2 |
- |
1 |
/* Copyright (C) 1992, 1995, 1996, 1997, 1998, 1999 Aladdin Enterprises. All rights reserved.
|
|
|
2 |
|
|
|
3 |
This software is provided AS-IS with no warranty, either express or
|
|
|
4 |
implied.
|
|
|
5 |
|
|
|
6 |
This software is distributed under license and may not be copied,
|
|
|
7 |
modified or distributed except as expressly authorized under the terms
|
|
|
8 |
of the license contained in the file LICENSE in this distribution.
|
|
|
9 |
|
|
|
10 |
For more information about licensing, please refer to
|
|
|
11 |
http://www.ghostscript.com/licensing/. For information on
|
|
|
12 |
commercial licensing, go to http://www.artifex.com/licensing/ or
|
|
|
13 |
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
|
|
|
14 |
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
|
|
|
15 |
*/
|
|
|
16 |
|
|
|
17 |
/* $Id: gxicolor.c,v 1.9 2003/08/18 21:21:57 dan Exp $ */
|
|
|
18 |
/* Color image rendering */
|
|
|
19 |
#include "gx.h"
|
|
|
20 |
#include "memory_.h"
|
|
|
21 |
#include "gpcheck.h"
|
|
|
22 |
#include "gserrors.h"
|
|
|
23 |
#include "gxfixed.h"
|
|
|
24 |
#include "gxfrac.h"
|
|
|
25 |
#include "gxarith.h"
|
|
|
26 |
#include "gxmatrix.h"
|
|
|
27 |
#include "gsccolor.h"
|
|
|
28 |
#include "gspaint.h"
|
|
|
29 |
#include "gzstate.h"
|
|
|
30 |
#include "gxdevice.h"
|
|
|
31 |
#include "gxcmap.h"
|
|
|
32 |
#include "gxdcconv.h"
|
|
|
33 |
#include "gxdcolor.h"
|
|
|
34 |
#include "gxistate.h"
|
|
|
35 |
#include "gxdevmem.h"
|
|
|
36 |
#include "gxcpath.h"
|
|
|
37 |
#include "gximage.h"
|
|
|
38 |
|
|
|
39 |
typedef union {
|
|
|
40 |
byte v[GS_IMAGE_MAX_COLOR_COMPONENTS];
|
|
|
41 |
#define BYTES_PER_BITS32 4
|
|
|
42 |
#define BITS32_PER_COLOR_SAMPLES\
|
|
|
43 |
((GS_IMAGE_MAX_COLOR_COMPONENTS + BYTES_PER_BITS32 - 1) / BYTES_PER_BITS32)
|
|
|
44 |
bits32 all[BITS32_PER_COLOR_SAMPLES]; /* for fast comparison */
|
|
|
45 |
} color_samples;
|
|
|
46 |
|
|
|
47 |
/* ------ Strategy procedure ------ */
|
|
|
48 |
|
|
|
49 |
/* Check the prototype. */
|
|
|
50 |
iclass_proc(gs_image_class_4_color);
|
|
|
51 |
|
|
|
52 |
private irender_proc(image_render_color);
|
|
|
53 |
irender_proc_t
|
|
|
54 |
gs_image_class_4_color(gx_image_enum * penum)
|
|
|
55 |
{
|
|
|
56 |
if (penum->use_mask_color) {
|
|
|
57 |
/*
|
|
|
58 |
* Scale the mask colors to match the scaling of each sample to
|
|
|
59 |
* a full byte, and set up the quick-filter parameters.
|
|
|
60 |
*/
|
|
|
61 |
int i;
|
|
|
62 |
color_samples mask, test;
|
|
|
63 |
bool exact = penum->spp <= BYTES_PER_BITS32;
|
|
|
64 |
|
|
|
65 |
memset(&mask, 0, sizeof(mask));
|
|
|
66 |
memset(&test, 0, sizeof(test));
|
|
|
67 |
for (i = 0; i < penum->spp; ++i) {
|
|
|
68 |
byte v0, v1;
|
|
|
69 |
byte match = 0xff;
|
|
|
70 |
|
|
|
71 |
gx_image_scale_mask_colors(penum, i);
|
|
|
72 |
v0 = (byte)penum->mask_color.values[2 * i];
|
|
|
73 |
v1 = (byte)penum->mask_color.values[2 * i + 1];
|
|
|
74 |
while ((v0 & match) != (v1 & match))
|
|
|
75 |
match <<= 1;
|
|
|
76 |
mask.v[i] = match;
|
|
|
77 |
test.v[i] = v0 & match;
|
|
|
78 |
exact &= (v0 == match && (v1 | match) == 0xff);
|
|
|
79 |
}
|
|
|
80 |
penum->mask_color.mask = mask.all[0];
|
|
|
81 |
penum->mask_color.test = test.all[0];
|
|
|
82 |
penum->mask_color.exact = exact;
|
|
|
83 |
} else {
|
|
|
84 |
penum->mask_color.mask = 0;
|
|
|
85 |
penum->mask_color.test = ~0;
|
|
|
86 |
}
|
|
|
87 |
return &image_render_color;
|
|
|
88 |
}
|
|
|
89 |
|
|
|
90 |
/* ------ Rendering procedures ------ */
|
|
|
91 |
|
|
|
92 |
/* Test whether a color is transparent. */
|
|
|
93 |
private bool
|
|
|
94 |
mask_color_matches(const byte *v, const gx_image_enum *penum,
|
|
|
95 |
int num_components)
|
|
|
96 |
{
|
|
|
97 |
int i;
|
|
|
98 |
|
|
|
99 |
for (i = num_components * 2, v += num_components - 1; (i -= 2) >= 0; --v)
|
|
|
100 |
if (*v < penum->mask_color.values[i] ||
|
|
|
101 |
*v > penum->mask_color.values[i + 1]
|
|
|
102 |
)
|
|
|
103 |
return false;
|
|
|
104 |
return true;
|
|
|
105 |
}
|
|
|
106 |
|
|
|
107 |
/* Render a color image with 8 or fewer bits per sample. */
|
|
|
108 |
private int
|
|
|
109 |
image_render_color(gx_image_enum *penum_orig, const byte *buffer, int data_x,
|
|
|
110 |
uint w, int h, gx_device * dev)
|
|
|
111 |
{
|
|
|
112 |
const gx_image_enum *const penum = penum_orig; /* const within proc */
|
|
|
113 |
gx_image_clue *const clues = penum_orig->clues; /* not const */
|
|
|
114 |
const gs_imager_state *pis = penum->pis;
|
|
|
115 |
gs_logical_operation_t lop = penum->log_op;
|
|
|
116 |
gx_dda_fixed_point pnext;
|
|
|
117 |
image_posture posture = penum->posture;
|
|
|
118 |
fixed xprev, yprev;
|
|
|
119 |
fixed pdyx, pdyy; /* edge of parallelogram */
|
|
|
120 |
int vci, vdi;
|
|
|
121 |
const gs_color_space *pcs = penum->pcs;
|
|
|
122 |
cs_proc_remap_color((*remap_color)) = pcs->type->remap_color;
|
|
|
123 |
cs_proc_remap_concrete_color((*remap_concrete_color)) =
|
|
|
124 |
pcs->type->remap_concrete_color;
|
|
|
125 |
gs_client_color cc;
|
|
|
126 |
bool device_color = penum->device_color;
|
|
|
127 |
const gx_color_map_procs *cmap_procs = gx_get_cmap_procs(pis, dev);
|
|
|
128 |
bits32 mask = penum->mask_color.mask;
|
|
|
129 |
bits32 test = penum->mask_color.test;
|
|
|
130 |
gx_image_clue *pic = &clues[0];
|
|
|
131 |
#define pdevc (&pic->dev_color)
|
|
|
132 |
gx_image_clue *pic_next = &clues[1];
|
|
|
133 |
#define pdevc_next (&pic_next->dev_color)
|
|
|
134 |
gx_image_clue empty_clue;
|
|
|
135 |
gx_image_clue clue_temp;
|
|
|
136 |
int spp = penum->spp;
|
|
|
137 |
const byte *psrc_initial = buffer + data_x * spp;
|
|
|
138 |
const byte *psrc = psrc_initial;
|
|
|
139 |
const byte *rsrc = psrc + spp; /* psrc + spp at start of run */
|
|
|
140 |
fixed xrun; /* x ditto */
|
|
|
141 |
fixed yrun; /* y ditto */
|
|
|
142 |
int irun; /* int x/rrun */
|
|
|
143 |
color_samples run; /* run value */
|
|
|
144 |
color_samples next; /* next sample value */
|
|
|
145 |
const byte *bufend = psrc + w;
|
|
|
146 |
bool use_cache = spp * penum->bps <= 12;
|
|
|
147 |
int code = 0, mcode = 0;
|
|
|
148 |
|
|
|
149 |
if (h == 0)
|
|
|
150 |
return 0;
|
|
|
151 |
pnext = penum->dda.pixel0;
|
|
|
152 |
xrun = xprev = dda_current(pnext.x);
|
|
|
153 |
yrun = yprev = dda_current(pnext.y);
|
|
|
154 |
pdyx = dda_current(penum->dda.row.x) - penum->cur.x;
|
|
|
155 |
pdyy = dda_current(penum->dda.row.y) - penum->cur.y;
|
|
|
156 |
switch (posture) {
|
|
|
157 |
case image_portrait:
|
|
|
158 |
vci = penum->yci, vdi = penum->hci;
|
|
|
159 |
irun = fixed2int_var_rounded(xrun);
|
|
|
160 |
break;
|
|
|
161 |
case image_landscape:
|
|
|
162 |
default: /* we don't handle skew -- treat as landscape */
|
|
|
163 |
vci = penum->xci, vdi = penum->wci;
|
|
|
164 |
irun = fixed2int_var_rounded(yrun);
|
|
|
165 |
break;
|
|
|
166 |
}
|
|
|
167 |
|
|
|
168 |
if_debug5('b', "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
|
|
|
169 |
penum->y, data_x, w, fixed2float(xprev), fixed2float(yprev));
|
|
|
170 |
memset(&run, 0, sizeof(run));
|
|
|
171 |
memset(&next, 0, sizeof(next));
|
|
|
172 |
/* Ensure that we don't get any false dev_color_eq hits. */
|
|
|
173 |
if (use_cache) {
|
|
|
174 |
set_nonclient_dev_color(&empty_clue.dev_color, gx_no_color_index);
|
|
|
175 |
pic = &empty_clue;
|
|
|
176 |
}
|
|
|
177 |
cs_full_init_color(&cc, pcs);
|
|
|
178 |
run.v[0] = ~psrc[0]; /* force remap */
|
|
|
179 |
while (psrc < bufend) {
|
|
|
180 |
dda_next(pnext.x);
|
|
|
181 |
dda_next(pnext.y);
|
|
|
182 |
#define CLUE_HASH3(penum, next)\
|
|
|
183 |
&clues[(next.v[0] + (next.v[1] << 2) + (next.v[2] << 4)) & 255];
|
|
|
184 |
#define CLUE_HASH4(penum, next)\
|
|
|
185 |
&clues[(next.v[0] + (next.v[1] << 2) + (next.v[2] << 4) +\
|
|
|
186 |
(next.v[3] << 6)) & 255]
|
|
|
187 |
|
|
|
188 |
if (spp == 4) { /* may be CMYK or RGBA */
|
|
|
189 |
next.v[0] = psrc[0];
|
|
|
190 |
next.v[1] = psrc[1];
|
|
|
191 |
next.v[2] = psrc[2];
|
|
|
192 |
next.v[3] = psrc[3];
|
|
|
193 |
psrc += 4;
|
|
|
194 |
map4: if (next.all[0] == run.all[0])
|
|
|
195 |
goto inc;
|
|
|
196 |
if (use_cache) {
|
|
|
197 |
pic_next = CLUE_HASH4(penum, next);
|
|
|
198 |
if (pic_next->key == next.all[0])
|
|
|
199 |
goto f;
|
|
|
200 |
/*
|
|
|
201 |
* If we are really unlucky, pic_next == pic,
|
|
|
202 |
* so mapping this color would clobber the one
|
|
|
203 |
* we're about to use for filling the run.
|
|
|
204 |
*/
|
|
|
205 |
if (pic_next == pic) {
|
|
|
206 |
clue_temp = *pic;
|
|
|
207 |
pic = &clue_temp;
|
|
|
208 |
}
|
|
|
209 |
pic_next->key = next.all[0];
|
|
|
210 |
}
|
|
|
211 |
/* Check for transparent color. */
|
|
|
212 |
if ((next.all[0] & mask) == test &&
|
|
|
213 |
(penum->mask_color.exact ||
|
|
|
214 |
mask_color_matches(next.v, penum, 4))
|
|
|
215 |
) {
|
|
|
216 |
color_set_null(pdevc_next);
|
|
|
217 |
goto mapped;
|
|
|
218 |
}
|
|
|
219 |
if (device_color) {
|
|
|
220 |
frac frac_color[4];
|
|
|
221 |
|
|
|
222 |
if (penum->alpha) {
|
|
|
223 |
/*
|
|
|
224 |
* We do not have support for DeviceN color and alpha.
|
|
|
225 |
*/
|
|
|
226 |
cmap_procs->map_rgb_alpha
|
|
|
227 |
(byte2frac(next.v[0]), byte2frac(next.v[1]),
|
|
|
228 |
byte2frac(next.v[2]), byte2frac(next.v[3]),
|
|
|
229 |
pdevc_next, pis, dev,
|
|
|
230 |
gs_color_select_source);
|
|
|
231 |
goto mapped;
|
|
|
232 |
}
|
|
|
233 |
/*
|
|
|
234 |
* We can call the remap concrete_color for the colorspace
|
|
|
235 |
* directly since device_color is only true if the colorspace
|
|
|
236 |
* is concrete.
|
|
|
237 |
*/
|
|
|
238 |
frac_color[0] = byte2frac(next.v[0]);
|
|
|
239 |
frac_color[1] = byte2frac(next.v[1]);
|
|
|
240 |
frac_color[2] = byte2frac(next.v[2]);
|
|
|
241 |
frac_color[3] = byte2frac(next.v[3]);
|
|
|
242 |
remap_concrete_color(frac_color, pcs, pdevc_next, pis,
|
|
|
243 |
dev, gs_color_select_source);
|
|
|
244 |
goto mapped;
|
|
|
245 |
}
|
|
|
246 |
decode_sample(next.v[3], cc, 3);
|
|
|
247 |
if_debug1('B', "[B]cc[3]=%g\n", cc.paint.values[3]);
|
|
|
248 |
do3: decode_sample(next.v[0], cc, 0);
|
|
|
249 |
decode_sample(next.v[1], cc, 1);
|
|
|
250 |
decode_sample(next.v[2], cc, 2);
|
|
|
251 |
if_debug3('B', "[B]cc[0..2]=%g,%g,%g\n",
|
|
|
252 |
cc.paint.values[0], cc.paint.values[1],
|
|
|
253 |
cc.paint.values[2]);
|
|
|
254 |
} else if (spp == 3) { /* may be RGB */
|
|
|
255 |
next.v[0] = psrc[0];
|
|
|
256 |
next.v[1] = psrc[1];
|
|
|
257 |
next.v[2] = psrc[2];
|
|
|
258 |
psrc += 3;
|
|
|
259 |
if (next.all[0] == run.all[0])
|
|
|
260 |
goto inc;
|
|
|
261 |
if (use_cache) {
|
|
|
262 |
pic_next = CLUE_HASH3(penum, next);
|
|
|
263 |
if (pic_next->key == next.all[0])
|
|
|
264 |
goto f;
|
|
|
265 |
/* See above re the following check. */
|
|
|
266 |
if (pic_next == pic) {
|
|
|
267 |
clue_temp = *pic;
|
|
|
268 |
pic = &clue_temp;
|
|
|
269 |
}
|
|
|
270 |
pic_next->key = next.all[0];
|
|
|
271 |
}
|
|
|
272 |
/* Check for transparent color. */
|
|
|
273 |
if ((next.all[0] & mask) == test &&
|
|
|
274 |
(penum->mask_color.exact ||
|
|
|
275 |
mask_color_matches(next.v, penum, 3))
|
|
|
276 |
) {
|
|
|
277 |
color_set_null(pdevc_next);
|
|
|
278 |
goto mapped;
|
|
|
279 |
}
|
|
|
280 |
if (device_color) {
|
|
|
281 |
frac frac_color[3];
|
|
|
282 |
/*
|
|
|
283 |
* We can call the remap concrete_color for the colorspace
|
|
|
284 |
* directly since device_color is only true if the colorspace
|
|
|
285 |
* is concrete.
|
|
|
286 |
*/
|
|
|
287 |
frac_color[0] = byte2frac(next.v[0]);
|
|
|
288 |
frac_color[1] = byte2frac(next.v[1]);
|
|
|
289 |
frac_color[2] = byte2frac(next.v[2]);
|
|
|
290 |
remap_concrete_color(frac_color, pcs, pdevc_next, pis,
|
|
|
291 |
dev, gs_color_select_source);
|
|
|
292 |
goto mapped;
|
|
|
293 |
}
|
|
|
294 |
goto do3;
|
|
|
295 |
} else if (penum->alpha) {
|
|
|
296 |
if (spp == 2) { /* might be Gray + alpha */
|
|
|
297 |
next.v[2] = next.v[1] = next.v[0] = psrc[0];
|
|
|
298 |
next.v[3] = psrc[1];
|
|
|
299 |
psrc += 2;
|
|
|
300 |
goto map4;
|
|
|
301 |
} else if (spp == 5) { /* might be CMYK + alpha */
|
|
|
302 |
/* Convert CMYK to RGB. */
|
|
|
303 |
frac rgb[3];
|
|
|
304 |
|
|
|
305 |
color_cmyk_to_rgb(byte2frac(psrc[0]), byte2frac(psrc[1]),
|
|
|
306 |
byte2frac(psrc[2]), byte2frac(psrc[3]),
|
|
|
307 |
pis, rgb);
|
|
|
308 |
/*
|
|
|
309 |
* It seems silly to do all this converting between
|
|
|
310 |
* fracs and bytes, but that's what the current
|
|
|
311 |
* APIs require.
|
|
|
312 |
*/
|
|
|
313 |
next.v[0] = frac2byte(rgb[0]);
|
|
|
314 |
next.v[1] = frac2byte(rgb[1]);
|
|
|
315 |
next.v[2] = frac2byte(rgb[2]);
|
|
|
316 |
next.v[3] = psrc[4];
|
|
|
317 |
psrc += 5;
|
|
|
318 |
goto map4;
|
|
|
319 |
}
|
|
|
320 |
} else { /* DeviceN */
|
|
|
321 |
int i;
|
|
|
322 |
|
|
|
323 |
use_cache = false; /* should do in initialization */
|
|
|
324 |
if (!memcmp(psrc, run.v, spp)) {
|
|
|
325 |
psrc += spp;
|
|
|
326 |
goto inc;
|
|
|
327 |
}
|
|
|
328 |
memcpy(next.v, psrc, spp);
|
|
|
329 |
psrc += spp;
|
|
|
330 |
if ((next.all[0] & mask) == test &&
|
|
|
331 |
(penum->mask_color.exact ||
|
|
|
332 |
mask_color_matches(next.v, penum, spp))
|
|
|
333 |
) {
|
|
|
334 |
color_set_null(pdevc_next);
|
|
|
335 |
goto mapped;
|
|
|
336 |
}
|
|
|
337 |
for (i = 0; i < spp; ++i)
|
|
|
338 |
decode_sample(next.v[i], cc, i);
|
|
|
339 |
#ifdef DEBUG
|
|
|
340 |
if (gs_debug_c('B')) {
|
|
|
341 |
dprintf2("[B]cc[0..%d]=%g", spp - 1,
|
|
|
342 |
cc.paint.values[0]);
|
|
|
343 |
for (i = 1; i < spp; ++i)
|
|
|
344 |
dprintf1(",%g", cc.paint.values[i]);
|
|
|
345 |
dputs("\n");
|
|
|
346 |
}
|
|
|
347 |
#endif
|
|
|
348 |
}
|
|
|
349 |
mcode = remap_color(&cc, pcs, pdevc_next, pis, dev,
|
|
|
350 |
gs_color_select_source);
|
|
|
351 |
if (mcode < 0)
|
|
|
352 |
goto fill;
|
|
|
353 |
mapped: if (pic == pic_next)
|
|
|
354 |
goto fill;
|
|
|
355 |
f: if_debug7('B', "[B]0x%x,0x%x,0x%x,0x%x -> %ld,%ld,0x%lx\n",
|
|
|
356 |
next.v[0], next.v[1], next.v[2], next.v[3],
|
|
|
357 |
pdevc_next->colors.binary.color[0],
|
|
|
358 |
pdevc_next->colors.binary.color[1],
|
|
|
359 |
(ulong) pdevc_next->type);
|
|
|
360 |
/* Even though the supplied colors don't match, */
|
|
|
361 |
/* the device colors might. */
|
|
|
362 |
if (dev_color_eq(*pdevc, *pdevc_next))
|
|
|
363 |
goto set;
|
|
|
364 |
fill: /* Fill the region between */
|
|
|
365 |
/* xrun/irun and xprev */
|
|
|
366 |
/*
|
|
|
367 |
* Note; This section is nearly a copy of a simlar section below
|
|
|
368 |
* for processing the last image pixel in the loop. This would have been
|
|
|
369 |
* made into a subroutine except for complications about the number of
|
|
|
370 |
* variables that would have been needed to be passed to the routine.
|
|
|
371 |
*/
|
|
|
372 |
switch (posture) {
|
|
|
373 |
case image_portrait:
|
|
|
374 |
{ /* Rectangle */
|
|
|
375 |
int xi = irun;
|
|
|
376 |
int wi = (irun = fixed2int_var_rounded(xprev)) - xi;
|
|
|
377 |
|
|
|
378 |
if (wi < 0)
|
|
|
379 |
xi += wi, wi = -wi;
|
|
|
380 |
if (wi > 0)
|
|
|
381 |
code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
|
|
|
382 |
pdevc, dev, lop);
|
|
|
383 |
}
|
|
|
384 |
break;
|
|
|
385 |
case image_landscape:
|
|
|
386 |
{ /* 90 degree rotated rectangle */
|
|
|
387 |
int yi = irun;
|
|
|
388 |
int hi = (irun = fixed2int_var_rounded(yprev)) - yi;
|
|
|
389 |
|
|
|
390 |
if (hi < 0)
|
|
|
391 |
yi += hi, hi = -hi;
|
|
|
392 |
if (hi > 0)
|
|
|
393 |
code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
|
|
|
394 |
pdevc, dev, lop);
|
|
|
395 |
}
|
|
|
396 |
break;
|
|
|
397 |
default:
|
|
|
398 |
{ /* Parallelogram */
|
|
|
399 |
code = (*dev_proc(dev, fill_parallelogram))
|
|
|
400 |
(dev, xrun, yrun, xprev - xrun, yprev - yrun, pdyx, pdyy,
|
|
|
401 |
pdevc, lop);
|
|
|
402 |
xrun = xprev;
|
|
|
403 |
yrun = yprev;
|
|
|
404 |
}
|
|
|
405 |
}
|
|
|
406 |
if (code < 0)
|
|
|
407 |
goto err;
|
|
|
408 |
rsrc = psrc;
|
|
|
409 |
if ((code = mcode) < 0) {
|
|
|
410 |
/* Invalidate any partially built cache entry. */
|
|
|
411 |
if (use_cache)
|
|
|
412 |
pic_next->key = ~next.all[0];
|
|
|
413 |
goto err;
|
|
|
414 |
}
|
|
|
415 |
if (use_cache)
|
|
|
416 |
pic = pic_next;
|
|
|
417 |
else {
|
|
|
418 |
gx_image_clue *ptemp = pic;
|
|
|
419 |
|
|
|
420 |
pic = pic_next;
|
|
|
421 |
pic_next = ptemp;
|
|
|
422 |
}
|
|
|
423 |
set: run = next;
|
|
|
424 |
inc: xprev = dda_current(pnext.x);
|
|
|
425 |
yprev = dda_current(pnext.y); /* harmless if no skew */
|
|
|
426 |
}
|
|
|
427 |
/* Fill the last run. */
|
|
|
428 |
/*
|
|
|
429 |
* Note; This section is nearly a copy of a simlar section above
|
|
|
430 |
* for processing an image pixel in the loop. This would have been
|
|
|
431 |
* made into a subroutine except for complications about the number
|
|
|
432 |
* variables that would have been needed to be passed to the routine.
|
|
|
433 |
*/
|
|
|
434 |
switch (posture) {
|
|
|
435 |
case image_portrait:
|
|
|
436 |
{ /* Rectangle */
|
|
|
437 |
int xi = irun;
|
|
|
438 |
int wi = (irun = fixed2int_var_rounded(xprev)) - xi;
|
|
|
439 |
|
|
|
440 |
if (wi < 0)
|
|
|
441 |
xi += wi, wi = -wi;
|
|
|
442 |
if (wi > 0)
|
|
|
443 |
code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
|
|
|
444 |
pdevc, dev, lop);
|
|
|
445 |
}
|
|
|
446 |
break;
|
|
|
447 |
case image_landscape:
|
|
|
448 |
{ /* 90 degree rotated rectangle */
|
|
|
449 |
int yi = irun;
|
|
|
450 |
int hi = (irun = fixed2int_var_rounded(yprev)) - yi;
|
|
|
451 |
|
|
|
452 |
if (hi < 0)
|
|
|
453 |
yi += hi, hi = -hi;
|
|
|
454 |
if (hi > 0)
|
|
|
455 |
code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
|
|
|
456 |
pdevc, dev, lop);
|
|
|
457 |
}
|
|
|
458 |
break;
|
|
|
459 |
default:
|
|
|
460 |
{ /* Parallelogram */
|
|
|
461 |
code = (*dev_proc(dev, fill_parallelogram))
|
|
|
462 |
(dev, xrun, yrun, xprev - xrun, yprev - yrun, pdyx, pdyy,
|
|
|
463 |
pdevc, lop);
|
|
|
464 |
}
|
|
|
465 |
}
|
|
|
466 |
return (code < 0 ? code : 1);
|
|
|
467 |
/* Save position if error, in case we resume. */
|
|
|
468 |
err:
|
|
|
469 |
penum_orig->used.x = (rsrc - spp - psrc_initial) / spp;
|
|
|
470 |
penum_orig->used.y = 0;
|
|
|
471 |
return code;
|
|
|
472 |
}
|