo, alp->fi.ly0, alp->fi.ly1) != 2)
|
|
|
731 |
break;
|
|
|
732 |
} while (alp->more_flattened);
|
|
|
733 |
}
|
|
|
734 |
step_al(alp, false);
|
|
|
735 |
alp->monotonic_y = false;
|
|
|
736 |
alp->monotonic_x = monotonic_x;
|
|
|
737 |
insert_y_line(ll, alp);
|
|
|
738 |
return 0;
|
|
|
739 |
}
|
|
|
740 |
|
|
|
741 |
private inline int
|
|
|
742 |
add_y_line(const segment * prev_lp, const segment * lp, int dir, line_list *ll)
|
|
|
743 |
{
|
|
|
744 |
return add_y_line_aux(prev_lp, lp, &lp->pt, &prev_lp->pt, dir, ll);
|
|
|
745 |
}
|
|
|
746 |
|
|
|
747 |
private inline int
|
|
|
748 |
start_al_pair(line_list *ll, contour_cursor *q, contour_cursor *p)
|
|
|
749 |
{
|
|
|
750 |
int code;
|
|
|
751 |
|
|
|
752 |
if (q->monotonic_y)
|
|
|
753 |
code = add_y_line(q->prev, q->pseg, DIR_DOWN, ll);
|
|
|
754 |
else
|
|
|
755 |
code = add_y_curve_part(ll, q->prev, q->pseg, DIR_DOWN, q->fi,
|
|
|
756 |
!q->first_flattened, false, q->monotonic_x);
|
|
|
757 |
if (code < 0)
|
|
|
758 |
return code;
|
|
|
759 |
if (p->monotonic_y)
|
|
|
760 |
code = add_y_line(p->prev, p->pseg, DIR_UP, ll);
|
|
|
761 |
else
|
|
|
762 |
code = add_y_curve_part(ll, p->prev, p->pseg, DIR_UP, p->fi,
|
|
|
763 |
p->more_flattened, false, p->monotonic_x);
|
|
|
764 |
return code;
|
|
|
765 |
}
|
|
|
766 |
|
|
|
767 |
/* Start active lines from a minimum of a possibly non-monotonic curve. */
|
|
|
768 |
private int
|
|
|
769 |
start_al_pair_from_min(line_list *ll, contour_cursor *q)
|
|
|
770 |
{
|
|
|
771 |
int dir, code;
|
|
|
772 |
const fill_options * const fo = ll->fo;
|
|
|
773 |
|
|
|
774 |
/* q stands at the first segment, which isn't last. */
|
|
|
775 |
do {
|
|
|
776 |
q->more_flattened = gx_flattened_iterator__next(q->fi);
|
|
|
777 |
dir = compute_dir(fo, q->fi->ly0, q->fi->ly1);
|
|
|
778 |
if (q->fi->ly0 > fo->ymax && ll->y_break > q->fi->y0)
|
|
|
779 |
ll->y_break = q->fi->ly0;
|
|
|
780 |
if (q->fi->ly1 > fo->ymax && ll->y_break > q->fi->ly1)
|
|
|
781 |
ll->y_break = q->fi->ly1;
|
|
|
782 |
if (dir == DIR_UP && ll->main_dir == DIR_DOWN && q->fi->ly0 >= fo->ymin) {
|
|
|
783 |
code = add_y_curve_part(ll, q->prev, q->pseg, DIR_DOWN, q->fi,
|
|
|
784 |
true, true, q->monotonic_x);
|
|
|
785 |
if (code < 0)
|
|
|
786 |
return code;
|
|
|
787 |
code = add_y_curve_part(ll, q->prev, q->pseg, DIR_UP, q->fi,
|
|
|
788 |
q->more_flattened, false, q->monotonic_x);
|
|
|
789 |
if (code < 0)
|
|
|
790 |
return code;
|
|
|
791 |
} else if (q->fi->ly0 < fo->ymin && q->fi->ly1 >= fo->ymin) {
|
|
|
792 |
code = add_y_curve_part(ll, q->prev, q->pseg, DIR_UP, q->fi,
|
|
|
793 |
q->more_flattened, false, q->monotonic_x);
|
|
|
794 |
if (code < 0)
|
|
|
795 |
return code;
|
|
|
796 |
} else if (q->fi->ly0 >= fo->ymin && q->fi->ly1 < fo->ymin) {
|
|
|
797 |
code = add_y_curve_part(ll, q->prev, q->pseg, DIR_DOWN, q->fi,
|
|
|
798 |
true, false, q->monotonic_x);
|
|
|
799 |
if (code < 0)
|
|
|
800 |
return code;
|
|
|
801 |
}
|
|
|
802 |
q->first_flattened = false;
|
|
|
803 |
q->dir = dir;
|
|
|
804 |
ll->main_dir = (dir == DIR_DOWN ? DIR_DOWN :
|
|
|
805 |
dir == DIR_UP ? DIR_UP : ll->main_dir);
|
|
|
806 |
if (!q->more_flattened)
|
|
|
807 |
break;
|
|
|
808 |
} while(q->more_flattened);
|
|
|
809 |
/* q stands at the last segment. */
|
|
|
810 |
return 0;
|
|
|
811 |
/* note : it doesn't depend on the number of curve minimums,
|
|
|
812 |
which may vary due to arithmetic errors. */
|
|
|
813 |
}
|
|
|
814 |
|
|
|
815 |
private inline void
|
|
|
816 |
init_contour_cursor(line_list *ll, contour_cursor *q)
|
|
|
817 |
{
|
|
|
818 |
const fill_options * const fo = ll->fo;
|
|
|
819 |
|
|
|
820 |
if (q->pseg->type == s_curve) {
|
|
|
821 |
curve_segment *s = (curve_segment *)q->pseg;
|
|
|
822 |
fixed ymin = min(min(q->prev->pt.y, s->p1.y), min(s->p2.y, s->pt.y));
|
|
|
823 |
fixed ymax = max(max(q->prev->pt.y, s->p1.y), max(s->p2.y, s->pt.y));
|
|
|
824 |
bool in_band = ymin <= fo->ymax && ymax >= fo->ymin;
|
|
|
825 |
q->crossing = ymin < fo->ymin && ymax >= fo->ymin;
|
|
|
826 |
q->monotonic_y = !in_band ||
|
|
|
827 |
(!q->crossing &&
|
|
|
828 |
((q->prev->pt.y <= s->p1.y && s->p1.y <= s->p2.y && s->p2.y <= s->pt.y) ||
|
|
|
829 |
(q->prev->pt.y >= s->p1.y && s->p1.y >= s->p2.y && s->p2.y >= s->pt.y)));
|
|
|
830 |
q->monotonic_x =
|
|
|
831 |
((q->prev->pt.x <= s->p1.x && s->p1.x <= s->p2.x && s->p2.x <= s->pt.x) ||
|
|
|
832 |
(q->prev->pt.x >= s->p1.x && s->p1.x >= s->p2.x && s->p2.x >= s->pt.x));
|
|
|
833 |
} else
|
|
|
834 |
q->monotonic_y = true;
|
|
|
835 |
if (!q->monotonic_y) {
|
|
|
836 |
curve_segment *s = (curve_segment *)q->pseg;
|
|
|
837 |
int k = gx_curve_log2_samples(q->prev->pt.x, q->prev->pt.y, s, fo->fixed_flat);
|
|
|
838 |
|
|
|
839 |
gx_flattened_iterator__init(q->fi, q->prev->pt.x, q->prev->pt.y, s, k);
|
|
|
840 |
} else {
|
|
|
841 |
q->dir = compute_dir(fo, q->prev->pt.y, q->pseg->pt.y);
|
|
|
842 |
gx_flattened_iterator__init_line(q->fi,
|
|
|
843 |
q->prev->pt.x, q->prev->pt.y, q->pseg->pt.x, q->pseg->pt.y); /* fake for curves. */
|
|
|
844 |
vd_bar(q->prev->pt.x, q->prev->pt.y, q->pseg->pt.x, q->pseg->pt.y, 1, RGB(0, 0, 255));
|
|
|
845 |
}
|
|
|
846 |
q->first_flattened = true;
|
|
|
847 |
}
|
|
|
848 |
|
|
|
849 |
private int
|
|
|
850 |
scan_contour(line_list *ll, contour_cursor *q)
|
|
|
851 |
{
|
|
|
852 |
contour_cursor p;
|
|
|
853 |
gx_flattened_iterator fi, save_fi;
|
|
|
854 |
segment *pseg;
|
|
|
855 |
int code;
|
|
|
856 |
bool only_horizontal = true, saved = false;
|
|
|
857 |
const fill_options * const fo = ll->fo;
|
|
|
858 |
contour_cursor save_q;
|
|
|
859 |
|
|
|
860 |
p.fi = &fi;
|
|
|
861 |
save_q.dir = 2;
|
|
|
862 |
ll->main_dir = DIR_HORIZONTAL;
|
|
|
863 |
for (; ; q->pseg = q->prev, q->prev = q->prev->prev) {
|
|
|
864 |
init_contour_cursor(ll, q);
|
|
|
865 |
while(gx_flattened_iterator__next(q->fi)) {
|
|
|
866 |
q->first_flattened = false;
|
|
|
867 |
q->dir = compute_dir(fo, q->fi->ly0, q->fi->ly1);
|
|
|
868 |
ll->main_dir = (q->dir == DIR_DOWN ? DIR_DOWN :
|
|
|
869 |
q->dir == DIR_UP ? DIR_UP : ll->main_dir);
|
|
|
870 |
}
|
|
|
871 |
q->dir = compute_dir(fo, q->fi->ly0, q->fi->ly1);
|
|
|
872 |
q->more_flattened = false;
|
|
|
873 |
ll->main_dir = (q->dir == DIR_DOWN ? DIR_DOWN :
|
|
|
874 |
q->dir == DIR_UP ? DIR_UP : ll->main_dir);
|
|
|
875 |
if (ll->main_dir != DIR_HORIZONTAL) {
|
|
|
876 |
only_horizontal = false;
|
|
|
877 |
break;
|
|
|
878 |
}
|
|
|
879 |
if (!saved && q->dir != 2) {
|
|
|
880 |
save_q = *q;
|
|
|
881 |
save_fi = *q->fi;
|
|
|
882 |
saved = true;
|
|
|
883 |
}
|
|
|
884 |
if (q->prev == q->pfirst)
|
|
|
885 |
break;
|
|
|
886 |
}
|
|
|
887 |
if (saved) {
|
|
|
888 |
*q = save_q;
|
|
|
889 |
*q->fi = save_fi;
|
|
|
890 |
}
|
|
|
891 |
for (pseg = q->pfirst; pseg != q->plast; pseg = pseg->next) {
|
|
|
892 |
p.prev = pseg;
|
|
|
893 |
p.pseg = pseg->next;
|
|
|
894 |
if (!fo->pseudo_rasterization || only_horizontal
|
|
|
895 |
|| p.prev->pt.x != p.pseg->pt.x || p.prev->pt.y != p.pseg->pt.y
|
|
|
896 |
|| p.pseg->type == s_curve) {
|
|
|
897 |
init_contour_cursor(ll, &p);
|
|
|
898 |
p.more_flattened = gx_flattened_iterator__next(p.fi);
|
|
|
899 |
p.dir = compute_dir(fo, p.fi->ly0, p.fi->ly1);
|
|
|
900 |
if (p.fi->ly0 > fo->ymax && ll->y_break > p.fi->ly0)
|
|
|
901 |
ll->y_break = p.fi->ly0;
|
|
|
902 |
if (p.fi->ly1 > fo->ymax && ll->y_break > p.fi->ly1)
|
|
|
903 |
ll->y_break = p.fi->ly1;
|
|
|
904 |
if (p.monotonic_y && p.dir == DIR_HORIZONTAL &&
|
|
|
905 |
!fo->pseudo_rasterization &&
|
|
|
906 |
fixed2int_pixround(p.pseg->pt.y - fo->adjust_below) <
|
|
|
907 |
fixed2int_pixround(p.pseg->pt.y + fo->adjust_above)) {
|
|
|
908 |
/* Add it here to avoid double processing in process_h_segments. */
|
|
|
909 |
code = add_y_line(p.prev, p.pseg, DIR_HORIZONTAL, ll);
|
|
|
910 |
if (code < 0)
|
|
|
911 |
return code;
|
|
|
912 |
}
|
|
|
913 |
if (p.monotonic_y && p.dir == DIR_HORIZONTAL &&
|
|
|
914 |
fo->pseudo_rasterization && only_horizontal) {
|
|
|
915 |
/* Add it here to avoid double processing in process_h_segments. */
|
|
|
916 |
code = add_y_line(p.prev, p.pseg, DIR_HORIZONTAL, ll);
|
|
|
917 |
if (code < 0)
|
|
|
918 |
return code;
|
|
|
919 |
}
|
|
|
920 |
if (p.fi->ly0 >= fo->ymin && p.dir == DIR_UP && ll->main_dir == DIR_DOWN) {
|
|
|
921 |
code = start_al_pair(ll, q, &p);
|
|
|
922 |
if (code < 0)
|
|
|
923 |
return code;
|
|
|
924 |
}
|
|
|
925 |
if (p.fi->ly0 < fo->ymin && p.fi->ly1 >= fo->ymin) {
|
|
|
926 |
if (p.monotonic_y)
|
|
|
927 |
code = add_y_line(p.prev, p.pseg, DIR_UP, ll);
|
|
|
928 |
else
|
|
|
929 |
code = add_y_curve_part(ll, p.prev, p.pseg, DIR_UP, p.fi,
|
|
|
930 |
p.more_flattened, false, p.monotonic_x);
|
|
|
931 |
if (code < 0)
|
|
|
932 |
return code;
|
|
|
933 |
}
|
|
|
934 |
if (p.fi->ly0 >= fo->ymin && p.fi->ly1 < fo->ymin) {
|
|
|
935 |
if (p.monotonic_y)
|
|
|
936 |
code = add_y_line(p.prev, p.pseg, DIR_DOWN, ll);
|
|
|
937 |
else
|
|
|
938 |
code = add_y_curve_part(ll, p.prev, p.pseg, DIR_DOWN, p.fi,
|
|
|
939 |
!p.first_flattened, false, p.monotonic_x);
|
|
|
940 |
if (code < 0)
|
|
|
941 |
return code;
|
|
|
942 |
}
|
|
|
943 |
ll->main_dir = (p.dir == DIR_DOWN ? DIR_DOWN :
|
|
|
944 |
p.dir == DIR_UP ? DIR_UP : ll->main_dir);
|
|
|
945 |
if (!p.monotonic_y && p.more_flattened) {
|
|
|
946 |
code = start_al_pair_from_min(ll, &p);
|
|
|
947 |
if (code < 0)
|
|
|
948 |
return code;
|
|
|
949 |
}
|
|
|
950 |
if (p.dir == DIR_DOWN || p.dir == DIR_HORIZONTAL) {
|
|
|
951 |
gx_flattened_iterator *fi1 = q->fi;
|
|
|
952 |
q->prev = p.prev;
|
|
|
953 |
q->pseg = p.pseg;
|
|
|
954 |
q->monotonic_y = p.monotonic_y;
|
|
|
955 |
q->more_flattened = p.more_flattened;
|
|
|
956 |
q->first_flattened = p.first_flattened;
|
|
|
957 |
q->fi = p.fi;
|
|
|
958 |
q->dir = p.dir;
|
|
|
959 |
p.fi = fi1;
|
|
|
960 |
}
|
|
|
961 |
}
|
|
|
962 |
}
|
|
|
963 |
q->fi = NULL; /* safety. */
|
|
|
964 |
return 0;
|
|
|
965 |
}
|
|
|
966 |
|
|
|
967 |
/*
|
|
|
968 |
* Construct a Y-sorted list of segments for rasterizing a path. We assume
|
|
|
969 |
* the path is non-empty. Only include non-horizontal lines or (monotonic)
|
|
|
970 |
* curve segments where one endpoint is locally Y-minimal, and horizontal
|
|
|
971 |
* lines that might color some additional pixels.
|
|
|
972 |
*/
|
|
|
973 |
private int
|
|
|
974 |
add_y_list(gx_path * ppath, line_list *ll)
|
|
|
975 |
{
|
|
|
976 |
subpath *psub = ppath->first_subpath;
|
|
|
977 |
int close_count = 0;
|
|
|
978 |
int code;
|
|
|
979 |
contour_cursor q;
|
|
|
980 |
gx_flattened_iterator fi;
|
|
|
981 |
|
|
|
982 |
ll->y_break = max_fixed;
|
|
|
983 |
|
|
|
984 |
for (;psub; psub = (subpath *)psub->last->next) {
|
|
|
985 |
/* We know that pseg points to a subpath head (s_start). */
|
|
|
986 |
segment *pfirst = (segment *)psub;
|
|
|
987 |
segment *plast = psub->last, *prev;
|
|
|
988 |
|
|
|
989 |
q.fi = &fi;
|
|
|
990 |
if (plast->type != s_line_close) {
|
|
|
991 |
/* Create a fake s_line_close */
|
|
|
992 |
line_close_segment *lp = &psub->closer;
|
|
|
993 |
segment *next = plast->next;
|
|
|
994 |
|
|
|
995 |
lp->next = next;
|
|
|
996 |
lp->prev = plast;
|
|
|
997 |
plast->next = (segment *) lp;
|
|
|
998 |
if (next)
|
|
|
999 |
next->prev = (segment *) lp;
|
|
|
1000 |
lp->type = s_line_close;
|
|
|
1001 |
lp->pt = psub->pt;
|
|
|
1002 |
lp->sub = psub;
|
|
|
1003 |
psub->last = plast = (segment *) lp;
|
|
|
1004 |
ll->close_count++;
|
|
|
1005 |
}
|
|
|
1006 |
prev = plast->prev;
|
|
|
1007 |
if (ll->fo->pseudo_rasterization && prev != pfirst &&
|
|
|
1008 |
prev->pt.x == plast->pt.x && prev->pt.y == plast->pt.y) {
|
|
|
1009 |
plast = prev;
|
|
|
1010 |
prev = prev->prev;
|
|
|
1011 |
}
|
|
|
1012 |
q.prev = prev;
|
|
|
1013 |
q.pseg = plast;
|
|
|
1014 |
q.pfirst = pfirst;
|
|
|
1015 |
q.plast = plast;
|
|
|
1016 |
code = scan_contour(ll, &q);
|
|
|
1017 |
if (code < 0)
|
|
|
1018 |
return code;
|
|
|
1019 |
}
|
|
|
1020 |
return close_count;
|
|
|
1021 |
}
|
|
|
1022 |
|
|
|
1023 |
|
|
|
1024 |
private void
|
|
|
1025 |
step_al(active_line *alp, bool move_iterator)
|
|
|
1026 |
{
|
|
|
1027 |
bool forth = (alp->direction == DIR_UP || !alp->fi.curve);
|
|
|
1028 |
|
|
|
1029 |
if (move_iterator) {
|
|
|
1030 |
if (forth)
|
|
|
1031 |
alp->more_flattened = gx_flattened_iterator__next(&alp->fi);
|
|
|
1032 |
else
|
|
|
1033 |
alp->more_flattened = gx_flattened_iterator__prev(&alp->fi);
|
|
|
1034 |
} else
|
|
|
1035 |
vd_bar(alp->fi.lx0, alp->fi.ly0, alp->fi.lx1, alp->fi.ly1, 1, RGB(0, 0, 255));
|
|
|
1036 |
/* Note that we can get alp->fi.ly0 == alp->fi.ly1
|
|
|
1037 |
if the curve tangent is horizontal. */
|
|
|
1038 |
alp->start.x = (forth ? alp->fi.lx0 : alp->fi.lx1);
|
|
|
1039 |
alp->start.y = (forth ? alp->fi.ly0 : alp->fi.ly1);
|
|
|
1040 |
alp->end.x = (forth ? alp->fi.lx1 : alp->fi.lx0);
|
|
|
1041 |
alp->end.y = (forth ? alp->fi.ly1 : alp->fi.ly0);
|
|
|
1042 |
alp->diff.x = alp->end.x - alp->start.x;
|
|
|
1043 |
alp->diff.y = alp->end.y - alp->start.y;
|
|
|
1044 |
SET_NUM_ADJUST(alp);
|
|
|
1045 |
(alp)->y_fast_max = MAX_MINUS_NUM_ADJUST(alp) /
|
|
|
1046 |
((alp->diff.x >= 0 ? alp->diff.x : -alp->diff.x) | 1) + alp->start.y;
|
|
|
1047 |
}
|
|
|
1048 |
|
|
|
1049 |
private void
|
|
|
1050 |
init_al(active_line *alp, const segment *s0, const segment *s1, const line_list *ll)
|
|
|
1051 |
{
|
|
|
1052 |
const segment *ss = (alp->direction == DIR_UP ? s1 : s0);
|
|
|
1053 |
/* Warning : p0 may be equal to &alp->end. */
|
|
|
1054 |
bool curve = (ss != NULL && ss->type == s_curve);
|
|
|
1055 |
|
|
|
1056 |
if (curve) {
|
|
|
1057 |
if (alp->direction == DIR_UP) {
|
|
|
1058 |
const curve_segment *cs = (const curve_segment *)s1;
|
|
|
1059 |
int k = gx_curve_log2_samples(s0->pt.x, s0->pt.y, cs, ll->fo->fixed_flat);
|
|
|
1060 |
|
|
|
1061 |
gx_flattened_iterator__init(&alp->fi,
|
|
|
1062 |
s0->pt.x, s0->pt.y, (const curve_segment *)s1, k);
|
|
|
1063 |
step_al(alp, true);
|
|
|
1064 |
if (!ll->fo->fill_by_trapezoids) {
|
|
|
1065 |
alp->monotonic_y = (s0->pt.y <= cs->p1.y && cs->p1.y <= cs->p2.y && cs->p2.y <= cs->pt.y);
|
|
|
1066 |
alp->monotonic_x = (s0->pt.x <= cs->p1.x && cs->p1.x <= cs->p2.x && cs->p2.x <= cs->pt.x) ||
|
|
|
1067 |
(s0->pt.x >= cs->p1.x && cs->p1.x >= cs->p2.x && cs->p2.x >= cs->pt.x);
|
|
|
1068 |
}
|
|
|
1069 |
} else {
|
|
|
1070 |
const curve_segment *cs = (const curve_segment *)s0;
|
|
|
1071 |
int k = gx_curve_log2_samples(s1->pt.x, s1->pt.y, cs, ll->fo->fixed_flat);
|
|
|
1072 |
bool more;
|
|
|
1073 |
|
|
|
1074 |
gx_flattened_iterator__init(&alp->fi,
|
|
|
1075 |
s1->pt.x, s1->pt.y, (const curve_segment *)s0, k);
|
|
|
1076 |
alp->more_flattened = false;
|
|
|
1077 |
do {
|
|
|
1078 |
more = gx_flattened_iterator__next(&alp->fi);
|
|
|
1079 |
alp->more_flattened |= more;
|
|
|
1080 |
} while(more);
|
|
|
1081 |
gx_flattened_iterator__switch_to_backscan(&alp->fi, alp->more_flattened);
|
|
|
1082 |
step_al(alp, false);
|
|
|
1083 |
if (!ll->fo->fill_by_trapezoids) {
|
|
|
1084 |
alp->monotonic_y = (s0->pt.y >= cs->p1.y && cs->p1.y >= cs->p2.y && cs->p2.y >= cs->pt.y);
|
|
|
1085 |
alp->monotonic_x = (s0->pt.x <= cs->p1.x && cs->p1.x <= cs->p2.x && cs->p2.x <= cs->pt.x) ||
|
|
|
1086 |
(s0->pt.x >= cs->p1.x && cs->p1.x >= cs->p2.x && cs->p2.x >= cs->pt.x);
|
|
|
1087 |
}
|
|
|
1088 |
}
|
|
|
1089 |
} else {
|
|
|
1090 |
gx_flattened_iterator__init_line(&alp->fi,
|
|
|
1091 |
s0->pt.x, s0->pt.y, s1->pt.x, s1->pt.y);
|
|
|
1092 |
step_al(alp, true);
|
|
|
1093 |
alp->monotonic_x = alp->monotonic_y = true;
|
|
|
1094 |
}
|
|
|
1095 |
alp->pseg = s1;
|
|
|
1096 |
}
|
|
|
1097 |
/*
|
|
|
1098 |
* Internal routine to test a segment and add it to the pending list if
|
|
|
1099 |
* appropriate.
|
|
|
1100 |
*/
|
|
|
1101 |
private int
|
|
|
1102 |
add_y_line_aux(const segment * prev_lp, const segment * lp,
|
|
|
1103 |
const gs_fixed_point *curr, const gs_fixed_point *prev, int dir, line_list *ll)
|
|
|
1104 |
{
|
|
|
1105 |
active_line *alp = make_al(ll);
|
|
|
1106 |
if (alp == NULL)
|
|
|
1107 |
return_error(gs_error_VMerror);
|
|
|
1108 |
alp->more_flattened = false;
|
|
|
1109 |
switch ((alp->direction = dir)) {
|
|
|
1110 |
case DIR_UP:
|
|
|
1111 |
init_al(alp, prev_lp, lp, ll);
|
|
|
1112 |
break;
|
|
|
1113 |
case DIR_DOWN:
|
|
|
1114 |
init_al(alp, lp, prev_lp, ll);
|
|
|
1115 |
break;
|
|
|
1116 |
case DIR_HORIZONTAL:
|
|
|
1117 |
alp->start = *prev;
|
|
|
1118 |
alp->end = *curr;
|
|
|
1119 |
/* Don't need to set dx or y_fast_max */
|
|
|
1120 |
alp->pseg = prev_lp; /* may not need this either */
|
|
|
1121 |
break;
|
|
|
1122 |
default: /* can't happen */
|
|
|
1123 |
return_error(gs_error_unregistered);
|
|
|
1124 |
}
|
|
|
1125 |
insert_y_line(ll, alp);
|
|
|
1126 |
return 0;
|
|
|
1127 |
}
|
|
|
1128 |
|
|
|
1129 |
|
|
|
1130 |
/* ---------------- Filling loop utilities ---------------- */
|
|
|
1131 |
|
|
|
1132 |
/* Insert a newly active line in the X ordering. */
|
|
|
1133 |
private void
|
|
|
1134 |
insert_x_new(active_line * alp, line_list *ll)
|
|
|
1135 |
{
|
|
|
1136 |
active_line *next;
|
|
|
1137 |
active_line *prev = &ll->x_head;
|
|
|
1138 |
|
|
|
1139 |
vd_bar(alp->start.x, alp->start.y, alp->end.x, alp->end.y, 1, RGB(128, 128, 0));
|
|
|
1140 |
alp->x_current = alp->start.x;
|
|
|
1141 |
alp->x_next = alp->start.x; /* If the spot starts with a horizontal segment,
|
|
|
1142 |
we need resort_x_line to work properly
|
|
|
1143 |
in the very beginning. */
|
|
|
1144 |
while (INCR_EXPR(x_step),
|
|
|
1145 |
(next = prev->next) != 0 && x_order(next, alp) < 0
|
|
|
1146 |
)
|
|
|
1147 |
prev = next;
|
|
|
1148 |
alp->next = next;
|
|
|
1149 |
alp->prev = prev;
|
|
|
1150 |
if (next != 0)
|
|
|
1151 |
next->prev = alp;
|
|
|
1152 |
prev->next = alp;
|
|
|
1153 |
}
|
|
|
1154 |
|
|
|
1155 |
/* Insert a newly active line in the h list. */
|
|
|
1156 |
/* h list isn't ordered because x intervals may overlap. */
|
|
|
1157 |
/* todo : optimize with maintaining ordered interval list;
|
|
|
1158 |
Unite contacting inrevals, like we did in add_margin.
|
|
|
1159 |
*/
|
|
|
1160 |
private inline void
|
|
|
1161 |
insert_h_new(active_line * alp, line_list *ll)
|
|
|
1162 |
{
|
|
|
1163 |
alp->next = ll->h_list0;
|
|
|
1164 |
alp->prev = 0;
|
|
|
1165 |
if (ll->h_list0 != 0)
|
|
|
1166 |
ll->h_list0->prev = alp;
|
|
|
1167 |
ll->h_list0 = alp;
|
|
|
1168 |
/*
|
|
|
1169 |
* h list keeps horizontal lines for a given y.
|
|
|
1170 |
* There are 2 lists, corresponding to upper and lower ends
|
|
|
1171 |
* of the Y-interval, which spot_into_trapezoids currently proceeds.
|
|
|
1172 |
* Parts of horizontal lines, which do not contact a filled trapezoid,
|
|
|
1173 |
* are parts of the spot bondairy. They to be marked in
|
|
|
1174 |
* the 'sect' array. - see process_h_lists.
|
|
|
1175 |
*/
|
|
|
1176 |
}
|
|
|
1177 |
|
|
|
1178 |
private inline void
|
|
|
1179 |
remove_al(const line_list *ll, active_line *alp)
|
|
|
1180 |
{
|
|
|
1181 |
active_line *nlp = alp->next;
|
|
|
1182 |
|
|
|
1183 |
alp->prev->next = nlp;
|
|
|
1184 |
if (nlp)
|
|
|
1185 |
nlp->prev = alp->prev;
|
|
|
1186 |
if_debug1('F', "[F]drop 0x%lx\n", (ulong) alp);
|
|
|
1187 |
}
|
|
|
1188 |
|
|
|
1189 |
/*
|
|
|
1190 |
* Handle a line segment that just ended. Return true iff this was
|
|
|
1191 |
* the end of a line sequence.
|
|
|
1192 |
*/
|
|
|
1193 |
private bool
|
|
|
1194 |
end_x_line(active_line *alp, const line_list *ll, bool update)
|
|
|
1195 |
{
|
|
|
1196 |
const segment *pseg = alp->pseg;
|
|
|
1197 |
/*
|
|
|
1198 |
* The computation of next relies on the fact that
|
|
|
1199 |
* all subpaths have been closed. When we cycle
|
|
|
1200 |
* around to the other end of a subpath, we must be
|
|
|
1201 |
* sure not to process the start/end point twice.
|
|
|
1202 |
*/
|
|
|
1203 |
const segment *next =
|
|
|
1204 |
(alp->direction == DIR_UP ?
|
|
|
1205 |
( /* Upward line, go forward along path. */
|
|
|
1206 |
pseg->type == s_line_close ? /* end of subpath */
|
|
|
1207 |
((const line_close_segment *)pseg)->sub->next :
|
|
|
1208 |
pseg->next) :
|
|
|
1209 |
( /* Downward line, go backward along path. */
|
|
|
1210 |
pseg->type == s_start ? /* start of subpath */
|
|
|
1211 |
((const subpath *)pseg)->last->prev :
|
|
|
1212 |
pseg->prev)
|
|
|
1213 |
);
|
|
|
1214 |
|
|
|
1215 |
if (alp->end.y < alp->start.y) {
|
|
|
1216 |
/* fixme: The condition above causes a horizontal
|
|
|
1217 |
part of a curve near an Y maximum to process twice :
|
|
|
1218 |
once scanning the left spot boundary and once scanning the right one.
|
|
|
1219 |
In both cases it will go to the H list.
|
|
|
1220 |
However the dropout prevention logic isn't
|
|
|
1221 |
sensitive to that, and such segments does not affect
|
|
|
1222 |
trapezoids. Thus the resulting raster doesn't depend on that.
|
|
|
1223 |
However it would be nice to improve someday.
|
|
|
1224 |
*/
|
|
|
1225 |
remove_al(ll, alp);
|
|
|
1226 |
return true;
|
|
|
1227 |
} else if (alp->more_flattened)
|
|
|
1228 |
return false;
|
|
|
1229 |
init_al(alp, pseg, next, ll);
|
|
|
1230 |
if (alp->start.y > alp->end.y) {
|
|
|
1231 |
/* See comment above. */
|
|
|
1232 |
remove_al(ll, alp);
|
|
|
1233 |
return true;
|
|
|
1234 |
}
|
|
|
1235 |
alp->x_current = alp->x_next = alp->start.x;
|
|
|
1236 |
vd_bar(alp->start.x, alp->start.y, alp->end.x, alp->end.y, 1, RGB(128, 0, 128));
|
|
|
1237 |
print_al("repl", alp);
|
|
|
1238 |
return false;
|
|
|
1239 |
}
|
|
|
1240 |
|
|
|
1241 |
private inline int
|
|
|
1242 |
add_margin(line_list * ll, active_line * flp, active_line * alp, fixed y0, fixed y1)
|
|
|
1243 |
{ vd_bar(alp->start.x, alp->start.y, alp->end.x, alp->end.y, 1, RGB(255, 255, 255));
|
|
|
1244 |
vd_bar(flp->start.x, flp->start.y, flp->end.x, flp->end.y, 1, RGB(255, 255, 255));
|
|
|
1245 |
return continue_margin_common(ll, &ll->margin_set0, flp, alp, y0, y1);
|
|
|
1246 |
}
|
|
|
1247 |
|
|
|
1248 |
private inline int
|
|
|
1249 |
continue_margin(line_list * ll, active_line * flp, active_line * alp, fixed y0, fixed y1)
|
|
|
1250 |
{
|
|
|
1251 |
return continue_margin_common(ll, &ll->margin_set0, flp, alp, y0, y1);
|
|
|
1252 |
}
|
|
|
1253 |
|
|
|
1254 |
private inline int
|
|
|
1255 |
complete_margin(line_list * ll, active_line * flp, active_line * alp, fixed y0, fixed y1)
|
|
|
1256 |
{
|
|
|
1257 |
return continue_margin_common(ll, &ll->margin_set1, flp, alp, y0, y1);
|
|
|
1258 |
}
|
|
|
1259 |
|
|
|
1260 |
/*
|
|
|
1261 |
* Handle the case of a slanted trapezoid with adjustment.
|
|
|
1262 |
* To do this exactly right requires filling a central trapezoid
|
|
|
1263 |
* (or rectangle) plus two horizontal almost-rectangles.
|
|
|
1264 |
*/
|
|
|
1265 |
private int
|
|
|
1266 |
fill_slant_adjust(const line_list *ll,
|
|
|
1267 |
const active_line *flp, const active_line *alp, fixed y, fixed y1)
|
|
|
1268 |
{
|
|
|
1269 |
const fill_options * const fo = ll->fo;
|
|
|
1270 |
const fixed Yb = y - fo->adjust_below;
|
|
|
1271 |
const fixed Ya = y + fo->adjust_above;
|
|
|
1272 |
const fixed Y1b = y1 - fo->adjust_below;
|
|
|
1273 |
const fixed Y1a = y1 + fo->adjust_above;
|
|
|
1274 |
const gs_fixed_edge *plbot, *prbot, *pltop, *prtop;
|
|
|
1275 |
gs_fixed_edge vert_left, slant_left, vert_right, slant_right;
|
|
|
1276 |
int code;
|
|
|
1277 |
|
|
|
1278 |
INCR(slant);
|
|
|
1279 |
vd_quad(flp->x_current, y, alp->x_current, y,
|
|
|
1280 |
alp->x_next, y1, flp->x_next, y1, 1, VD_TRAP_COLOR); /* fixme: Wrong X. */
|
|
|
1281 |
|
|
|
1282 |
/* Set up all the edges, even though we may not need them all. */
|
|
|
1283 |
|
|
|
1284 |
if (flp->start.x < flp->end.x) {
|
|
|
1285 |
vert_left.start.x = vert_left.end.x = flp->x_current - fo->adjust_left;
|
|
|
1286 |
vert_left.start.y = Yb, vert_left.end.y = Ya;
|
|
|
1287 |
vert_right.start.x = vert_right.end.x = alp->x_next + fo->adjust_right;
|
|
|
1288 |
vert_right.start.y = Y1b, vert_right.end.y = Y1a;
|
|
|
1289 |
slant_left.start.y = flp->start.y + fo->adjust_above;
|
|
|
1290 |
slant_left.end.y = flp->end.y + fo->adjust_above;
|
|
|
1291 |
slant_right.start.y = alp->start.y - fo->adjust_below;
|
|
|
1292 |
slant_right.end.y = alp->end.y - fo->adjust_below;
|
|
|
1293 |
plbot = &vert_left, prbot = &slant_right;
|
|
|
1294 |
pltop = &slant_left, prtop = &vert_right;
|
|
|
1295 |
} else {
|
|
|
1296 |
vert_left.start.x = vert_left.end.x = flp->x_next - fo->adjust_left;
|
|
|
1297 |
vert_left.start.y = Y1b, vert_left.end.y = Y1a;
|
|
|
1298 |
vert_right.start.x = vert_right.end.x = alp->x_current + fo->adjust_right;
|
|
|
1299 |
vert_right.start.y = Yb, vert_right.end.y = Ya;
|
|
|
1300 |
slant_left.start.y = flp->start.y - fo->adjust_below;
|
|
|
1301 |
slant_left.end.y = flp->end.y - fo->adjust_below;
|
|
|
1302 |
slant_right.start.y = alp->start.y + fo->adjust_above;
|
|
|
1303 |
slant_right.end.y = alp->end.y + fo->adjust_above;
|
|
|
1304 |
plbot = &slant_left, prbot = &vert_right;
|
|
|
1305 |
pltop = &vert_left, prtop = &slant_right;
|
|
|
1306 |
}
|
|
|
1307 |
slant_left.start.x = flp->start.x - fo->adjust_left;
|
|
|
1308 |
slant_left.end.x = flp->end.x - fo->adjust_left;
|
|
|
1309 |
slant_right.start.x = alp->start.x + fo->adjust_right;
|
|
|
1310 |
slant_right.end.x = alp->end.x + fo->adjust_right;
|
|
|
1311 |
|
|
|
1312 |
if (Ya >= Y1b) {
|
|
|
1313 |
/*
|
|
|
1314 |
* The upper and lower adjustment bands overlap.
|
|
|
1315 |
* Since the entire entity is less than 2 pixels high
|
|
|
1316 |
* in this case, we could handle it very efficiently
|
|
|
1317 |
* with no more than 2 rectangle fills, but for right now
|
|
|
1318 |
* we don't attempt to do this.
|
|
|
1319 |
*/
|
|
|
1320 |
int iYb = fixed2int_var_pixround(Yb);
|
|
|
1321 |
int iYa = fixed2int_var_pixround(Ya);
|
|
|
1322 |
int iY1b = fixed2int_var_pixround(Y1b);
|
|
|
1323 |
int iY1a = fixed2int_var_pixround(Y1a);
|
|
|
1324 |
|
|
|
1325 |
INCR(slant_shallow);
|
|
|
1326 |
if (iY1b > iYb) {
|
|
|
1327 |
code = fo->fill_trap(fo->dev, plbot, prbot,
|
|
|
1328 |
Yb, Y1b, false, fo->pdevc, fo->lop);
|
|
|
1329 |
if (code < 0)
|
|
|
1330 |
return code;
|
|
|
1331 |
}
|
|
|
1332 |
if (iYa > iY1b) {
|
|
|
1333 |
int ix = fixed2int_var_pixround(vert_left.start.x);
|
|
|
1334 |
int iw = fixed2int_var_pixround(vert_right.start.x) - ix;
|
|
|
1335 |
|
|
|
1336 |
code = gx_fill_rectangle_device_rop(ix, iY1b, iw, iYa - iY1b,
|
|
|
1337 |
fo->pdevc, fo->dev, fo->lop);
|
|
|
1338 |
if (code < 0)
|
|
|
1339 |
return code;
|
|
|
1340 |
}
|
|
|
1341 |
if (iY1a > iYa)
|
|
|
1342 |
code = fo->fill_trap(fo->dev, pltop, prtop,
|
|
|
1343 |
Ya, Y1a, false, fo->pdevc, fo->lop);
|
|
|
1344 |
else
|
|
|
1345 |
code = 0;
|
|
|
1346 |
} else {
|
|
|
1347 |
/*
|
|
|
1348 |
* Clip the trapezoid if possible. This can save a lot
|
|
|
1349 |
* of work when filling paths that cross band boundaries.
|
|
|
1350 |
*/
|
|
|
1351 |
fixed Yac;
|
|
|
1352 |
|
|
|
1353 |
if (fo->pbox->p.y < Ya) {
|
|
|
1354 |
code = fo->fill_trap(fo->dev, plbot, prbot,
|
|
|
1355 |
Yb, Ya, false, fo->pdevc, fo->lop);
|
|
|
1356 |
if (code < 0)
|
|
|
1357 |
return code;
|
|
|
1358 |
Yac = Ya;
|
|
|
1359 |
} else
|
|
|
1360 |
Yac = fo->pbox->p.y;
|
|
|
1361 |
if (fo->pbox->q.y > Y1b) {
|
|
|
1362 |
code = fo->fill_trap(fo->dev, &slant_left, &slant_right,
|
|
|
1363 |
Yac, Y1b, false, fo->pdevc, fo->lop);
|
|
|
1364 |
if (code < 0)
|
|
|
1365 |
return code;
|
|
|
1366 |
code = fo->fill_trap(fo->dev, pltop, prtop,
|
|
|
1367 |
Y1b, Y1a, false, fo->pdevc, fo->lop);
|
|
|
1368 |
} else
|
|
|
1369 |
code = fo->fill_trap(fo->dev, &slant_left, &slant_right,
|
|
|
1370 |
Yac, fo->pbox->q.y, false, fo->pdevc, fo->lop);
|
|
|
1371 |
}
|
|
|
1372 |
return code;
|
|
|
1373 |
}
|
|
|
1374 |
|
|
|
1375 |
/* Re-sort the x list by moving alp backward to its proper spot. */
|
|
|
1376 |
private inline void
|
|
|
1377 |
resort_x_line(active_line * alp)
|
|
|
1378 |
{
|
|
|
1379 |
active_line *prev = alp->prev;
|
|
|
1380 |
active_line *next = alp->next;
|
|
|
1381 |
|
|
|
1382 |
prev->next = next;
|
|
|
1383 |
if (next)
|
|
|
1384 |
next->prev = prev;
|
|
|
1385 |
while (x_order(prev, alp) > 0) {
|
|
|
1386 |
if_debug2('F', "[F]swap 0x%lx,0x%lx\n",
|
|
|
1387 |
(ulong) alp, (ulong) prev);
|
|
|
1388 |
next = prev, prev = prev->prev;
|
|
|
1389 |
}
|
|
|
1390 |
alp->next = next;
|
|
|
1391 |
alp->prev = prev;
|
|
|
1392 |
/* next might be null, if alp was in the correct spot already. */
|
|
|
1393 |
if (next)
|
|
|
1394 |
next->prev = alp;
|
|
|
1395 |
prev->next = alp;
|
|
|
1396 |
}
|
|
|
1397 |
|
|
|
1398 |
/* Move active lines by Y. */
|
|
|
1399 |
private inline void
|
|
|
1400 |
move_al_by_y(line_list *ll, fixed y1)
|
|
|
1401 |
{
|
|
|
1402 |
fixed x;
|
|
|
1403 |
active_line *alp, *nlp;
|
|
|
1404 |
|
|
|
1405 |
for (x = min_fixed, alp = ll->x_list; alp != 0; alp = nlp) {
|
|
|
1406 |
bool notend = false;
|
|
|
1407 |
alp->x_current = alp->x_next;
|
|
|
1408 |
|
|
|
1409 |
nlp = alp->next;
|
|
|
1410 |
if (alp->end.y == y1 && alp->more_flattened) {
|
|
|
1411 |
step_al(alp, true);
|
|
|
1412 |
alp->x_current = alp->x_next = alp->start.x;
|
|
|
1413 |
notend = (alp->end.y >= alp->start.y);
|
|
|
1414 |
}
|
|
|
1415 |
if (alp->end.y > y1 || notend || !end_x_line(alp, ll, true)) {
|
|
|
1416 |
if (alp->x_next <= x)
|
|
|
1417 |
resort_x_line(alp);
|
|
|
1418 |
else
|
|
|
1419 |
x = alp->x_next;
|
|
|
1420 |
}
|
|
|
1421 |
}
|
|
|
1422 |
if (ll->x_list != 0 && ll->fo->pseudo_rasterization) {
|
|
|
1423 |
/* Ensure that contacting vertical stems are properly ordered.
|
|
|
1424 |
We don't want to unite contacting stems into
|
|
|
1425 |
a single margin, because it can cause a dropout :
|
|
|
1426 |
narrow stems are widened against a dropout, but
|
|
|
1427 |
an united wide one may be left unwidened.
|
|
|
1428 |
*/
|
|
|
1429 |
for (alp = ll->x_list; alp->next != 0; ) {
|
|
|
1430 |
if (alp->start.x == alp->end.x &&
|
|
|
1431 |
alp->start.x == alp->next->start.x &&
|
|
|
1432 |
alp->next->start.x == alp->next->end.x &&
|
|
|
1433 |
alp->direction > alp->next->direction) {
|
|
|
1434 |
/* Exchange. */
|
|
|
1435 |
active_line *prev = alp->prev;
|
|
|
1436 |
active_line *next = alp->next;
|
|
|
1437 |
active_line *next2 = next->next;
|
|
|
1438 |
if (prev)
|
|
|
1439 |
prev->next = next;
|
|
|
1440 |
else
|
|
|
1441 |
ll->x_list = next;
|
|
|
1442 |
next->prev = prev;
|
|
|
1443 |
alp->prev = next;
|
|
|
1444 |
alp->next = next2;
|
|
|
1445 |
next->next = alp;
|
|
|
1446 |
if (next2)
|
|
|
1447 |
next2->prev = alp;
|
|
|
1448 |
} else
|
|
|
1449 |
alp = alp->next;
|
|
|
1450 |
}
|
|
|
1451 |
}
|
|
|
1452 |
}
|
|
|
1453 |
|
|
|
1454 |
/* Process horizontal segment of curves. */
|
|
|
1455 |
private inline int
|
|
|
1456 |
process_h_segments(line_list *ll, fixed y)
|
|
|
1457 |
{
|
|
|
1458 |
active_line *alp, *nlp;
|
|
|
1459 |
int code, inserted = 0;
|
|
|
1460 |
|
|
|
1461 |
for (alp = ll->x_list; alp != 0; alp = nlp) {
|
|
|
1462 |
nlp = alp->next;
|
|
|
1463 |
if (alp->start.y == y && alp->end.y == y) {
|
|
|
1464 |
if (ll->fo->pseudo_rasterization) {
|
|
|
1465 |
code = add_y_line_aux(NULL, NULL, &alp->start, &alp->end, DIR_HORIZONTAL, ll);
|
|
|
1466 |
if (code < 0)
|
|
|
1467 |
return code;
|
|
|
1468 |
}
|
|
|
1469 |
inserted = 1;
|
|
|
1470 |
}
|
|
|
1471 |
}
|
|
|
1472 |
return inserted;
|
|
|
1473 |
/* After this should call move_al_by_y and step to the next band. */
|
|
|
1474 |
}
|
|
|
1475 |
|
|
|
1476 |
private inline int
|
|
|
1477 |
loop_fill_trap_np(const line_list *ll, const gs_fixed_edge *le, const gs_fixed_edge *re, fixed y, fixed y1)
|
|
|
1478 |
{
|
|
|
1479 |
const fill_options * const fo = ll->fo;
|
|
|
1480 |
fixed ybot = max(y, fo->pbox->p.y);
|
|
|
1481 |
fixed ytop = min(y1, fo->pbox->q.y);
|
|
|
1482 |
|
|
|
1483 |
if (ybot >= ytop)
|
|
|
1484 |
return 0;
|
|
|
1485 |
vd_quad(le->start.x, ybot, re->start.x, ybot, re->end.x, ytop, le->end.x, ytop, 1, VD_TRAP_COLOR);
|
|
|
1486 |
return (*fo->fill_trap)
|
|
|
1487 |
(fo->dev, le, re, ybot, ytop, false, fo->pdevc, fo->lop);
|
|
|
1488 |
}
|
|
|
1489 |
|
|
|
1490 |
/* Define variants of the algorithm for filling a slanted trapezoid. */
|
|
|
1491 |
#define TEMPLATE_slant_into_trapezoids slant_into_trapezoids__fd
|
|
|
1492 |
#define FILL_DIRECT 1
|
|
|
1493 |
#include "gxfillts.h"
|
|
|
1494 |
#undef TEMPLATE_slant_into_trapezoids
|
|
|
1495 |
#undef FILL_DIRECT
|
|
|
1496 |
|
|
|
1497 |
#define TEMPLATE_slant_into_trapezoids slant_into_trapezoids__nd
|
|
|
1498 |
#define FILL_DIRECT 0
|
|
|
1499 |
#include "gxfillts.h"
|
|
|
1500 |
#undef TEMPLATE_slant_into_trapezoids
|
|
|
1501 |
#undef FILL_DIRECT
|
|
|
1502 |
|
|
|
1503 |
|
|
|
1504 |
#define COVERING_PIXEL_CENTERS(y, y1, adjust_below, adjust_above)\
|
|
|
1505 |
(fixed_pixround(y - adjust_below) < fixed_pixround(y1 + adjust_above))
|
|
|
1506 |
|
|
|
1507 |
/* Find an intersection within y, y1. */
|
|
|
1508 |
/* lp->x_current, lp->x_next must be set for y, y1. */
|
|
|
1509 |
private bool
|
|
|
1510 |
intersect(active_line *endp, active_line *alp, fixed y, fixed y1, fixed *p_y_new)
|
|
|
1511 |
{
|
|
|
1512 |
fixed y_new, dy;
|
|
|
1513 |
fixed dx_old = alp->x_current - endp->x_current;
|
|
|
1514 |
fixed dx_den = dx_old + endp->x_next - alp->x_next;
|
|
|
1515 |
|
|
|
1516 |
if (dx_den <= dx_old)
|
|
|
1517 |
return false; /* Intersection isn't possible. */
|
|
|
1518 |
dy = y1 - y;
|
|
|
1519 |
if_debug3('F', "[F]cross: dy=%g, dx_old=%g, dx_new=%g\n",
|
|
|
1520 |
fixed2float(dy), fixed2float(dx_old),
|
|
|
1521 |
fixed2float(dx_den - dx_old));
|
|
|
1522 |
/* Do the computation in single precision */
|
|
|
1523 |
/* if the values are small enough. */
|
|
|
1524 |
y_new =
|
|
|
1525 |
((dy | dx_old) < 1L << (size_of(fixed) * 4 - 1) ?
|
|
|
1526 |
dy * dx_old / dx_den :
|
|
|
1527 |
(INCR_EXPR(mq_cross), fixed_mult_quo(dy, dx_old, dx_den)))
|
|
|
1528 |
+ y;
|
|
|
1529 |
/* The crossing value doesn't have to be */
|
|
|
1530 |
/* very accurate, but it does have to be */
|
|
|
1531 |
/* greater than y and less than y1. */
|
|
|
1532 |
if_debug3('F', "[F]cross y=%g, y_new=%g, y1=%g\n",
|
|
|
1533 |
fixed2float(y), fixed2float(y_new),
|
|
|
1534 |
fixed2float(y1));
|
|
|
1535 |
if (y_new <= y) {
|
|
|
1536 |
/*
|
|
|
1537 |
* This isn't possible. Recompute the intersection
|
|
|
1538 |
* accurately.
|
|
|
1539 |
*/
|
|
|
1540 |
fixed ys, xs0, xs1, ye, xe0, xe1, dy, dx0, dx1;
|
|
|
1541 |
|
|
|
1542 |
INCR(cross_slow);
|
|
|
1543 |
if (endp->start.y < alp->start.y)
|
|
|
1544 |
ys = alp->start.y,
|
|
|
1545 |
xs0 = AL_X_AT_Y(endp, ys), xs1 = alp->start.x;
|
|
|
1546 |
else
|
|
|
1547 |
ys = endp->start.y,
|
|
|
1548 |
xs0 = endp->start.x, xs1 = AL_X_AT_Y(alp, ys);
|
|
|
1549 |
if (endp->end.y > alp->end.y)
|
|
|
1550 |
ye = alp->end.y,
|
|
|
1551 |
xe0 = AL_X_AT_Y(endp, ye), xe1 = alp->end.x;
|
|
|
1552 |
else
|
|
|
1553 |
ye = endp->end.y,
|
|
|
1554 |
xe0 = endp->end.x, xe1 = AL_X_AT_Y(alp, ye);
|
|
|
1555 |
dy = ye - ys;
|
|
|
1556 |
dx0 = xe0 - xs0;
|
|
|
1557 |
dx1 = xe1 - xs1;
|
|
|
1558 |
/* We need xs0 + cross * dx0 == xs1 + cross * dx1. */
|
|
|
1559 |
if (dx0 == dx1) {
|
|
|
1560 |
/* The two lines are coincident. Do nothing. */
|
|
|
1561 |
y_new = y1;
|
|
|
1562 |
} else {
|
|
|
1563 |
double cross = (double)(xs0 - xs1) / (dx1 - dx0);
|
|
|
1564 |
|
|
|
1565 |
y_new = (fixed)(ys + cross * dy);
|
|
|
1566 |
if (y_new <= y) {
|
|
|
1567 |
/*
|
|
|
1568 |
* This can only happen through some kind of
|
|
|
1569 |
* numeric disaster, but we have to check.
|
|
|
1570 |
*/
|
|
|
1571 |
INCR(cross_low);
|
|
|
1572 |
y_new = y + fixed_epsilon;
|
|
|
1573 |
}
|
|
|
1574 |
}
|
|
|
1575 |
}
|
|
|
1576 |
*p_y_new = y_new;
|
|
|
1577 |
return true;
|
|
|
1578 |
}
|
|
|
1579 |
|
|
|
1580 |
private inline void
|
|
|
1581 |
set_x_next(active_line *endp, active_line *alp, fixed x)
|
|
|
1582 |
{
|
|
|
1583 |
while(endp != alp) {
|
|
|
1584 |
endp->x_next = x;
|
|
|
1585 |
endp = endp->next;
|
|
|
1586 |
}
|
|
|
1587 |
}
|
|
|
1588 |
|
|
|
1589 |
private inline int
|
|
|
1590 |
coord_weight(const active_line *alp)
|
|
|
1591 |
{
|
|
|
1592 |
return 1 + min(any_abs((int)((int64_t)alp->diff.y * 8 / alp->diff.x)), 256);
|
|
|
1593 |
}
|
|
|
1594 |
|
|
|
1595 |
|
|
|
1596 |
/* Find intersections of active lines within the band.
|
|
|
1597 |
Intersect and reorder them, and correct the bund top. */
|
|
|
1598 |
private void
|
|
|
1599 |
intersect_al(line_list *ll, fixed y, fixed *y_top, int draw, bool all_bands)
|
|
|
1600 |
{
|
|
|
1601 |
fixed x = min_fixed, y1 = *y_top;
|
|
|
1602 |
active_line *alp, *stopx = NULL;
|
|
|
1603 |
active_line *endp = NULL;
|
|
|
1604 |
|
|
|
1605 |
/* don't bother if no pixels with no pseudo_rasterization */
|
|
|
1606 |
if (y == y1) {
|
|
|
1607 |
/* Rather the intersection algorithm can handle this case with
|
|
|
1608 |
retrieving x_next equal to x_current,
|
|
|
1609 |
we bypass it for safety reason.
|
|
|
1610 |
*/
|
|
|
1611 |
} else if (ll->fo->pseudo_rasterization || draw >= 0 || all_bands) {
|
|
|
1612 |
/*
|
|
|
1613 |
* Loop invariants:
|
|
|
1614 |
* alp = endp->next;
|
|
|
1615 |
* for all lines lp from stopx up to alp,
|
|
|
1616 |
* lp->x_next = AL_X_AT_Y(lp, y1).
|
|
|
1617 |
*/
|
|
|
1618 |
for (alp = stopx = ll->x_list;
|
|
|
1619 |
INCR_EXPR(find_y), alp != 0;
|
|
|
1620 |
endp = alp, alp = alp->next
|
|
|
1621 |
) {
|
|
|
1622 |
fixed nx = AL_X_AT_Y(alp, y1);
|
|
|
1623 |
fixed y_new;
|
|
|
1624 |
|
|
|
1625 |
alp->x_next = nx;
|
|
|
1626 |
/* Check for intersecting lines. */
|
|
|
1627 |
if (nx >= x)
|
|
|
1628 |
x = nx;
|
|
|
1629 |
else if (alp->x_current >= endp->x_current &&
|
|
|
1630 |
intersect(endp, alp, y, y1, &y_new)) {
|
|
|
1631 |
if (y_new <= y1) {
|
|
|
1632 |
stopx = endp;
|
|
|
1633 |
y1 = y_new;
|
|
|
1634 |
if (endp->diff.x == 0)
|
|
|
1635 |
nx = endp->start.x;
|
|
|
1636 |
else if (alp->diff.x == 0)
|
|
|
1637 |
nx = alp->start.x;
|
|
|
1638 |
else {
|
|
|
1639 |
fixed nx0 = AL_X_AT_Y(endp, y1);
|
|
|
1640 |
fixed nx1 = AL_X_AT_Y(alp, y1);
|
|
|
1641 |
if (nx0 != nx1) {
|
|
|
1642 |
/* Different results due to arithmetic errors.
|
|
|
1643 |
Choose an imtermediate point.
|
|
|
1644 |
We don't like to use floating numbners here,
|
|
|
1645 |
but the code with int64_t isn't much better. */
|
|
|
1646 |
int64_t w0 = coord_weight(endp);
|
|
|
1647 |
int64_t w1 = coord_weight(alp);
|
|
|
1648 |
|
|
|
1649 |
nx = (fixed)((w0 * nx0 + w1 * nx1) / (w0 + w1));
|
|
|
1650 |
} else
|
|
|
1651 |
nx = nx0;
|
|
|
1652 |
}
|
|
|
1653 |
endp->x_next = alp->x_next = nx; /* Ensure same X. */
|
|
|
1654 |
draw = 0;
|
|
|
1655 |
/* Can't guarantee same x for triple intersections here.
|
|
|
1656 |
Will take care below */
|
|
|
1657 |
}
|
|
|
1658 |
if (nx > x)
|
|
|
1659 |
x = nx;
|
|
|
1660 |
}
|
|
|
1661 |
}
|
|
|
1662 |
/* Recompute next_x for lines before the intersection. */
|
|
|
1663 |
for (alp = ll->x_list; alp != stopx; alp = alp->next)
|
|
|
1664 |
alp->x_next = AL_X_AT_Y(alp, y1);
|
|
|
1665 |
/* Ensure X monotonity (particularly imporoves triple intersections). */
|
|
|
1666 |
if (ll->x_list != NULL) {
|
|
|
1667 |
for (;;) {
|
|
|
1668 |
fixed x1;
|
|
|
1669 |
double sx = 0xbaadf00d; /* 'fixed' can overflow. We operate 7-bytes integers. */
|
|
|
1670 |
int k = 0xbaadf00d, n;
|
|
|
1671 |
|
|
|
1672 |
endp = ll->x_list;
|
|
|
1673 |
x1 = endp->x_next;
|
|
|
1674 |
for (alp = endp->next; alp != NULL; x1 = alp->x_next, alp = alp->next)
|
|
|
1675 |
if (alp->x_next < x1)
|
|
|
1676 |
break;
|
|
|
1677 |
if (alp == NULL)
|
|
|
1678 |
break;
|
|
|
1679 |
x1 = endp->x_next;
|
|
|
1680 |
n = 0;
|
|
|
1681 |
for (alp = endp->next; alp != NULL; alp = alp->next) {
|
|
|
1682 |
x = alp->x_next;
|
|
|
1683 |
if (x < x1) {
|
|
|
1684 |
if (n == 0) {
|
|
|
1685 |
if (endp->diff.x == 0) {
|
|
|
1686 |
k = -1;
|
|
|
1687 |
sx = x1;
|
|
|
1688 |
} else {
|
|
|
1689 |
k = coord_weight(endp);
|
|
|
1690 |
sx = (double)x1 * k;
|
|
|
1691 |
}
|
|
|
1692 |
n = 1;
|
|
|
1693 |
}
|
|
|
1694 |
n++;
|
|
|
1695 |
if (alp->diff.x == 0) {
|
|
|
1696 |
/* Vertical lines have a higher priority. */
|
|
|
1697 |
if (k <= -1) {
|
|
|
1698 |
sx += x;
|
|
|
1699 |
k--;
|
|
|
1700 |
} else {
|
|
|
1701 |
k = -1;
|
|
|
1702 |
sx = x;
|
|
|
1703 |
}
|
|
|
1704 |
} else if (k > 0) {
|
|
|
1705 |
int w = coord_weight(alp);
|
|
|
1706 |
|
|
|
1707 |
sx += (double)x * w;
|
|
|
1708 |
k += w;
|
|
|
1709 |
}
|
|
|
1710 |
} else {
|
|
|
1711 |
if (n > 1) {
|
|
|
1712 |
k = any_abs(k);
|
|
|
1713 |
set_x_next(endp, alp, (fixed)((sx + k / 2) / k));
|
|
|
1714 |
}
|
|
|
1715 |
x1 = alp->x_next;
|
|
|
1716 |
n = 0;
|
|
|
1717 |
endp = alp;
|
|
|
1718 |
}
|
|
|
1719 |
}
|
|
|
1720 |
if (n > 1) {
|
|
|
1721 |
k = any_abs(k);
|
|
|
1722 |
set_x_next(endp, alp, (fixed)((sx + k / 2) / k));
|
|
|
1723 |
}
|
|
|
1724 |
}
|
|
|
1725 |
}
|
|
|
1726 |
} else {
|
|
|
1727 |
/* Recompute next_x for lines before the intersection. */
|
|
|
1728 |
for (alp = ll->x_list; alp != stopx; alp = alp->next)
|
|
|
1729 |
alp->x_next = AL_X_AT_Y(alp, y1);
|
|
|
1730 |
}
|
|
|
1731 |
#ifdef DEBUG
|
|
|
1732 |
if (gs_debug_c('F')) {
|
|
|
1733 |
dlprintf1("[F]after loop: y1=%f\n", fixed2float(y1));
|
|
|
1734 |
print_line_list(ll->x_list);
|
|
|
1735 |
}
|
|
|
1736 |
#endif
|
|
|
1737 |
*y_top = y1;
|
|
|
1738 |
}
|
|
|
1739 |
|
|
|
1740 |
/* ---------------- Trapezoid filling loop ---------------- */
|
|
|
1741 |
|
|
|
1742 |
/* Generate specialized algorythms for the most important cases : */
|
|
|
1743 |
|
|
|
1744 |
#define IS_SPOTAN 1
|
|
|
1745 |
#define PSEUDO_RASTERIZATION 0
|
|
|
1746 |
#define FILL_ADJUST 0
|
|
|
1747 |
#define FILL_DIRECT 1
|
|
|
1748 |
#define TEMPLATE_spot_into_trapezoids spot_into_trapezoids__spotan
|
|
|
1749 |
#include "gxfilltr.h"
|
|
|
1750 |
#undef IS_SPOTAN
|
|
|
1751 |
#undef PSEUDO_RASTERIZATION
|
|
|
1752 |
#undef FILL_ADJUST
|
|
|
1753 |
#undef FILL_DIRECT
|
|
|
1754 |
#undef TEMPLATE_spot_into_trapezoids
|
|
|
1755 |
|
|
|
1756 |
#define IS_SPOTAN 0
|
|
|
1757 |
#define PSEUDO_RASTERIZATION 1
|
|
|
1758 |
#define FILL_ADJUST 0
|
|
|
1759 |
#define FILL_DIRECT 1
|
|
|
1760 |
#define TEMPLATE_spot_into_trapezoids spot_into_trapezoids__pr_fd
|
|
|
1761 |
#include "gxfilltr.h"
|
|
|
1762 |
#undef IS_SPOTAN
|
|
|
1763 |
#undef PSEUDO_RASTERIZATION
|
|
|
1764 |
#undef FILL_ADJUST
|
|
|
1765 |
#undef FILL_DIRECT
|
|
|
1766 |
#undef TEMPLATE_spot_into_trapezoids
|
|
|
1767 |
|
|
|
1768 |
#define IS_SPOTAN 0
|
|
|
1769 |
#define PSEUDO_RASTERIZATION 1
|
|
|
1770 |
#define FILL_ADJUST 0
|
|
|
1771 |
#define FILL_DIRECT 0
|
|
|
1772 |
#define TEMPLATE_spot_into_trapezoids spot_into_trapezoids__pr_nd
|
|
|
1773 |
#include "gxfilltr.h"
|
|
|
1774 |
#undef IS_SPOTAN
|
|
|
1775 |
#undef PSEUDO_RASTERIZATION
|
|
|
1776 |
#undef FILL_ADJUST
|
|
|
1777 |
#undef FILL_DIRECT
|
|
|
1778 |
#undef TEMPLATE_spot_into_trapezoids
|
|
|
1779 |
|
|
|
1780 |
#define IS_SPOTAN 0
|
|
|
1781 |
#define PSEUDO_RASTERIZATION 0
|
|
|
1782 |
#define FILL_ADJUST 1
|
|
|
1783 |
#define FILL_DIRECT 1
|
|
|
1784 |
#define TEMPLATE_spot_into_trapezoids spot_into_trapezoids__aj_fd
|
|
|
1785 |
#include "gxfilltr.h"
|
|
|
1786 |
#undef IS_SPOTAN
|
|
|
1787 |
#undef PSEUDO_RASTERIZATION
|
|
|
1788 |
#undef FILL_ADJUST
|
|
|
1789 |
#undef FILL_DIRECT
|
|
|
1790 |
#undef TEMPLATE_spot_into_trapezoids
|
|
|
1791 |
|
|
|
1792 |
#define IS_SPOTAN 0
|
|
|
1793 |
#define PSEUDO_RASTERIZATION 0
|
|
|
1794 |
#define FILL_ADJUST 1
|
|
|
1795 |
#define FILL_DIRECT 0
|
|
|
1796 |
#define TEMPLATE_spot_into_trapezoids spot_into_trapezoids__aj_nd
|
|
|
1797 |
#include "gxfilltr.h"
|
|
|
1798 |
#undef IS_SPOTAN
|
|
|
1799 |
#undef PSEUDO_RASTERIZATION
|
|
|
1800 |
#undef FILL_ADJUST
|
|
|
1801 |
#undef FILL_DIRECT
|
|
|
1802 |
#undef TEMPLATE_spot_into_trapezoids
|
|
|
1803 |
|
|
|
1804 |
#define IS_SPOTAN 0
|
|
|
1805 |
#define PSEUDO_RASTERIZATION 0
|
|
|
1806 |
#define FILL_ADJUST 0
|
|
|
1807 |
#define FILL_DIRECT 1
|
|
|
1808 |
#define TEMPLATE_spot_into_trapezoids spot_into_trapezoids__nj_fd
|
|
|
1809 |
#include "gxfilltr.h"
|
|
|
1810 |
#undef IS_SPOTAN
|
|
|
1811 |
#undef PSEUDO_RASTERIZATION
|
|
|
1812 |
#undef FILL_ADJUST
|
|
|
1813 |
#undef FILL_DIRECT
|
|
|
1814 |
#undef TEMPLATE_spot_into_trapezoids
|
|
|
1815 |
|
|
|
1816 |
#define IS_SPOTAN 0
|
|
|
1817 |
#define PSEUDO_RASTERIZATION 0
|
|
|
1818 |
#define FILL_ADJUST 0
|
|
|
1819 |
#define FILL_DIRECT 0
|
|
|
1820 |
#define TEMPLATE_spot_into_trapezoids spot_into_trapezoids__nj_nd
|
|
|
1821 |
#include "gxfilltr.h"
|
|
|
1822 |
#undef IS_SPOTAN
|
|
|
1823 |
#undef PSEUDO_RASTERIZATION
|
|
|
1824 |
#undef FILL_ADJUST
|
|
|
1825 |
#undef FILL_DIRECT
|
|
|
1826 |
#undef TEMPLATE_spot_into_trapezoids
|
|
|
1827 |
|
|
|
1828 |
|
|
|
1829 |
/* Main filling loop. Takes lines off of y_list and adds them to */
|
|
|
1830 |
/* x_list as needed. band_mask limits the size of each band, */
|
|
|
1831 |
/* by requiring that ((y1 - 1) & band_mask) == (y0 & band_mask). */
|
|
|
1832 |
private int
|
|
|
1833 |
spot_into_trapezoids(line_list *ll, fixed band_mask)
|
|
|
1834 |
{
|
|
|
1835 |
/* For better porformance, choose a specialized algorithm : */
|
|
|
1836 |
const fill_options * const fo = ll->fo;
|
|
|
1837 |
|
|
|
1838 |
if (fo->is_spotan)
|
|
|
1839 |
return spot_into_trapezoids__spotan(ll, band_mask);
|
|
|
1840 |
if (fo->pseudo_rasterization) {
|
|
|
1841 |
if (fo->fill_direct)
|
|
|
1842 |
return spot_into_trapezoids__pr_fd(ll, band_mask);
|
|
|
1843 |
else
|
|
|
1844 |
return spot_into_trapezoids__pr_nd(ll, band_mask);
|
|
|
1845 |
}
|
|
|
1846 |
if (fo->adjust_below | fo->adjust_above | fo->adjust_left | fo->adjust_right) {
|
|
|
1847 |
if (fo->fill_direct)
|
|
|
1848 |
return spot_into_trapezoids__aj_fd(ll, band_mask);
|
|
|
1849 |
else
|
|
|
1850 |
return spot_into_trapezoids__aj_nd(ll, band_mask);
|
|
|
1851 |
} else {
|
|
|
1852 |
if (fo->fill_direct)
|
|
|
1853 |
return spot_into_trapezoids__nj_fd(ll, band_mask);
|
|
|
1854 |
else
|
|
|
1855 |
return spot_into_trapezoids__nj_nd(ll, band_mask);
|
|
|
1856 |
}
|
|
|
1857 |
}
|
|
|
1858 |
|
|
|
1859 |
/* ---------------- Range list management ---------------- */
|
|
|
1860 |
|
|
|
1861 |
/*
|
|
|
1862 |
* We originally thought we would store fixed values in coordinate ranges,
|
|
|
1863 |
* but it turned out we want to store integers.
|
|
|
1864 |
*/
|
|
|
1865 |
typedef int coord_value_t;
|
|
|
1866 |
#define MIN_COORD_VALUE min_int
|
|
|
1867 |
#define MAX_COORD_VALUE max_int
|
|
|
1868 |
/*
|
|
|
1869 |
* The invariant for coord_range_ts in a coord_range_list_t:
|
|
|
1870 |
* if prev == 0:
|
|
|
1871 |
* next != 0
|
|
|
1872 |
* rmin == rmax == MIN_COORD_VALUE
|
|
|
1873 |
* else if next == 0:
|
|
|
1874 |
* prev != 0
|
|
|
1875 |
* rmin == rmax == MAX_COORD_VALUE
|
|
|
1876 |
* else
|
|
|
1877 |
* rmin < rmax
|
|
|
1878 |
* if prev != 0:
|
|
|
1879 |
* prev->next == this
|
|
|
1880 |
* prev->rmax < rmin
|
|
|
1881 |
* if next != 0:
|
|
|
1882 |
* next->prev = this
|
|
|
1883 |
* next->rmin > rmax
|
|
|
1884 |
* A coord_range_list_t has a boundary element at each end to avoid having
|
|
|
1885 |
* to test for null pointers in the insertion loop. The boundary elements
|
|
|
1886 |
* are the only empty ranges.
|
|
|
1887 |
*/
|
|
|
1888 |
typedef struct coord_range_s coord_range_t;
|
|
|
1889 |
struct coord_range_s {
|
|
|
1890 |
coord_value_t rmin, rmax;
|
|
|
1891 |
coord_range_t *prev, *next;
|
|
|
1892 |
coord_range_t *alloc_next;
|
|
|
1893 |
};
|
|
|
1894 |
/* We declare coord_range_ts as simple because they only exist transiently. */
|
|
|
1895 |
gs_private_st_simple(st_coord_range, coord_range_t, "coord_range_t");
|
|
|
1896 |
|
|
|
1897 |
typedef struct coord_range_list_s {
|
|
|
1898 |
gs_memory_t *memory;
|
|
|
1899 |
struct rl_ {
|
|
|
1900 |
coord_range_t *first, *next, *limit;
|
|
|
1901 |
} local;
|
|
|
1902 |
coord_range_t *allocated;
|
|
|
1903 |
coord_range_t *freed;
|
|
|
1904 |
coord_range_t *current;
|
|
|
1905 |
coord_range_t first, last;
|
|
|
1906 |
} coord_range_list_t;
|
|
|
1907 |
|
|
|
1908 |
private coord_range_t *
|
|
|
1909 |
range_alloc(coord_range_list_t *pcrl)
|
|
|
1910 |
{
|
|
|
1911 |
coord_range_t *pcr;
|
|
|
1912 |
|
|
|
1913 |
if (pcrl->freed) {
|
|
|
1914 |
pcr = pcrl->freed;
|
|
|
1915 |
pcrl->freed = pcr->next;
|
|
|
1916 |
} else if (pcrl->local.next < pcrl->local.limit)
|
|
|
1917 |
pcr = pcrl->local.next++;
|
|
|
1918 |
else {
|
|
|
1919 |
pcr = gs_alloc_struct(pcrl->memory, coord_range_t, &st_coord_range,
|
|
|
1920 |
"range_alloc");
|
|
|
1921 |
if (pcr == 0)
|
|
|
1922 |
return 0;
|
|
|
1923 |
pcr->alloc_next = pcrl->allocated;
|
|
|
1924 |
pcrl->allocated = pcr;
|
|
|
1925 |
}
|
|
|
1926 |
return pcr;
|
|
|
1927 |
}
|
|
|
1928 |
|
|
|
1929 |
private void
|
|
|
1930 |
range_delete(coord_range_list_t *pcrl, coord_range_t *pcr)
|
|
|
1931 |
{
|
|
|
1932 |
if_debug3('Q', "[Qr]delete 0x%lx: [%d,%d)\n", (ulong)pcr, pcr->rmin,
|
|
|
1933 |
pcr->rmax);
|
|
|
1934 |
pcr->prev->next = pcr->next;
|
|
|
1935 |
pcr->next->prev = pcr->prev;
|
|
|
1936 |
pcr->next = pcrl->freed;
|
|
|
1937 |
pcrl->freed = pcr;
|
|
|
1938 |
}
|
|
|
1939 |
|
|
|
1940 |
private void
|
|
|
1941 |
range_list_clear(coord_range_list_t *pcrl)
|
|
|
1942 |
{
|
|
|
1943 |
if_debug0('Q', "[Qr]clearing\n");
|
|
|
1944 |
pcrl->first.next = &pcrl->last;
|
|
|
1945 |
pcrl->last.prev = &pcrl->first;
|
|
|
1946 |
pcrl->current = &pcrl->last;
|
|
|
1947 |
}
|
|
|
1948 |
|
|
|
1949 |
/* ------ "Public" procedures ------ */
|
|
|
1950 |
|
|
|
1951 |
/* Initialize a range list. We require num_local >= 2. */
|
|
|
1952 |
private void range_list_clear(coord_range_list_t *);
|
|
|
1953 |
private void
|
|
|
1954 |
range_list_init(coord_range_list_t *pcrl, coord_range_t *pcr_local,
|
|
|
1955 |
int num_local, gs_memory_t *mem)
|
|
|
1956 |
{
|
|
|
1957 |
pcrl->memory = mem;
|
|
|
1958 |
pcrl->local.first = pcrl->local.next = pcr_local;
|
|
|
1959 |
pcrl->local.limit = pcr_local + num_local;
|
|
|
1960 |
pcrl->allocated = pcrl->freed = 0;
|
|
|
1961 |
pcrl->first.rmin = pcrl->first.rmax = MIN_COORD_VALUE;
|
|
|
1962 |
pcrl->first.prev = 0;
|
|
|
1963 |
pcrl->last.rmin = pcrl->last.rmax = MAX_COORD_VALUE;
|
|
|
1964 |
pcrl->last.next = 0;
|
|
|
1965 |
range_list_clear(pcrl);
|
|
|
1966 |
}
|
|
|
1967 |
|
|
|
1968 |
/* Reset an initialized range list to the empty state. */
|
|
|
1969 |
private void
|
|
|
1970 |
range_list_reset(coord_range_list_t *pcrl)
|
|
|
1971 |
{
|
|
|
1972 |
if (pcrl->first.next != &pcrl->last) {
|
|
|
1973 |
pcrl->last.prev->next = pcrl->freed;
|
|
|
1974 |
pcrl->freed = pcrl->first.next;
|
|
|
1975 |
range_list_clear(pcrl);
|
|
|
1976 |
}
|
|
|
1977 |
}
|
|
|
1978 |
|
|
|
1979 |
/*
|
|
|
1980 |
* Move the cursor to the beginning of a range list, in the belief that
|
|
|
1981 |
* the next added ranges will roughly parallel the existing ones.
|
|
|
1982 |
* (Only affects performance, not function.)
|
|
|
1983 |
*/
|
|
|
1984 |
inline private void
|
|
|
1985 |
range_list_rescan(coord_range_list_t *pcrl)
|
|
|
1986 |
{
|
|
|
1987 |
pcrl->current = pcrl->first.next;
|
|
|
1988 |
}
|
|
|
1989 |
|
|
|
1990 |
/* Free a range list. */
|
|
|
1991 |
private void
|
|
|
1992 |
range_list_free(coord_range_list_t *pcrl)
|
|
|
1993 |
{
|
|
|
1994 |
coord_range_t *pcr;
|
|
|
1995 |
|
|
|
1996 |
while ((pcr = pcrl->allocated) != 0) {
|
|
|
1997 |
coord_range_t *next = pcr->alloc_next;
|
|
|
1998 |
|
|
|
1999 |
gs_free_object(pcrl->memory, pcr, "range_list_free");
|
|
|
2000 |
pcrl->allocated = next;
|
|
|
2001 |
}
|
|
|
2002 |
}
|
|
|
2003 |
|
|
|
2004 |
/* Add a range. */
|
|
|
2005 |
private int
|
|
|
2006 |
range_list_add(coord_range_list_t *pcrl, coord_value_t rmin, coord_value_t rmax)
|
|
|
2007 |
{
|
|
|
2008 |
coord_range_t *pcr = pcrl->current;
|
|
|
2009 |
|
|
|
2010 |
if (rmin >= rmax)
|
|
|
2011 |
return 0;
|
|
|
2012 |
/*
|
|
|
2013 |
* Usually, ranges are added in increasing order within each scan line,
|
|
|
2014 |
* and overlapping ranges don't differ much. Optimize accordingly.
|
|
|
2015 |
*/
|
|
|
2016 |
top:
|
|
|
2017 |
if (rmax < pcr->rmin) {
|
|
|
2018 |
if (rmin > pcr->prev->rmax)
|
|
|
2019 |
goto ins;
|
|
|
2020 |
pcr = pcr->prev;
|
|
|
2021 |
goto top;
|
|
|
2022 |
}
|
|
|
2023 |
if (rmin > pcr->rmax) {
|
|
|
2024 |
pcr = pcr->next;
|
|
|
2025 |
if (rmax < pcr->rmin)
|
|
|
2026 |
goto ins;
|
|
|
2027 |
goto top;
|
|
|
2028 |
}
|
|
|
2029 |
/*
|
|
|
2030 |
* Now we know that (rmin,rmax) overlaps (pcr->rmin,pcr->rmax).
|
|
|
2031 |
* Don't delete or merge into the special min and max ranges.
|
|
|
2032 |
*/
|
|
|
2033 |
while (rmin <= pcr->prev->rmax) {
|
|
|
2034 |
/* Merge the range below pcr into this one. */
|
|
|
2035 |
if (!pcr->prev->prev)
|
|
|
2036 |
break; /* don't merge into the min range */
|
|
|
2037 |
pcr->rmin = pcr->prev->rmin;
|
|
|
2038 |
range_delete(pcrl, pcr->prev);
|
|
|
2039 |
}
|
|
|
2040 |
while (rmax >= pcr->next->rmin) {
|
|
|
2041 |
/* Merge the range above pcr into this one. */
|
|
|
2042 |
if (!pcr->next->next)
|
|
|
2043 |
break; /* don't merge into the max range */
|
|
|
2044 |
pcr->rmax = pcr->next->rmax;
|
|
|
2045 |
range_delete(pcrl, pcr->next);
|
|
|
2046 |
}
|
|
|
2047 |
/*
|
|
|
2048 |
* Now we know that the union of (rmin,rmax) and (pcr->rmin,pcr->rmax)
|
|
|
2049 |
* doesn't overlap or abut either adjacent range, except that it may
|
|
|
2050 |
* abut if the adjacent range is the special min or max range.
|
|
|
2051 |
*/
|
|
|
2052 |
if (rmin < pcr->rmin) {
|
|
|
2053 |
if_debug3('Q', "[Qr]update 0x%lx => [%d,%d)\n", (ulong)pcr, rmin,
|
|
|
2054 |
pcr->rmax);
|
|
|
2055 |
pcr->rmin = rmin;
|
|
|
2056 |
}
|
|
|
2057 |
if (rmax > pcr->rmax) {
|
|
|
2058 |
if_debug3('Q', "[Qr]update 0x%lx => [%d,%d)\n", (ulong)pcr, pcr->rmin,
|
|
|
2059 |
rmax);
|
|
|
2060 |
pcr->rmax = rmax;
|
|
|
2061 |
}
|
|
|
2062 |
pcrl->current = pcr->next;
|
|
|
2063 |
return 0;
|
|
|
2064 |
ins:
|
|
|
2065 |
/* Insert a new range below pcr. */
|
|
|
2066 |
{
|
|
|
2067 |
coord_range_t *prev = range_alloc(pcrl);
|
|
|
2068 |
|
|
|
2069 |
if (prev == 0)
|
|
|
2070 |
return_error(gs_error_VMerror);
|
|
|
2071 |
if_debug3('Q', "[Qr]insert 0x%lx: [%d,%d)\n", (ulong)prev, rmin, rmax);
|
|
|
2072 |
prev->rmin = rmin, prev->rmax = rmax;
|
|
|
2073 |
(prev->prev = pcr->prev)->next = prev;
|
|
|
2074 |
prev->next = pcr;
|
|
|
2075 |
pcr->prev = prev;
|
|
|
2076 |
}
|
|
|
2077 |
pcrl->current = pcr;
|
|
|
2078 |
return 0;
|
|
|
2079 |
}
|
|
|
2080 |
|
|
|
2081 |
/*
|
|
|
2082 |
* Merge regions for active segments starting at a given Y, or all active
|
|
|
2083 |
* segments, up to the end of the sampling band or the end of the segment,
|
|
|
2084 |
* into the range list.
|
|
|
2085 |
*/
|
|
|
2086 |
private int
|
|
|
2087 |
merge_ranges(coord_range_list_t *pcrl, const line_list *ll, fixed y_min, fixed y_top)
|
|
|
2088 |
{
|
|
|
2089 |
active_line *alp, *nlp;
|
|
|
2090 |
int code = 0;
|
|
|
2091 |
|
|
|
2092 |
range_list_rescan(pcrl);
|
|
|
2093 |
for (alp = ll->x_list; alp != 0 && code >= 0; alp = nlp) {
|
|
|
2094 |
fixed x0 = alp->x_current, x1, xt;
|
|
|
2095 |
|
|
|
2096 |
nlp = alp->next;
|
|
|
2097 |
if (alp->start.y < y_min)
|
|
|
2098 |
continue;
|
|
|
2099 |
if (alp->monotonic_x && alp->monotonic_y && alp->fi.y3 <= y_top) {
|
|
|
2100 |
vd_bar(alp->start.x, alp->start.y, alp->end.x, alp->end.y, 0, RGB(255, 0, 0));
|
|
|
2101 |
x1 = alp->fi.x3;
|
|
|
2102 |
if (x0 > x1)
|
|
|
2103 |
xt = x0, x0 = x1, x1 = xt;
|
|
|
2104 |
code = range_list_add(pcrl,
|
|
|
2105 |
fixed2int_pixround(x0 - ll->fo->adjust_left),
|
|
|
2106 |
fixed2int_rounded(x1 + ll->fo->adjust_right));
|
|
|
2107 |
alp->more_flattened = false; /* Skip all the segments left. */
|
|
|
2108 |
} else {
|
|
|
2109 |
x1 = x0;
|
|
|
2110 |
for (;;) {
|
|
|
2111 |
if (alp->end.y <= y_top)
|
|
|
2112 |
xt = alp->end.x;
|
|
|
2113 |
else
|
|
|
2114 |
xt = AL_X_AT_Y(alp, y_top);
|
|
|
2115 |
x0 = min(x0, xt);
|
|
|
2116 |
x1 = max(x1, xt);
|
|
|
2117 |
if (!alp->more_flattened || alp->end.y > y_top)
|
|
|
2118 |
break;
|
|
|
2119 |
step_al(alp, true);
|
|
|
2120 |
if (alp->end.y < alp->start.y) {
|
|
|
2121 |
remove_al(ll, alp); /* End of a monotonic part of a curve. */
|
|
|
2122 |
break;
|
|
|
2123 |
}
|
|
|
2124 |
}
|
|
|
2125 |
code = range_list_add(pcrl,
|
|
|
2126 |
fixed2int_pixround(x0 - ll->fo->adjust_left),
|
|
|
2127 |
fixed2int_rounded(x1 + ll->fo->adjust_right));
|
|
|
2128 |
}
|
|
|
2129 |
|
|
|
2130 |
}
|
|
|
2131 |
return code;
|
|
|
2132 |
}
|
|
|
2133 |
|
|
|
2134 |
/* ---------------- Scan line filling loop ---------------- */
|
|
|
2135 |
|
|
|
2136 |
/* defina specializations of the scanline algorithm. */
|
|
|
2137 |
|
|
|
2138 |
#define FILL_DIRECT 1
|
|
|
2139 |
#define TEMPLATE_spot_into_scanlines spot_into_scan_lines_fd
|
|
|
2140 |
#include "gxfillsl.h"
|
|
|
2141 |
#undef FILL_DIRECT
|
|
|
2142 |
#undef TEMPLATE_spot_into_scanlines
|
|
|
2143 |
|
|
|
2144 |
#define FILL_DIRECT 0
|
|
|
2145 |
#define TEMPLATE_spot_into_scanlines spot_into_scan_lines_nd
|
|
|
2146 |
#include "gxfillsl.h"
|
|
|
2147 |
#undef FILL_DIRECT
|
|
|
2148 |
#undef TEMPLATE_spot_into_scanlines
|
|
|
2149 |
|
|
|
2150 |
private int
|
|
|
2151 |
spot_into_scan_lines(line_list *ll, fixed band_mask)
|
|
|
2152 |
{
|
|
|
2153 |
if (ll->fo->fill_direct)
|
|
|
2154 |
return spot_into_scan_lines_fd(ll, band_mask);
|
|
|
2155 |
else
|
|
|
2156 |
return spot_into_scan_lines_nd(ll, band_mask);
|
|
|
2157 |
}
|
|
|
2158 |
|