2 |
- |
1 |
/* Copyright (C) 1997, 1998, 1999 Aladdin Enterprises. All rights reserved.
|
|
|
2 |
|
|
|
3 |
This software is provided AS-IS with no warranty, either express or
|
|
|
4 |
implied.
|
|
|
5 |
|
|
|
6 |
This software is distributed under license and may not be copied,
|
|
|
7 |
modified or distributed except as expressly authorized under the terms
|
|
|
8 |
of the license contained in the file LICENSE in this distribution.
|
|
|
9 |
|
|
|
10 |
For more information about licensing, please refer to
|
|
|
11 |
http://www.ghostscript.com/licensing/. For information on
|
|
|
12 |
commercial licensing, go to http://www.artifex.com/licensing/ or
|
|
|
13 |
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
|
|
|
14 |
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
|
|
|
15 |
*/
|
|
|
16 |
|
|
|
17 |
/* $Id: gximage2.c,v 1.5 2002/08/22 07:12:29 henrys Exp $ */
|
|
|
18 |
/* ImageType 2 image implementation */
|
|
|
19 |
#include "math_.h"
|
|
|
20 |
#include "memory_.h"
|
|
|
21 |
#include "gx.h"
|
|
|
22 |
#include "gserrors.h"
|
|
|
23 |
#include "gsmatrix.h" /* for gscoord.h */
|
|
|
24 |
#include "gscoord.h"
|
|
|
25 |
#include "gscspace.h"
|
|
|
26 |
#include "gscpixel.h"
|
|
|
27 |
#include "gsdevice.h"
|
|
|
28 |
#include "gsiparm2.h"
|
|
|
29 |
#include "gxgetbit.h"
|
|
|
30 |
#include "gxiparam.h"
|
|
|
31 |
#include "gxpath.h"
|
|
|
32 |
#include "gscolor2.h"
|
|
|
33 |
|
|
|
34 |
/* Forward references */
|
|
|
35 |
private dev_proc_begin_typed_image(gx_begin_image2);
|
|
|
36 |
private image_proc_source_size(gx_image2_source_size);
|
|
|
37 |
|
|
|
38 |
/* Structure descriptor */
|
|
|
39 |
private_st_gs_image2();
|
|
|
40 |
|
|
|
41 |
/* Define the image type for ImageType 2 images. */
|
|
|
42 |
const gx_image_type_t gs_image_type_2 = {
|
|
|
43 |
&st_gs_image2, gx_begin_image2, gx_image2_source_size,
|
|
|
44 |
gx_image_no_sput, gx_image_no_sget, gx_image_default_release, 2
|
|
|
45 |
};
|
|
|
46 |
|
|
|
47 |
/* Initialize an ImageType 2 image. */
|
|
|
48 |
void
|
|
|
49 |
gs_image2_t_init(gs_image2_t * pim)
|
|
|
50 |
{
|
|
|
51 |
pim->type = &gs_image_type_2;
|
|
|
52 |
pim->UnpaintedPath = 0;
|
|
|
53 |
pim->PixelCopy = false;
|
|
|
54 |
}
|
|
|
55 |
|
|
|
56 |
/*
|
|
|
57 |
* Compute the device space coordinates and source data size for an
|
|
|
58 |
* ImageType 2 image. This procedure fills in
|
|
|
59 |
* image.{Width,Height,ImageMatrix}.
|
|
|
60 |
*/
|
|
|
61 |
typedef struct image2_data_s {
|
|
|
62 |
gs_point origin;
|
|
|
63 |
gs_int_rect bbox;
|
|
|
64 |
gs_image1_t image;
|
|
|
65 |
} image2_data_t;
|
|
|
66 |
private int
|
|
|
67 |
image2_set_data(const gs_image2_t * pim, image2_data_t * pid)
|
|
|
68 |
{
|
|
|
69 |
gs_state *pgs = pim->DataSource;
|
|
|
70 |
gs_matrix smat;
|
|
|
71 |
gs_rect sbox, dbox;
|
|
|
72 |
|
|
|
73 |
gs_transform(pgs, pim->XOrigin, pim->YOrigin, &pid->origin);
|
|
|
74 |
sbox.q.x = (sbox.p.x = pim->XOrigin) + pim->Width;
|
|
|
75 |
sbox.q.y = (sbox.p.y = pim->YOrigin) + pim->Height;
|
|
|
76 |
gs_currentmatrix(pgs, &smat);
|
|
|
77 |
gs_bbox_transform(&sbox, &smat, &dbox);
|
|
|
78 |
pid->bbox.p.x = (int)floor(dbox.p.x);
|
|
|
79 |
pid->bbox.p.y = (int)floor(dbox.p.y);
|
|
|
80 |
pid->bbox.q.x = (int)ceil(dbox.q.x);
|
|
|
81 |
pid->bbox.q.y = (int)ceil(dbox.q.y);
|
|
|
82 |
pid->image.Width = pid->bbox.q.x - pid->bbox.p.x;
|
|
|
83 |
pid->image.Height = pid->bbox.q.y - pid->bbox.p.y;
|
|
|
84 |
pid->image.ImageMatrix = pim->ImageMatrix;
|
|
|
85 |
return 0;
|
|
|
86 |
}
|
|
|
87 |
|
|
|
88 |
/* Compute the source size of an ImageType 2 image. */
|
|
|
89 |
private int
|
|
|
90 |
gx_image2_source_size(const gs_imager_state * pis, const gs_image_common_t * pim,
|
|
|
91 |
gs_int_point * psize)
|
|
|
92 |
{
|
|
|
93 |
image2_data_t idata;
|
|
|
94 |
|
|
|
95 |
image2_set_data((const gs_image2_t *)pim, &idata);
|
|
|
96 |
psize->x = idata.image.Width;
|
|
|
97 |
psize->y = idata.image.Height;
|
|
|
98 |
return 0;
|
|
|
99 |
}
|
|
|
100 |
|
|
|
101 |
/* Begin an ImageType 2 image. */
|
|
|
102 |
/* Note that since ImageType 2 images don't have any source data, */
|
|
|
103 |
/* this procedure does all the work. */
|
|
|
104 |
private int
|
|
|
105 |
gx_begin_image2(gx_device * dev,
|
|
|
106 |
const gs_imager_state * pis, const gs_matrix * pmat,
|
|
|
107 |
const gs_image_common_t * pic, const gs_int_rect * prect,
|
|
|
108 |
const gx_drawing_color * pdcolor, const gx_clip_path * pcpath,
|
|
|
109 |
gs_memory_t * mem, gx_image_enum_common_t ** pinfo)
|
|
|
110 |
{
|
|
|
111 |
const gs_image2_t *pim = (const gs_image2_t *)pic;
|
|
|
112 |
gs_state *pgs = pim->DataSource;
|
|
|
113 |
gx_device *sdev = gs_currentdevice(pgs);
|
|
|
114 |
int depth = sdev->color_info.depth;
|
|
|
115 |
bool pixel_copy = pim->PixelCopy;
|
|
|
116 |
bool has_alpha;
|
|
|
117 |
bool direct_copy = false;
|
|
|
118 |
image2_data_t idata;
|
|
|
119 |
byte *row;
|
|
|
120 |
uint row_size, source_size;
|
|
|
121 |
gx_image_enum_common_t *info;
|
|
|
122 |
gs_matrix smat, dmat;
|
|
|
123 |
int code;
|
|
|
124 |
|
|
|
125 |
/* verify that color models are the same for PixelCopy */
|
|
|
126 |
if ( pixel_copy &&
|
|
|
127 |
memcmp( &dev->color_info,
|
|
|
128 |
&sdev->color_info,
|
|
|
129 |
sizeof(dev->color_info) ) != 0 )
|
|
|
130 |
return_error(gs_error_typecheck);
|
|
|
131 |
|
|
|
132 |
/****** ONLY HANDLE depth <= 8 FOR PixelCopy ******/
|
|
|
133 |
if (pixel_copy && depth <= 8)
|
|
|
134 |
return_error(gs_error_unregistered);
|
|
|
135 |
|
|
|
136 |
gs_image_t_init(&idata.image, gs_currentcolorspace((const gs_state *)pis));
|
|
|
137 |
|
|
|
138 |
/* Add Decode entries for K and alpha */
|
|
|
139 |
idata.image.Decode[6] = idata.image.Decode[8] = 0.0;
|
|
|
140 |
idata.image.Decode[7] = idata.image.Decode[9] = 1.0;
|
|
|
141 |
if (pmat == 0) {
|
|
|
142 |
gs_currentmatrix((const gs_state *)pis, &dmat);
|
|
|
143 |
pmat = &dmat;
|
|
|
144 |
} else
|
|
|
145 |
dmat = *pmat;
|
|
|
146 |
gs_currentmatrix(pgs, &smat);
|
|
|
147 |
code = image2_set_data(pim, &idata);
|
|
|
148 |
if (code < 0)
|
|
|
149 |
return code;
|
|
|
150 |
/****** ONLY HANDLE SIMPLE CASES FOR NOW ******/
|
|
|
151 |
if (idata.bbox.p.x != floor(idata.origin.x))
|
|
|
152 |
return_error(gs_error_rangecheck);
|
|
|
153 |
if (!(idata.bbox.p.y == floor(idata.origin.y) ||
|
|
|
154 |
idata.bbox.q.y == ceil(idata.origin.y))
|
|
|
155 |
)
|
|
|
156 |
return_error(gs_error_rangecheck);
|
|
|
157 |
source_size = (idata.image.Width * depth + 7) >> 3;
|
|
|
158 |
row_size = max(3 * idata.image.Width, source_size);
|
|
|
159 |
row = gs_alloc_bytes(mem, row_size, "gx_begin_image2");
|
|
|
160 |
if (row == 0)
|
|
|
161 |
return_error(gs_error_VMerror);
|
|
|
162 |
if (pixel_copy) {
|
|
|
163 |
idata.image.BitsPerComponent = depth;
|
|
|
164 |
has_alpha = false; /* no separate alpha channel */
|
|
|
165 |
|
|
|
166 |
if ( pcpath == NULL ||
|
|
|
167 |
gx_cpath_includes_rectangle(pcpath,
|
|
|
168 |
int2fixed(idata.bbox.p.x),
|
|
|
169 |
int2fixed(idata.bbox.p.y),
|
|
|
170 |
int2fixed(idata.bbox.q.x),
|
|
|
171 |
int2fixed(idata.bbox.q.y)) ) {
|
|
|
172 |
gs_matrix mat;
|
|
|
173 |
|
|
|
174 |
|
|
|
175 |
/*
|
|
|
176 |
* Figure 7.2 of the Adobe 3010 Supplement says that we should
|
|
|
177 |
* compute CTM x ImageMatrix here, but I'm almost certain it
|
|
|
178 |
* should be the other way around. Also see gdevx.c.
|
|
|
179 |
*/
|
|
|
180 |
gs_matrix_multiply(&idata.image.ImageMatrix, &smat, &mat);
|
|
|
181 |
direct_copy =
|
|
|
182 |
(is_xxyy(&dmat) || is_xyyx(&dmat)) &&
|
|
|
183 |
#define eqe(e) mat.e == dmat.e
|
|
|
184 |
eqe(xx) && eqe(xy) && eqe(yx) && eqe(yy);
|
|
|
185 |
#undef eqe
|
|
|
186 |
}
|
|
|
187 |
} else {
|
|
|
188 |
idata.image.BitsPerComponent = 8;
|
|
|
189 |
|
|
|
190 |
/* Always use RGB source color for now.
|
|
|
191 |
*
|
|
|
192 |
* The source device has alpha if the same RGB values with
|
|
|
193 |
* different alphas map to different pixel values.
|
|
|
194 |
****** THIS IS NOT GOOD ENOUGH: WE WANT TO SKIP TRANSFERRING
|
|
|
195 |
****** ALPHA IF THE SOURCE IS CAPABLE OF HAVING ALPHA BUT
|
|
|
196 |
****** DOESN'T CURRENTLY HAVE ANY ACTUAL ALPHA VALUES DIFFERENT
|
|
|
197 |
****** FROM 1.
|
|
|
198 |
*/
|
|
|
199 |
/*
|
|
|
200 |
* Since the default implementation of map_rgb_alpha_color
|
|
|
201 |
* premultiplies the color towards white, we can't just test
|
|
|
202 |
* whether changing alpha has an effect on the color.
|
|
|
203 |
*/
|
|
|
204 |
{
|
|
|
205 |
gx_color_index trans_black =
|
|
|
206 |
(*dev_proc(sdev, map_rgb_alpha_color))
|
|
|
207 |
(sdev, (gx_color_value) 0, (gx_color_value) 0,
|
|
|
208 |
(gx_color_value) 0, (gx_color_value) 0);
|
|
|
209 |
|
|
|
210 |
has_alpha =
|
|
|
211 |
trans_black != (*dev_proc(sdev, map_rgb_alpha_color))
|
|
|
212 |
(sdev, (gx_color_value) 0, (gx_color_value) 0,
|
|
|
213 |
(gx_color_value) 0, gx_max_color_value) &&
|
|
|
214 |
trans_black != (*dev_proc(sdev, map_rgb_alpha_color))
|
|
|
215 |
(sdev, gx_max_color_value, gx_max_color_value,
|
|
|
216 |
gx_max_color_value, gx_max_color_value);
|
|
|
217 |
}
|
|
|
218 |
}
|
|
|
219 |
idata.image.Alpha =
|
|
|
220 |
(has_alpha ? gs_image_alpha_last : gs_image_alpha_none);
|
|
|
221 |
if (smat.yy < 0) {
|
|
|
222 |
/*
|
|
|
223 |
* The source Y axis is reflected. Reflect the mapping from
|
|
|
224 |
* user space to source data.
|
|
|
225 |
*/
|
|
|
226 |
idata.image.ImageMatrix.ty += idata.image.Height *
|
|
|
227 |
idata.image.ImageMatrix.yy;
|
|
|
228 |
idata.image.ImageMatrix.xy = -idata.image.ImageMatrix.xy;
|
|
|
229 |
idata.image.ImageMatrix.yy = -idata.image.ImageMatrix.yy;
|
|
|
230 |
}
|
|
|
231 |
if (!direct_copy)
|
|
|
232 |
code = (*dev_proc(dev, begin_typed_image))
|
|
|
233 |
(dev, pis, pmat, (const gs_image_common_t *)&idata.image, NULL,
|
|
|
234 |
pdcolor, pcpath, mem, &info);
|
|
|
235 |
if (code >= 0) {
|
|
|
236 |
int y;
|
|
|
237 |
gs_int_rect rect;
|
|
|
238 |
gs_get_bits_params_t params;
|
|
|
239 |
const byte *data;
|
|
|
240 |
uint offset = row_size - source_size;
|
|
|
241 |
|
|
|
242 |
rect = idata.bbox;
|
|
|
243 |
for (y = 0; code >= 0 && y < idata.image.Height; ++y) {
|
|
|
244 |
gs_int_rect *unread = 0;
|
|
|
245 |
int num_unread;
|
|
|
246 |
|
|
|
247 |
/****** y COMPUTATION IS ROUNDED -- WRONG ******/
|
|
|
248 |
rect.q.y = rect.p.y + 1;
|
|
|
249 |
/* Insist on x_offset = 0 to simplify the conversion loop. */
|
|
|
250 |
params.options =
|
|
|
251 |
GB_ALIGN_ANY | (GB_RETURN_COPY | GB_RETURN_POINTER) |
|
|
|
252 |
GB_OFFSET_0 | (GB_RASTER_STANDARD | GB_RASTER_ANY) |
|
|
|
253 |
GB_PACKING_CHUNKY;
|
|
|
254 |
if (pixel_copy) {
|
|
|
255 |
params.options |= GB_COLORS_NATIVE;
|
|
|
256 |
params.data[0] = row + offset;
|
|
|
257 |
code = (*dev_proc(sdev, get_bits_rectangle))
|
|
|
258 |
(sdev, &rect, ¶ms, &unread);
|
|
|
259 |
if (code < 0)
|
|
|
260 |
break;
|
|
|
261 |
num_unread = code;
|
|
|
262 |
data = params.data[0];
|
|
|
263 |
if (direct_copy) {
|
|
|
264 |
/*
|
|
|
265 |
* Copy the pixels directly to the destination.
|
|
|
266 |
* We know that the transformation is only a translation,
|
|
|
267 |
* but we must handle an inverted destination Y axis.
|
|
|
268 |
*/
|
|
|
269 |
code = (*dev_proc(dev, copy_color))
|
|
|
270 |
(dev, data, 0, row_size, gx_no_bitmap_id,
|
|
|
271 |
(int)(dmat.tx - idata.image.ImageMatrix.tx),
|
|
|
272 |
(int)(dmat.ty - idata.image.ImageMatrix.ty +
|
|
|
273 |
(dmat.yy < 0 ? ~y : y)),
|
|
|
274 |
idata.image.Width, 1);
|
|
|
275 |
continue;
|
|
|
276 |
}
|
|
|
277 |
} else {
|
|
|
278 |
/*
|
|
|
279 |
* Convert the pixels to pure colors. This may be very
|
|
|
280 |
* slow and painful. Eventually we will use indexed color for
|
|
|
281 |
* narrow pixels.
|
|
|
282 |
*/
|
|
|
283 |
/* Always use RGB source color for now. */
|
|
|
284 |
params.options |=
|
|
|
285 |
GB_COLORS_RGB | GB_DEPTH_8 |
|
|
|
286 |
(has_alpha ? GB_ALPHA_LAST : GB_ALPHA_NONE);
|
|
|
287 |
params.data[0] = row;
|
|
|
288 |
code = (*dev_proc(sdev, get_bits_rectangle))
|
|
|
289 |
(sdev, &rect, ¶ms, &unread);
|
|
|
290 |
if (code < 0)
|
|
|
291 |
break;
|
|
|
292 |
num_unread = code;
|
|
|
293 |
data = params.data[0];
|
|
|
294 |
}
|
|
|
295 |
if (num_unread > 0 && pim->UnpaintedPath) {
|
|
|
296 |
/* Add the rectangle(s) to the unpainted path. */
|
|
|
297 |
int i;
|
|
|
298 |
|
|
|
299 |
for (i = 0; code >= 0 && i < num_unread; ++i)
|
|
|
300 |
code = gx_path_add_rectangle(pim->UnpaintedPath,
|
|
|
301 |
int2fixed(unread[i].p.x),
|
|
|
302 |
int2fixed(unread[i].p.y),
|
|
|
303 |
int2fixed(unread[i].q.x),
|
|
|
304 |
int2fixed(unread[i].q.y));
|
|
|
305 |
gs_free_object(dev->memory, unread, "UnpaintedPath unread");
|
|
|
306 |
}
|
|
|
307 |
code = gx_image_data(info, &data, 0, row_size, 1);
|
|
|
308 |
rect.p.y = rect.q.y;
|
|
|
309 |
}
|
|
|
310 |
if (!direct_copy) {
|
|
|
311 |
if (code >= 0)
|
|
|
312 |
code = gx_image_end(info, true);
|
|
|
313 |
else
|
|
|
314 |
discard(gx_image_end(info, false));
|
|
|
315 |
}
|
|
|
316 |
}
|
|
|
317 |
gs_free_object(mem, row, "gx_begin_image2");
|
|
|
318 |
return (code < 0 ? code : 1);
|
|
|
319 |
}
|