2 |
- |
1 |
/* Copyright (C) 1989, 1995, 1996, 1998, 1999 Aladdin Enterprises. All rights reserved.
|
|
|
2 |
|
|
|
3 |
This software is provided AS-IS with no warranty, either express or
|
|
|
4 |
implied.
|
|
|
5 |
|
|
|
6 |
This software is distributed under license and may not be copied,
|
|
|
7 |
modified or distributed except as expressly authorized under the terms
|
|
|
8 |
of the license contained in the file LICENSE in this distribution.
|
|
|
9 |
|
|
|
10 |
For more information about licensing, please refer to
|
|
|
11 |
http://www.ghostscript.com/licensing/. For information on
|
|
|
12 |
commercial licensing, go to http://www.artifex.com/licensing/ or
|
|
|
13 |
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
|
|
|
14 |
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
|
|
|
15 |
*/
|
|
|
16 |
|
|
|
17 |
/*$Id: gxdevndi.c,v 1.6 2005/05/05 05:35:22 dan Exp $ */
|
|
|
18 |
#include "gx.h"
|
|
|
19 |
#include "gsstruct.h"
|
|
|
20 |
#include "gsdcolor.h"
|
|
|
21 |
#include "gxdevice.h"
|
|
|
22 |
#include "gxlum.h"
|
|
|
23 |
#include "gxcmap.h"
|
|
|
24 |
#include "gxdither.h"
|
|
|
25 |
#include "gzht.h"
|
|
|
26 |
#include "gxfrac.h"
|
|
|
27 |
#include "gxwts.h"
|
|
|
28 |
|
|
|
29 |
/*
|
|
|
30 |
* Binary halftoning algorithms.
|
|
|
31 |
*
|
|
|
32 |
* The procedures in this file use halftoning (if necessary)
|
|
|
33 |
* to implement a given device color that has already gone through
|
|
|
34 |
* the transfer function. There are two major cases: gray and color.
|
|
|
35 |
* Gray halftoning always uses a binary screen. Color halftoning
|
|
|
36 |
* uses either a fast algorithm with a binary screen that produces
|
|
|
37 |
* relatively poor approximations, or a very slow algorithm with a
|
|
|
38 |
* general colored screen (or screens) that faithfully implements
|
|
|
39 |
* the Adobe specifications.
|
|
|
40 |
*/
|
|
|
41 |
|
|
|
42 |
/* Tables for fast computation of fractional color levels. */
|
|
|
43 |
/* We have to put the table before any uses of it because of a bug */
|
|
|
44 |
/* in the VAX C compiler. */
|
|
|
45 |
/* We have to split up the definition of the table itself because of a bug */
|
|
|
46 |
/* in the IBM AIX 3.2 C compiler. */
|
|
|
47 |
private const gx_color_value q0[] = {
|
|
|
48 |
|
|
|
49 |
};
|
|
|
50 |
private const gx_color_value q1[] = {
|
|
|
51 |
0, frac_color_(1, 1)
|
|
|
52 |
};
|
|
|
53 |
private const gx_color_value q2[] = {
|
|
|
54 |
0, frac_color_(1, 2), frac_color_(2, 2)
|
|
|
55 |
};
|
|
|
56 |
private const gx_color_value q3[] = {
|
|
|
57 |
0, frac_color_(1, 3), frac_color_(2, 3), frac_color_(3, 3)
|
|
|
58 |
};
|
|
|
59 |
private const gx_color_value q4[] = {
|
|
|
60 |
0, frac_color_(1, 4), frac_color_(2, 4), frac_color_(3, 4),
|
|
|
61 |
frac_color_(4, 4)
|
|
|
62 |
};
|
|
|
63 |
private const gx_color_value q5[] = {
|
|
|
64 |
0, frac_color_(1, 5), frac_color_(2, 5), frac_color_(3, 5),
|
|
|
65 |
frac_color_(4, 5), frac_color_(5, 5)
|
|
|
66 |
};
|
|
|
67 |
private const gx_color_value q6[] = {
|
|
|
68 |
0, frac_color_(1, 6), frac_color_(2, 6), frac_color_(3, 6),
|
|
|
69 |
frac_color_(4, 6), frac_color_(5, 6), frac_color_(6, 6)
|
|
|
70 |
};
|
|
|
71 |
private const gx_color_value q7[] = {
|
|
|
72 |
0, frac_color_(1, 7), frac_color_(2, 7), frac_color_(3, 7),
|
|
|
73 |
frac_color_(4, 7), frac_color_(5, 7), frac_color_(6, 7), frac_color_(7, 7)
|
|
|
74 |
};
|
|
|
75 |
|
|
|
76 |
/* We export fc_color_quo for the fractional_color macro in gzht.h. */
|
|
|
77 |
const gx_color_value *const fc_color_quo[8] = {
|
|
|
78 |
q0, q1, q2, q3, q4, q5, q6, q7
|
|
|
79 |
};
|
|
|
80 |
|
|
|
81 |
/* Begin code for setting up WTS device color. This should probably
|
|
|
82 |
move into its own module. */
|
|
|
83 |
|
|
|
84 |
/**
|
|
|
85 |
* gx_render_device_DevN_wts: Render DeviceN color by halftoning with WTS.
|
|
|
86 |
*
|
|
|
87 |
* This routine is the primary constructor for WTS device colors.
|
|
|
88 |
* Note that, in the WTS code path, we sample the plane_vector array
|
|
|
89 |
* during device color construction, while in the legacy code path,
|
|
|
90 |
* it is sampled in the set_ht_colors procedure, invoked from
|
|
|
91 |
* fill_rectangle. Does it affect correctness? I don't think so, but
|
|
|
92 |
* it needs to be tested.
|
|
|
93 |
**/
|
|
|
94 |
private int
|
|
|
95 |
gx_render_device_DeviceN_wts(frac * pcolor,
|
|
|
96 |
gx_device_color * pdevc, gx_device * dev,
|
|
|
97 |
gx_device_halftone * pdht,
|
|
|
98 |
const gs_int_point * ht_phase)
|
|
|
99 |
{
|
|
|
100 |
int i;
|
|
|
101 |
gx_color_value cv[GX_DEVICE_COLOR_MAX_COMPONENTS];
|
|
|
102 |
int num_comp = pdht->num_comp;
|
|
|
103 |
|
|
|
104 |
for (i = 0; i < num_comp; i++) {
|
|
|
105 |
cv[i] = 0;
|
|
|
106 |
}
|
|
|
107 |
|
|
|
108 |
pdevc->type = gx_dc_type_wts;
|
|
|
109 |
pdevc->colors.wts.w_ht = pdht;
|
|
|
110 |
|
|
|
111 |
if (dev->color_info.separable_and_linear != GX_CINFO_SEP_LIN) {
|
|
|
112 |
/* Monochrome case may be inverted. */
|
|
|
113 |
pdevc->colors.wts.plane_vector[1] =
|
|
|
114 |
dev_proc(dev, encode_color)(dev, cv);
|
|
|
115 |
}
|
|
|
116 |
for (i = 0; i < num_comp; i++) {
|
|
|
117 |
pdevc->colors.wts.levels[i] = pcolor[i];
|
|
|
118 |
cv[i] = gx_max_color_value;
|
|
|
119 |
pdevc->colors.wts.plane_vector[i] =
|
|
|
120 |
dev_proc(dev, encode_color)(dev, cv);
|
|
|
121 |
cv[i] = 0;
|
|
|
122 |
}
|
|
|
123 |
pdevc->colors.wts.num_components = num_comp;
|
|
|
124 |
return 0;
|
|
|
125 |
}
|
|
|
126 |
|
|
|
127 |
/*
|
|
|
128 |
* Render DeviceN possibly by halftoning.
|
|
|
129 |
* pcolors = pointer to an array color values (as fracs)
|
|
|
130 |
* pdevc - pointer to device color structure
|
|
|
131 |
* dev = pointer to device data structure
|
|
|
132 |
* pht = pointer to halftone data structure
|
|
|
133 |
* ht_phase = halftone phase
|
|
|
134 |
* gray_colorspace = true -> current color space is DeviceGray.
|
|
|
135 |
* This is part of a kludge to minimize differences in the
|
|
|
136 |
* regression testing.
|
|
|
137 |
*/
|
|
|
138 |
int
|
|
|
139 |
gx_render_device_DeviceN(frac * pcolor,
|
|
|
140 |
gx_device_color * pdevc, gx_device * dev,
|
|
|
141 |
gx_device_halftone * pdht, const gs_int_point * ht_phase)
|
|
|
142 |
{
|
|
|
143 |
uint max_value[GS_CLIENT_COLOR_MAX_COMPONENTS];
|
|
|
144 |
frac dither_check = 0;
|
|
|
145 |
uint int_color[GS_CLIENT_COLOR_MAX_COMPONENTS];
|
|
|
146 |
gx_color_value vcolor[GS_CLIENT_COLOR_MAX_COMPONENTS];
|
|
|
147 |
int i;
|
|
|
148 |
int num_colors = dev->color_info.num_components;
|
|
|
149 |
uint l_color[GS_CLIENT_COLOR_MAX_COMPONENTS];
|
|
|
150 |
|
|
|
151 |
if (pdht && pdht->components && pdht->components[0].corder.wts)
|
|
|
152 |
return gx_render_device_DeviceN_wts(pcolor, pdevc, dev, pdht,
|
|
|
153 |
ht_phase);
|
|
|
154 |
|
|
|
155 |
for (i=0; i<num_colors; i++) {
|
|
|
156 |
max_value[i] = (dev->color_info.gray_index == i) ?
|
|
|
157 |
dev->color_info.dither_grays - 1 :
|
|
|
158 |
dev->color_info.dither_colors - 1;
|
|
|
159 |
}
|
|
|
160 |
|
|
|
161 |
for (i = 0; i < num_colors; i++) {
|
|
|
162 |
unsigned long hsize = pdht ?
|
|
|
163 |
(unsigned) pdht->components[i].corder.num_levels
|
|
|
164 |
: 1;
|
|
|
165 |
unsigned long nshades = hsize * max_value[i] + 1;
|
|
|
166 |
long shade = pcolor[i] * nshades / (frac_1_long + 1);
|
|
|
167 |
int_color[i] = shade / hsize;
|
|
|
168 |
l_color[i] = shade % hsize;
|
|
|
169 |
if (max_value[i] < MIN_CONTONE_LEVELS)
|
|
|
170 |
dither_check |= l_color[i];
|
|
|
171 |
}
|
|
|
172 |
|
|
|
173 |
#ifdef DEBUG
|
|
|
174 |
if (gs_debug_c('c')) {
|
|
|
175 |
dlprintf1("[c]ncomp=%d ", num_colors);
|
|
|
176 |
for (i = 0; i < num_colors; i++)
|
|
|
177 |
dlprintf1("0x%x, ", pcolor[i]);
|
|
|
178 |
dlprintf("--> ");
|
|
|
179 |
for (i = 0; i < num_colors; i++)
|
|
|
180 |
dlprintf2("%x+0x%x, ", int_color[i], l_color[i]);
|
|
|
181 |
dlprintf("\n");
|
|
|
182 |
}
|
|
|
183 |
#endif
|
|
|
184 |
|
|
|
185 |
/* Check for no dithering required */
|
|
|
186 |
if (!dither_check) {
|
|
|
187 |
for (i = 0; i < num_colors; i++)
|
|
|
188 |
vcolor[i] = fractional_color(int_color[i], max_value[i]);
|
|
|
189 |
color_set_pure(pdevc, dev_proc(dev, encode_color)(dev, vcolor));
|
|
|
190 |
return 0;
|
|
|
191 |
}
|
|
|
192 |
|
|
|
193 |
/* Use the slow, general colored halftone algorithm. */
|
|
|
194 |
|
|
|
195 |
for (i = 0; i < num_colors; i++)
|
|
|
196 |
_color_set_c(pdevc, i, int_color[i], l_color[i]);
|
|
|
197 |
gx_complete_halftone(pdevc, num_colors, pdht);
|
|
|
198 |
|
|
|
199 |
color_set_phase_mod(pdevc, ht_phase->x, ht_phase->y,
|
|
|
200 |
pdht->lcm_width, pdht->lcm_height);
|
|
|
201 |
|
|
|
202 |
/* Determine if we are using only one component */
|
|
|
203 |
if (!(pdevc->colors.colored.plane_mask &
|
|
|
204 |
(pdevc->colors.colored.plane_mask - 1))) {
|
|
|
205 |
/* We can reduce this color to a binary halftone or pure color. */
|
|
|
206 |
return gx_devn_reduce_colored_halftone(pdevc, dev);
|
|
|
207 |
}
|
|
|
208 |
|
|
|
209 |
return 1;
|
|
|
210 |
}
|
|
|
211 |
|
|
|
212 |
/* Reduce a colored halftone to a binary halftone or pure color. */
|
|
|
213 |
/* This routine is called when only one component is being halftoned. */
|
|
|
214 |
int
|
|
|
215 |
gx_devn_reduce_colored_halftone(gx_device_color *pdevc, gx_device *dev)
|
|
|
216 |
{
|
|
|
217 |
int planes = pdevc->colors.colored.plane_mask;
|
|
|
218 |
int num_colors = dev->color_info.num_components;
|
|
|
219 |
uint max_value[GS_CLIENT_COLOR_MAX_COMPONENTS];
|
|
|
220 |
uint b[GX_DEVICE_COLOR_MAX_COMPONENTS];
|
|
|
221 |
gx_color_value v[GX_DEVICE_COLOR_MAX_COMPONENTS];
|
|
|
222 |
gx_color_index c0, c1;
|
|
|
223 |
int i;
|
|
|
224 |
|
|
|
225 |
for (i = 0; i < num_colors; i++) {
|
|
|
226 |
max_value[i] = (dev->color_info.gray_index == i) ?
|
|
|
227 |
dev->color_info.dither_grays - 1 :
|
|
|
228 |
dev->color_info.dither_colors - 1;
|
|
|
229 |
b[i] = pdevc->colors.colored.c_base[i];
|
|
|
230 |
v[i] = fractional_color(b[i], max_value[i]);
|
|
|
231 |
}
|
|
|
232 |
c0 = dev_proc(dev, encode_color)(dev, v);
|
|
|
233 |
|
|
|
234 |
if (planes == 0) {
|
|
|
235 |
/*
|
|
|
236 |
* Use a pure color. This case is unlikely, but it can occur if
|
|
|
237 |
* (and only if) the difference of each component from the nearest
|
|
|
238 |
* device color is less than one halftone level.
|
|
|
239 |
*/
|
|
|
240 |
color_set_pure(pdevc, c0);
|
|
|
241 |
return 0;
|
|
|
242 |
} else {
|
|
|
243 |
/* Use a binary color. */
|
|
|
244 |
int i = 0;
|
|
|
245 |
uint bi;
|
|
|
246 |
const gx_device_halftone *pdht = pdevc->colors.colored.c_ht;
|
|
|
247 |
/*
|
|
|
248 |
* NB: the halftone orders are all set up for an additive color
|
|
|
249 |
* space. To use these work with a subtractive color space, it is
|
|
|
250 |
* necessary to invert both the color level and the color
|
|
|
251 |
* pair. Note that if the original color was provided an
|
|
|
252 |
* additive space, this will reverse (in an approximate sense)
|
|
|
253 |
* the color conversion performed to express the color in
|
|
|
254 |
* subtractive space.
|
|
|
255 |
*/
|
|
|
256 |
bool invert = dev->color_info.polarity == GX_CINFO_POLARITY_SUBTRACTIVE;
|
|
|
257 |
uint level;
|
|
|
258 |
|
|
|
259 |
/* Convert plane mask bit position to component number */
|
|
|
260 |
/* Determine i = log2(planes); This works for powers of two */
|
|
|
261 |
while (planes > 7) {
|
|
|
262 |
i += 3;
|
|
|
263 |
planes >>= 3;
|
|
|
264 |
}
|
|
|
265 |
i += planes >> 1; /* log2 for 1,2,4 */
|
|
|
266 |
|
|
|
267 |
bi = b[i] + 1;
|
|
|
268 |
v[i] = fractional_color(bi, max_value[i]);
|
|
|
269 |
level = pdevc->colors.colored.c_level[i];
|
|
|
270 |
c1 = dev_proc(dev, encode_color)(dev, v);
|
|
|
271 |
if (invert) {
|
|
|
272 |
level = pdht->components[i].corder.num_levels - level;
|
|
|
273 |
color_set_binary_halftone_component(pdevc, pdht, i, c1, c0, level);
|
|
|
274 |
} else
|
|
|
275 |
color_set_binary_halftone_component(pdevc, pdht, i, c0, c1, level);
|
|
|
276 |
|
|
|
277 |
return 1;
|
|
|
278 |
}
|
|
|
279 |
}
|