2 |
- |
1 |
/* Copyright (C) 1997, 1998, 1999, 2000 Aladdin Enterprises. All rights reserved.
|
|
|
2 |
|
|
|
3 |
This software is provided AS-IS with no warranty, either express or
|
|
|
4 |
implied.
|
|
|
5 |
|
|
|
6 |
This software is distributed under license and may not be copied,
|
|
|
7 |
modified or distributed except as expressly authorized under the terms
|
|
|
8 |
of the license contained in the file LICENSE in this distribution.
|
|
|
9 |
|
|
|
10 |
For more information about licensing, please refer to
|
|
|
11 |
http://www.ghostscript.com/licensing/. For information on
|
|
|
12 |
commercial licensing, go to http://www.artifex.com/licensing/ or
|
|
|
13 |
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
|
|
|
14 |
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
|
|
|
15 |
*/
|
|
|
16 |
|
|
|
17 |
/* $Id: gximage3.c,v 1.15 2005/03/29 14:26:26 igor Exp $ */
|
|
|
18 |
/* ImageType 3 image implementation */
|
|
|
19 |
#include "math_.h" /* for ceil, floor */
|
|
|
20 |
#include "memory_.h"
|
|
|
21 |
#include "gx.h"
|
|
|
22 |
#include "gserrors.h"
|
|
|
23 |
#include "gsbitops.h"
|
|
|
24 |
#include "gscspace.h"
|
|
|
25 |
#include "gsstruct.h"
|
|
|
26 |
#include "gxdevice.h"
|
|
|
27 |
#include "gxdevmem.h"
|
|
|
28 |
#include "gxclipm.h"
|
|
|
29 |
#include "gximage3.h"
|
|
|
30 |
#include "gxistate.h"
|
|
|
31 |
|
|
|
32 |
/* Forward references */
|
|
|
33 |
private dev_proc_begin_typed_image(gx_begin_image3);
|
|
|
34 |
private image_enum_proc_plane_data(gx_image3_plane_data);
|
|
|
35 |
private image_enum_proc_end_image(gx_image3_end_image);
|
|
|
36 |
private image_enum_proc_flush(gx_image3_flush);
|
|
|
37 |
private image_enum_proc_planes_wanted(gx_image3_planes_wanted);
|
|
|
38 |
|
|
|
39 |
/* GC descriptor */
|
|
|
40 |
private_st_gs_image3();
|
|
|
41 |
|
|
|
42 |
/* Define the image type for ImageType 3 images. */
|
|
|
43 |
const gx_image_type_t gs_image_type_3 = {
|
|
|
44 |
&st_gs_image3, gx_begin_image3, gx_data_image_source_size,
|
|
|
45 |
gx_image_no_sput, gx_image_no_sget, gx_image_default_release, 3
|
|
|
46 |
};
|
|
|
47 |
private const gx_image_enum_procs_t image3_enum_procs = {
|
|
|
48 |
gx_image3_plane_data, gx_image3_end_image,
|
|
|
49 |
gx_image3_flush, gx_image3_planes_wanted
|
|
|
50 |
};
|
|
|
51 |
|
|
|
52 |
/* Initialize an ImageType 3 image. */
|
|
|
53 |
void
|
|
|
54 |
gs_image3_t_init(gs_image3_t * pim, const gs_color_space * color_space,
|
|
|
55 |
gs_image3_interleave_type_t interleave_type)
|
|
|
56 |
{
|
|
|
57 |
gs_pixel_image_t_init((gs_pixel_image_t *) pim, color_space);
|
|
|
58 |
pim->type = &gs_image_type_3;
|
|
|
59 |
pim->InterleaveType = interleave_type;
|
|
|
60 |
gs_data_image_t_init(&pim->MaskDict, -1);
|
|
|
61 |
}
|
|
|
62 |
|
|
|
63 |
/*
|
|
|
64 |
* We implement ImageType 3 images by interposing a mask clipper in
|
|
|
65 |
* front of an ordinary ImageType 1 image. Note that we build up the
|
|
|
66 |
* mask row-by-row as we are processing the image.
|
|
|
67 |
*
|
|
|
68 |
* We export a generalized form of the begin_image procedure for use by
|
|
|
69 |
* the PDF and PostScript writers.
|
|
|
70 |
*/
|
|
|
71 |
typedef struct gx_image3_enum_s {
|
|
|
72 |
gx_image_enum_common;
|
|
|
73 |
gx_device *mdev; /* gx_device_memory in default impl. */
|
|
|
74 |
gx_device *pcdev; /* gx_device_mask_clip in default impl. */
|
|
|
75 |
gx_image_enum_common_t *mask_info;
|
|
|
76 |
gx_image_enum_common_t *pixel_info;
|
|
|
77 |
gs_image3_interleave_type_t InterleaveType;
|
|
|
78 |
int num_components; /* (not counting mask) */
|
|
|
79 |
int bpc; /* BitsPerComponent */
|
|
|
80 |
gs_memory_t *memory;
|
|
|
81 |
int mask_width, mask_height, mask_full_height;
|
|
|
82 |
int pixel_width, pixel_height, pixel_full_height;
|
|
|
83 |
byte *mask_data; /* (if chunky) */
|
|
|
84 |
byte *pixel_data; /* (if chunky) */
|
|
|
85 |
/* The following are the only members that change dynamically. */
|
|
|
86 |
int mask_y;
|
|
|
87 |
int pixel_y;
|
|
|
88 |
int mask_skip; /* # of mask rows to skip, see below */
|
|
|
89 |
} gx_image3_enum_t;
|
|
|
90 |
|
|
|
91 |
extern_st(st_gx_image_enum_common);
|
|
|
92 |
gs_private_st_suffix_add6(st_image3_enum, gx_image3_enum_t, "gx_image3_enum_t",
|
|
|
93 |
image3_enum_enum_ptrs, image3_enum_reloc_ptrs, st_gx_image_enum_common,
|
|
|
94 |
mdev, pcdev, pixel_info, mask_info, pixel_data, mask_data);
|
|
|
95 |
|
|
|
96 |
/* Define the default implementation of ImageType 3 processing. */
|
|
|
97 |
private IMAGE3_MAKE_MID_PROC(make_mid_default); /* check prototype */
|
|
|
98 |
private int
|
|
|
99 |
make_mid_default(gx_device **pmidev, gx_device *dev, int width, int height,
|
|
|
100 |
gs_memory_t *mem)
|
|
|
101 |
{
|
|
|
102 |
gx_device_memory *midev =
|
|
|
103 |
gs_alloc_struct(mem, gx_device_memory, &st_device_memory,
|
|
|
104 |
"make_mid_default");
|
|
|
105 |
int code;
|
|
|
106 |
|
|
|
107 |
if (midev == 0)
|
|
|
108 |
return_error(gs_error_VMerror);
|
|
|
109 |
gs_make_mem_mono_device(midev, mem, NULL);
|
|
|
110 |
midev->bitmap_memory = mem;
|
|
|
111 |
midev->width = width;
|
|
|
112 |
midev->height = height;
|
|
|
113 |
check_device_separable((gx_device *)midev);
|
|
|
114 |
gx_device_fill_in_procs((gx_device *)midev);
|
|
|
115 |
code = dev_proc(midev, open_device)((gx_device *)midev);
|
|
|
116 |
if (code < 0) {
|
|
|
117 |
gs_free_object(mem, midev, "make_mid_default");
|
|
|
118 |
return code;
|
|
|
119 |
}
|
|
|
120 |
midev->is_open = true;
|
|
|
121 |
dev_proc(midev, fill_rectangle)
|
|
|
122 |
((gx_device *)midev, 0, 0, width, height, (gx_color_index)0);
|
|
|
123 |
*pmidev = (gx_device *)midev;
|
|
|
124 |
return 0;
|
|
|
125 |
}
|
|
|
126 |
private IMAGE3_MAKE_MCDE_PROC(make_mcde_default); /* check prototype */
|
|
|
127 |
private int
|
|
|
128 |
make_mcde_default(gx_device *dev, const gs_imager_state *pis,
|
|
|
129 |
const gs_matrix *pmat, const gs_image_common_t *pic,
|
|
|
130 |
const gs_int_rect *prect, const gx_drawing_color *pdcolor,
|
|
|
131 |
const gx_clip_path *pcpath, gs_memory_t *mem,
|
|
|
132 |
gx_image_enum_common_t **pinfo,
|
|
|
133 |
gx_device **pmcdev, gx_device *midev,
|
|
|
134 |
gx_image_enum_common_t *pminfo,
|
|
|
135 |
const gs_int_point *origin)
|
|
|
136 |
{
|
|
|
137 |
gx_device_memory *const mdev = (gx_device_memory *)midev;
|
|
|
138 |
gx_device_mask_clip *mcdev =
|
|
|
139 |
gs_alloc_struct(mem, gx_device_mask_clip, &st_device_mask_clip,
|
|
|
140 |
"make_mcde_default");
|
|
|
141 |
gx_strip_bitmap bits; /* only gx_bitmap */
|
|
|
142 |
int code;
|
|
|
143 |
|
|
|
144 |
if (mcdev == 0)
|
|
|
145 |
return_error(gs_error_VMerror);
|
|
|
146 |
bits.data = mdev->base;
|
|
|
147 |
bits.raster = mdev->raster;
|
|
|
148 |
bits.size.x = mdev->width;
|
|
|
149 |
bits.size.y = mdev->height;
|
|
|
150 |
bits.id = gx_no_bitmap_id;
|
|
|
151 |
code = gx_mask_clip_initialize(mcdev, &gs_mask_clip_device,
|
|
|
152 |
(const gx_bitmap *)&bits, dev,
|
|
|
153 |
origin->x, origin->y, mem);
|
|
|
154 |
if (code < 0) {
|
|
|
155 |
gs_free_object(mem, mcdev, "make_mcde_default");
|
|
|
156 |
return code;
|
|
|
157 |
}
|
|
|
158 |
mcdev->tiles = bits;
|
|
|
159 |
code = dev_proc(mcdev, begin_typed_image)
|
|
|
160 |
((gx_device *)mcdev, pis, pmat, pic, prect, pdcolor, pcpath, mem,
|
|
|
161 |
pinfo);
|
|
|
162 |
if (code < 0) {
|
|
|
163 |
gs_free_object(mem, mcdev, "make_mcde_default");
|
|
|
164 |
return code;
|
|
|
165 |
}
|
|
|
166 |
*pmcdev = (gx_device *)mcdev;
|
|
|
167 |
return 0;
|
|
|
168 |
}
|
|
|
169 |
private int
|
|
|
170 |
gx_begin_image3(gx_device * dev,
|
|
|
171 |
const gs_imager_state * pis, const gs_matrix * pmat,
|
|
|
172 |
const gs_image_common_t * pic, const gs_int_rect * prect,
|
|
|
173 |
const gx_drawing_color * pdcolor, const gx_clip_path * pcpath,
|
|
|
174 |
gs_memory_t * mem, gx_image_enum_common_t ** pinfo)
|
|
|
175 |
{
|
|
|
176 |
return gx_begin_image3_generic(dev, pis, pmat, pic, prect, pdcolor,
|
|
|
177 |
pcpath, mem, make_mid_default,
|
|
|
178 |
make_mcde_default, pinfo);
|
|
|
179 |
}
|
|
|
180 |
|
|
|
181 |
/*
|
|
|
182 |
* Begin a generic ImageType 3 image, with client handling the creation of
|
|
|
183 |
* the mask image and mask clip devices.
|
|
|
184 |
*/
|
|
|
185 |
private bool check_image3_extent(floatp mask_coeff, floatp data_coeff);
|
|
|
186 |
int
|
|
|
187 |
gx_begin_image3_generic(gx_device * dev,
|
|
|
188 |
const gs_imager_state *pis, const gs_matrix *pmat,
|
|
|
189 |
const gs_image_common_t *pic, const gs_int_rect *prect,
|
|
|
190 |
const gx_drawing_color *pdcolor,
|
|
|
191 |
const gx_clip_path *pcpath, gs_memory_t *mem,
|
|
|
192 |
image3_make_mid_proc_t make_mid,
|
|
|
193 |
image3_make_mcde_proc_t make_mcde,
|
|
|
194 |
gx_image_enum_common_t **pinfo)
|
|
|
195 |
{
|
|
|
196 |
const gs_image3_t *pim = (const gs_image3_t *)pic;
|
|
|
197 |
gx_image3_enum_t *penum;
|
|
|
198 |
gs_int_rect mask_rect, data_rect;
|
|
|
199 |
gx_device *mdev = 0;
|
|
|
200 |
gx_device *pcdev = 0;
|
|
|
201 |
gs_image_t i_pixel, i_mask;
|
|
|
202 |
gs_matrix mi_pixel, mi_mask, mat;
|
|
|
203 |
gs_rect mrect;
|
|
|
204 |
gs_int_point origin;
|
|
|
205 |
int code;
|
|
|
206 |
|
|
|
207 |
/* Validate the parameters. */
|
|
|
208 |
if (pim->Height <= 0 || pim->MaskDict.Height <= 0)
|
|
|
209 |
return_error(gs_error_rangecheck);
|
|
|
210 |
switch (pim->InterleaveType) {
|
|
|
211 |
default:
|
|
|
212 |
return_error(gs_error_rangecheck);
|
|
|
213 |
case interleave_chunky:
|
|
|
214 |
if (pim->MaskDict.Width != pim->Width ||
|
|
|
215 |
pim->MaskDict.Height != pim->Height ||
|
|
|
216 |
pim->MaskDict.BitsPerComponent != pim->BitsPerComponent ||
|
|
|
217 |
pim->format != gs_image_format_chunky
|
|
|
218 |
)
|
|
|
219 |
return_error(gs_error_rangecheck);
|
|
|
220 |
break;
|
|
|
221 |
case interleave_scan_lines:
|
|
|
222 |
if (pim->MaskDict.Height % pim->Height != 0 &&
|
|
|
223 |
pim->Height % pim->MaskDict.Height != 0
|
|
|
224 |
)
|
|
|
225 |
return_error(gs_error_rangecheck);
|
|
|
226 |
/* falls through */
|
|
|
227 |
case interleave_separate_source:
|
|
|
228 |
if (pim->MaskDict.BitsPerComponent != 1)
|
|
|
229 |
return_error(gs_error_rangecheck);
|
|
|
230 |
}
|
|
|
231 |
if (!check_image3_extent(pim->ImageMatrix.xx,
|
|
|
232 |
pim->MaskDict.ImageMatrix.xx) ||
|
|
|
233 |
!check_image3_extent(pim->ImageMatrix.xy,
|
|
|
234 |
pim->MaskDict.ImageMatrix.xy) ||
|
|
|
235 |
!check_image3_extent(pim->ImageMatrix.yx,
|
|
|
236 |
pim->MaskDict.ImageMatrix.yx) ||
|
|
|
237 |
!check_image3_extent(pim->ImageMatrix.yy,
|
|
|
238 |
pim->MaskDict.ImageMatrix.yy)
|
|
|
239 |
)
|
|
|
240 |
return_error(gs_error_rangecheck);
|
|
|
241 |
if ((code = gs_matrix_invert(&pim->ImageMatrix, &mi_pixel)) < 0 ||
|
|
|
242 |
(code = gs_matrix_invert(&pim->MaskDict.ImageMatrix, &mi_mask)) < 0
|
|
|
243 |
)
|
|
|
244 |
return code;
|
|
|
245 |
if (fabs(mi_pixel.tx - mi_mask.tx) >= 0.5 ||
|
|
|
246 |
fabs(mi_pixel.ty - mi_mask.ty) >= 0.5
|
|
|
247 |
)
|
|
|
248 |
return_error(gs_error_rangecheck);
|
|
|
249 |
{
|
|
|
250 |
gs_point ep, em;
|
|
|
251 |
|
|
|
252 |
if ((code = gs_point_transform(pim->Width, pim->Height, &mi_pixel,
|
|
|
253 |
&ep)) < 0 ||
|
|
|
254 |
(code = gs_point_transform(pim->MaskDict.Width,
|
|
|
255 |
pim->MaskDict.Height, &mi_mask,
|
|
|
256 |
&em)) < 0
|
|
|
257 |
)
|
|
|
258 |
return code;
|
|
|
259 |
if (fabs(ep.x - em.x) >= 0.5 || fabs(ep.y - em.y) >= 0.5)
|
|
|
260 |
return_error(gs_error_rangecheck);
|
|
|
261 |
}
|
|
|
262 |
penum = gs_alloc_struct(mem, gx_image3_enum_t, &st_image3_enum,
|
|
|
263 |
"gx_begin_image3");
|
|
|
264 |
if (penum == 0)
|
|
|
265 |
return_error(gs_error_VMerror);
|
|
|
266 |
penum->num_components =
|
|
|
267 |
gs_color_space_num_components(pim->ColorSpace);
|
|
|
268 |
gx_image_enum_common_init((gx_image_enum_common_t *) penum,
|
|
|
269 |
(const gs_data_image_t *)pim,
|
|
|
270 |
&image3_enum_procs, dev,
|
|
|
271 |
1 + penum->num_components,
|
|
|
272 |
pim->format);
|
|
|
273 |
/* Initialize pointers now in case we bail out. */
|
|
|
274 |
penum->mask_data = 0;
|
|
|
275 |
penum->pixel_data = 0;
|
|
|
276 |
if (prect) {
|
|
|
277 |
long lmw = pim->MaskDict.Width, lmh = pim->MaskDict.Height;
|
|
|
278 |
|
|
|
279 |
data_rect = *prect;
|
|
|
280 |
mask_rect.p.x = (int)(data_rect.p.x * lmw / pim->Width);
|
|
|
281 |
mask_rect.p.y = (int)(data_rect.p.y * lmh / pim->Height);
|
|
|
282 |
mask_rect.q.x = (int)((data_rect.q.x + pim->Width - 1) * lmw /
|
|
|
283 |
pim->Width);
|
|
|
284 |
mask_rect.q.y = (int)((data_rect.q.y + pim->Height - 1) * lmh /
|
|
|
285 |
pim->Height);
|
|
|
286 |
} else {
|
|
|
287 |
mask_rect.p.x = mask_rect.p.y = 0;
|
|
|
288 |
mask_rect.q.x = pim->MaskDict.Width;
|
|
|
289 |
mask_rect.q.y = pim->MaskDict.Height;
|
|
|
290 |
data_rect.p.x = data_rect.p.y = 0;
|
|
|
291 |
data_rect.q.x = pim->Width;
|
|
|
292 |
data_rect.q.y = pim->Height;
|
|
|
293 |
}
|
|
|
294 |
penum->mask_width = mask_rect.q.x - mask_rect.p.x;
|
|
|
295 |
penum->mask_height = mask_rect.q.y - mask_rect.p.y;
|
|
|
296 |
penum->mask_full_height = pim->MaskDict.Height;
|
|
|
297 |
penum->mask_y = 0;
|
|
|
298 |
penum->mask_skip = 0;
|
|
|
299 |
penum->pixel_width = data_rect.q.x - data_rect.p.x;
|
|
|
300 |
penum->pixel_height = data_rect.q.y - data_rect.p.y;
|
|
|
301 |
penum->pixel_full_height = pim->Height;
|
|
|
302 |
penum->pixel_y = 0;
|
|
|
303 |
penum->mask_info = 0;
|
|
|
304 |
penum->pixel_info = 0;
|
|
|
305 |
if (pim->InterleaveType == interleave_chunky) {
|
|
|
306 |
/* Allocate row buffers for the mask and pixel data. */
|
|
|
307 |
penum->pixel_data =
|
|
|
308 |
gs_alloc_bytes(mem,
|
|
|
309 |
(penum->pixel_width * pim->BitsPerComponent *
|
|
|
310 |
penum->num_components + 7) >> 3,
|
|
|
311 |
"gx_begin_image3(pixel_data)");
|
|
|
312 |
penum->mask_data =
|
|
|
313 |
gs_alloc_bytes(mem, (penum->mask_width + 7) >> 3,
|
|
|
314 |
"gx_begin_image3(mask_data)");
|
|
|
315 |
if (penum->pixel_data == 0 || penum->mask_data == 0) {
|
|
|
316 |
code = gs_note_error(gs_error_VMerror);
|
|
|
317 |
goto out1;
|
|
|
318 |
}
|
|
|
319 |
}
|
|
|
320 |
penum->InterleaveType = pim->InterleaveType;
|
|
|
321 |
penum->bpc = pim->BitsPerComponent;
|
|
|
322 |
penum->memory = mem;
|
|
|
323 |
mrect.p.x = mrect.p.y = 0;
|
|
|
324 |
mrect.q.x = pim->MaskDict.Width;
|
|
|
325 |
mrect.q.y = pim->MaskDict.Height;
|
|
|
326 |
if (pmat == 0)
|
|
|
327 |
pmat = &ctm_only(pis);
|
|
|
328 |
if ((code = gs_matrix_multiply(&mi_mask, pmat, &mat)) < 0 ||
|
|
|
329 |
(code = gs_bbox_transform(&mrect, &mat, &mrect)) < 0
|
|
|
330 |
)
|
|
|
331 |
return code;
|
|
|
332 |
|
|
|
333 |
origin.x = (mrect.p.x < 0) ? (int)ceil(mrect.p.x) : (int)floor(mrect.p.x);
|
|
|
334 |
origin.y = (mrect.p.y < 0) ? (int)ceil(mrect.p.y) : (int)floor(mrect.p.y);
|
|
|
335 |
code = make_mid(&mdev, dev, (int)ceil(mrect.q.x) - origin.x,
|
|
|
336 |
(int)ceil(mrect.q.y) - origin.y, mem);
|
|
|
337 |
if (code < 0)
|
|
|
338 |
goto out1;
|
|
|
339 |
penum->mdev = mdev;
|
|
|
340 |
gs_image_t_init_mask(&i_mask, false);
|
|
|
341 |
i_mask.adjust = false;
|
|
|
342 |
{
|
|
|
343 |
const gx_image_type_t *type1 = i_mask.type;
|
|
|
344 |
|
|
|
345 |
*(gs_data_image_t *)&i_mask = pim->MaskDict;
|
|
|
346 |
i_mask.type = type1;
|
|
|
347 |
i_mask.BitsPerComponent = 1;
|
|
|
348 |
}
|
|
|
349 |
{
|
|
|
350 |
gx_drawing_color dcolor;
|
|
|
351 |
gs_matrix m_mat;
|
|
|
352 |
|
|
|
353 |
set_nonclient_dev_color(&dcolor, 1);
|
|
|
354 |
/*
|
|
|
355 |
* Adjust the translation for rendering the mask to include a
|
|
|
356 |
* negative translation by origin.{x,y} in device space.
|
|
|
357 |
*/
|
|
|
358 |
m_mat = *pmat;
|
|
|
359 |
m_mat.tx -= origin.x;
|
|
|
360 |
m_mat.ty -= origin.y;
|
|
|
361 |
/*
|
|
|
362 |
* Note that pis = NULL here, since we don't want to have to
|
|
|
363 |
* create another imager state with default log_op, etc.
|
|
|
364 |
*/
|
|
|
365 |
code = gx_device_begin_typed_image(mdev, NULL, &m_mat,
|
|
|
366 |
(const gs_image_common_t *)&i_mask,
|
|
|
367 |
&mask_rect, &dcolor, NULL, mem,
|
|
|
368 |
&penum->mask_info);
|
|
|
369 |
if (code < 0)
|
|
|
370 |
goto out2;
|
|
|
371 |
}
|
|
|
372 |
gs_image_t_init(&i_pixel, pim->ColorSpace);
|
|
|
373 |
{
|
|
|
374 |
const gx_image_type_t *type1 = i_pixel.type;
|
|
|
375 |
const bool mask = i_pixel.ImageMask;
|
|
|
376 |
|
|
|
377 |
/* On gcc 2.95.4 for Alpha all structures are padded to 8 byte
|
|
|
378 |
* boundary but sizeof(bool) == 4. First member of the subclass
|
|
|
379 |
* is restored because it is overwritten by padding data.
|
|
|
380 |
*/
|
|
|
381 |
*(gs_pixel_image_t *)&i_pixel = *(const gs_pixel_image_t *)pim;
|
|
|
382 |
i_pixel.ImageMask = mask;
|
|
|
383 |
i_pixel.type = type1;
|
|
|
384 |
}
|
|
|
385 |
code = make_mcde(dev, pis, pmat, (const gs_image_common_t *)&i_pixel,
|
|
|
386 |
prect, pdcolor, pcpath, mem, &penum->pixel_info,
|
|
|
387 |
&pcdev, mdev, penum->mask_info, &origin);
|
|
|
388 |
if (code < 0)
|
|
|
389 |
goto out3;
|
|
|
390 |
penum->pcdev = pcdev;
|
|
|
391 |
/*
|
|
|
392 |
* Set num_planes, plane_widths, and plane_depths from the values in the
|
|
|
393 |
* enumerators for the mask and the image data.
|
|
|
394 |
*/
|
|
|
395 |
switch (pim->InterleaveType) {
|
|
|
396 |
case interleave_chunky:
|
|
|
397 |
/* Add the mask data to the depth of the image data. */
|
|
|
398 |
penum->num_planes = 1;
|
|
|
399 |
penum->plane_widths[0] = pim->Width;
|
|
|
400 |
penum->plane_depths[0] =
|
|
|
401 |
penum->pixel_info->plane_depths[0] *
|
|
|
402 |
(penum->num_components + 1) / penum->num_components;
|
|
|
403 |
break;
|
|
|
404 |
case interleave_scan_lines:
|
|
|
405 |
/*
|
|
|
406 |
* There is only 1 plane, with dynamically changing width & depth.
|
|
|
407 |
* Initialize it for the mask data, since that is what will be
|
|
|
408 |
* read first.
|
|
|
409 |
*/
|
|
|
410 |
penum->num_planes = 1;
|
|
|
411 |
penum->plane_depths[0] = 1;
|
|
|
412 |
penum->plane_widths[0] = pim->MaskDict.Width;
|
|
|
413 |
break;
|
|
|
414 |
case interleave_separate_source:
|
|
|
415 |
/* Insert the mask data as a separate plane before the image data. */
|
|
|
416 |
penum->num_planes = penum->pixel_info->num_planes + 1;
|
|
|
417 |
penum->plane_widths[0] = pim->MaskDict.Width;
|
|
|
418 |
penum->plane_depths[0] = 1;
|
|
|
419 |
memcpy(&penum->plane_widths[1], &penum->pixel_info->plane_widths[0],
|
|
|
420 |
(penum->num_planes - 1) * sizeof(penum->plane_widths[0]));
|
|
|
421 |
memcpy(&penum->plane_depths[1], &penum->pixel_info->plane_depths[0],
|
|
|
422 |
(penum->num_planes - 1) * sizeof(penum->plane_depths[0]));
|
|
|
423 |
break;
|
|
|
424 |
}
|
|
|
425 |
gx_device_retain(mdev, true); /* will free explicitly */
|
|
|
426 |
gx_device_retain(pcdev, true); /* ditto */
|
|
|
427 |
*pinfo = (gx_image_enum_common_t *) penum;
|
|
|
428 |
return 0;
|
|
|
429 |
out3:
|
|
|
430 |
gx_image_end(penum->mask_info, false);
|
|
|
431 |
out2:
|
|
|
432 |
gs_closedevice(mdev);
|
|
|
433 |
gs_free_object(mem, mdev, "gx_begin_image3(mdev)");
|
|
|
434 |
out1:
|
|
|
435 |
gs_free_object(mem, penum->mask_data, "gx_begin_image3(mask_data)");
|
|
|
436 |
gs_free_object(mem, penum->pixel_data, "gx_begin_image3(pixel_data)");
|
|
|
437 |
gs_free_object(mem, penum, "gx_begin_image3");
|
|
|
438 |
return code;
|
|
|
439 |
}
|
|
|
440 |
private bool
|
|
|
441 |
check_image3_extent(floatp mask_coeff, floatp data_coeff)
|
|
|
442 |
{
|
|
|
443 |
if (mask_coeff == 0)
|
|
|
444 |
return data_coeff == 0;
|
|
|
445 |
if (data_coeff == 0 || (mask_coeff > 0) != (data_coeff > 0))
|
|
|
446 |
return false;
|
|
|
447 |
return true;
|
|
|
448 |
}
|
|
|
449 |
|
|
|
450 |
/*
|
|
|
451 |
* Return > 0 if we want more mask now, < 0 if we want more data now,
|
|
|
452 |
* 0 if we want both.
|
|
|
453 |
*/
|
|
|
454 |
private int
|
|
|
455 |
planes_next(const gx_image3_enum_t *penum)
|
|
|
456 |
{
|
|
|
457 |
/*
|
|
|
458 |
* The invariant we need to maintain is that we always have at least as
|
|
|
459 |
* much mask as pixel data, i.e., mask_y / mask_full_height >=
|
|
|
460 |
* pixel_y / pixel_full_height, or, to avoid floating point,
|
|
|
461 |
* mask_y * pixel_full_height >= pixel_y * mask_full_height.
|
|
|
462 |
* We know this condition is true now;
|
|
|
463 |
* return a value that indicates how to maintain it.
|
|
|
464 |
*/
|
|
|
465 |
int mask_h = penum->mask_full_height;
|
|
|
466 |
int pixel_h = penum->pixel_full_height;
|
|
|
467 |
long current = penum->pixel_y * (long)mask_h -
|
|
|
468 |
penum->mask_y * (long)pixel_h;
|
|
|
469 |
|
|
|
470 |
#ifdef DEBUG
|
|
|
471 |
if (current > 0)
|
|
|
472 |
lprintf4("planes_next invariant fails: %d/%d > %d/%d\n",
|
|
|
473 |
penum->pixel_y, penum->pixel_full_height,
|
|
|
474 |
penum->mask_y, penum->mask_full_height);
|
|
|
475 |
#endif
|
|
|
476 |
return ((current += mask_h) <= 0 ? -1 :
|
|
|
477 |
current - pixel_h <= 0 ? 0 : 1);
|
|
|
478 |
}
|
|
|
479 |
|
|
|
480 |
/* Process the next piece of an ImageType 3 image. */
|
|
|
481 |
private int
|
|
|
482 |
gx_image3_plane_data(gx_image_enum_common_t * info,
|
|
|
483 |
const gx_image_plane_t * planes, int height,
|
|
|
484 |
int *rows_used)
|
|
|
485 |
{
|
|
|
486 |
gx_image3_enum_t *penum = (gx_image3_enum_t *) info;
|
|
|
487 |
int pixel_height = penum->pixel_height;
|
|
|
488 |
int pixel_used = 0;
|
|
|
489 |
int mask_height = penum->mask_height;
|
|
|
490 |
int mask_used = 0;
|
|
|
491 |
int h1 = max(pixel_height - penum->pixel_y, mask_height - penum->mask_y);
|
|
|
492 |
int h = min(height, h1);
|
|
|
493 |
const gx_image_plane_t *pixel_planes;
|
|
|
494 |
gx_image_plane_t pixel_plane, mask_plane;
|
|
|
495 |
int code = 0;
|
|
|
496 |
|
|
|
497 |
/* Initialized rows_used in case we get an error. */
|
|
|
498 |
*rows_used = 0;
|
|
|
499 |
switch (penum->InterleaveType) {
|
|
|
500 |
case interleave_chunky:
|
|
|
501 |
if (h <= 0)
|
|
|
502 |
return 0;
|
|
|
503 |
if (h > 1) {
|
|
|
504 |
/* Do the operation one row at a time. */
|
|
|
505 |
int h_orig = h;
|
|
|
506 |
|
|
|
507 |
mask_plane = planes[0];
|
|
|
508 |
do {
|
|
|
509 |
code = gx_image3_plane_data(info, &mask_plane, 1,
|
|
|
510 |
rows_used);
|
|
|
511 |
h -= *rows_used;
|
|
|
512 |
if (code)
|
|
|
513 |
break;
|
|
|
514 |
mask_plane.data += mask_plane.raster;
|
|
|
515 |
} while (h);
|
|
|
516 |
*rows_used = h_orig - h;
|
|
|
517 |
return code;
|
|
|
518 |
} {
|
|
|
519 |
/* Pull apart the source data and the mask data. */
|
|
|
520 |
int bpc = penum->bpc;
|
|
|
521 |
int num_components = penum->num_components;
|
|
|
522 |
int width = penum->pixel_width;
|
|
|
523 |
|
|
|
524 |
/* We do this in the simplest (not fastest) way for now. */
|
|
|
525 |
uint bit_x = bpc * (num_components + 1) * planes[0].data_x;
|
|
|
526 |
|
|
|
527 |
sample_load_declare_setup(sptr, sbit,
|
|
|
528 |
planes[0].data + (bit_x >> 3),
|
|
|
529 |
bit_x & 7, bpc);
|
|
|
530 |
sample_store_declare_setup(mptr, mbit, mbbyte,
|
|
|
531 |
penum->mask_data, 0, 1);
|
|
|
532 |
sample_store_declare_setup(pptr, pbit, pbbyte,
|
|
|
533 |
penum->pixel_data, 0, bpc);
|
|
|
534 |
int x;
|
|
|
535 |
|
|
|
536 |
mask_plane.data = mptr;
|
|
|
537 |
mask_plane.data_x = 0;
|
|
|
538 |
/* raster doesn't matter */
|
|
|
539 |
pixel_plane.data = pptr;
|
|
|
540 |
pixel_plane.data_x = 0;
|
|
|
541 |
/* raster doesn't matter */
|
|
|
542 |
pixel_planes = &pixel_plane;
|
|
|
543 |
for (x = 0; x < width; ++x) {
|
|
|
544 |
uint value;
|
|
|
545 |
int i;
|
|
|
546 |
|
|
|
547 |
sample_load_next12(value, sptr, sbit, bpc);
|
|
|
548 |
sample_store_next12(value != 0, mptr, mbit, 1, mbbyte);
|
|
|
549 |
for (i = 0; i < num_components; ++i) {
|
|
|
550 |
sample_load_next12(value, sptr, sbit, bpc);
|
|
|
551 |
sample_store_next12(value, pptr, pbit, bpc, pbbyte);
|
|
|
552 |
}
|
|
|
553 |
}
|
|
|
554 |
sample_store_flush(mptr, mbit, 1, mbbyte);
|
|
|
555 |
sample_store_flush(pptr, pbit, bpc, pbbyte);
|
|
|
556 |
}
|
|
|
557 |
break;
|
|
|
558 |
case interleave_scan_lines:
|
|
|
559 |
if (planes_next(penum) >= 0) {
|
|
|
560 |
/* This is mask data. */
|
|
|
561 |
mask_plane = planes[0];
|
|
|
562 |
pixel_planes = &pixel_plane;
|
|
|
563 |
pixel_plane.data = 0;
|
|
|
564 |
} else {
|
|
|
565 |
/* This is pixel data. */
|
|
|
566 |
mask_plane.data = 0;
|
|
|
567 |
pixel_planes = planes;
|
|
|
568 |
}
|
|
|
569 |
break;
|
|
|
570 |
case interleave_separate_source:
|
|
|
571 |
/*
|
|
|
572 |
* In order to be able to recover from interruptions, we must
|
|
|
573 |
* limit separate-source processing to 1 scan line at a time.
|
|
|
574 |
*/
|
|
|
575 |
if (h > 1)
|
|
|
576 |
h = 1;
|
|
|
577 |
mask_plane = planes[0];
|
|
|
578 |
pixel_planes = planes + 1;
|
|
|
579 |
break;
|
|
|
580 |
default: /* not possible */
|
|
|
581 |
return_error(gs_error_rangecheck);
|
|
|
582 |
}
|
|
|
583 |
/*
|
|
|
584 |
* Process the mask data first, so it will set up the mask
|
|
|
585 |
* device for clipping the pixel data.
|
|
|
586 |
*/
|
|
|
587 |
if (mask_plane.data) {
|
|
|
588 |
/*
|
|
|
589 |
* If, on the last call, we processed some mask rows successfully
|
|
|
590 |
* but processing the pixel rows was interrupted, we set rows_used
|
|
|
591 |
* to indicate the number of pixel rows processed (since there is
|
|
|
592 |
* no way to return two rows_used values). If this happened, some
|
|
|
593 |
* mask rows may get presented again. We must skip over them
|
|
|
594 |
* rather than processing them again.
|
|
|
595 |
*/
|
|
|
596 |
int skip = penum->mask_skip;
|
|
|
597 |
|
|
|
598 |
if (skip >= h) {
|
|
|
599 |
penum->mask_skip = skip - (mask_used = h);
|
|
|
600 |
} else {
|
|
|
601 |
int mask_h = h - skip;
|
|
|
602 |
|
|
|
603 |
mask_plane.data += skip * mask_plane.raster;
|
|
|
604 |
penum->mask_skip = 0;
|
|
|
605 |
code = gx_image_plane_data_rows(penum->mask_info, &mask_plane,
|
|
|
606 |
mask_h, &mask_used);
|
|
|
607 |
mask_used += skip;
|
|
|
608 |
}
|
|
|
609 |
*rows_used = mask_used;
|
|
|
610 |
penum->mask_y += mask_used;
|
|
|
611 |
if (code < 0)
|
|
|
612 |
return code;
|
|
|
613 |
}
|
|
|
614 |
if (pixel_planes[0].data) {
|
|
|
615 |
/*
|
|
|
616 |
* If necessary, flush any buffered mask data to the mask clipping
|
|
|
617 |
* device.
|
|
|
618 |
*/
|
|
|
619 |
gx_image_flush(penum->mask_info);
|
|
|
620 |
code = gx_image_plane_data_rows(penum->pixel_info, pixel_planes, h,
|
|
|
621 |
&pixel_used);
|
|
|
622 |
/*
|
|
|
623 |
* There isn't any way to set rows_used if different amounts of
|
|
|
624 |
* the mask and pixel data were used. Fake it.
|
|
|
625 |
*/
|
|
|
626 |
*rows_used = pixel_used;
|
|
|
627 |
/*
|
|
|
628 |
* Don't return code yet: we must account for the fact that
|
|
|
629 |
* some mask data may have been processed.
|
|
|
630 |
*/
|
|
|
631 |
penum->pixel_y += pixel_used;
|
|
|
632 |
if (code < 0) {
|
|
|
633 |
/*
|
|
|
634 |
* We must prevent the mask data from being processed again.
|
|
|
635 |
* We rely on the fact that h > 1 is only possible if the
|
|
|
636 |
* mask and pixel data have the same Y scaling.
|
|
|
637 |
*/
|
|
|
638 |
if (mask_used > pixel_used) {
|
|
|
639 |
int skip = mask_used - pixel_used;
|
|
|
640 |
|
|
|
641 |
penum->mask_skip = skip;
|
|
|
642 |
penum->mask_y -= skip;
|
|
|
643 |
mask_used = pixel_used;
|
|
|
644 |
}
|
|
|
645 |
}
|
|
|
646 |
}
|
|
|
647 |
if_debug5('b', "[b]image3 h=%d %smask_y=%d %spixel_y=%d\n",
|
|
|
648 |
h, (mask_plane.data ? "+" : ""), penum->mask_y,
|
|
|
649 |
(pixel_planes[0].data ? "+" : ""), penum->pixel_y);
|
|
|
650 |
if (penum->mask_y >= penum->mask_height &&
|
|
|
651 |
penum->pixel_y >= penum->pixel_height)
|
|
|
652 |
return 1;
|
|
|
653 |
if (penum->InterleaveType == interleave_scan_lines) {
|
|
|
654 |
/* Update the width and depth in the enumerator. */
|
|
|
655 |
if (planes_next(penum) >= 0) { /* want mask data next */
|
|
|
656 |
penum->plane_widths[0] = penum->mask_width;
|
|
|
657 |
penum->plane_depths[0] = 1;
|
|
|
658 |
} else { /* want pixel data next */
|
|
|
659 |
penum->plane_widths[0] = penum->pixel_width;
|
|
|
660 |
penum->plane_depths[0] = penum->pixel_info->plane_depths[0];
|
|
|
661 |
}
|
|
|
662 |
}
|
|
|
663 |
/*
|
|
|
664 |
* The mask may be complete (gx_image_plane_data_rows returned 1),
|
|
|
665 |
* but there may still be pixel rows to go, so don't return 1 here.
|
|
|
666 |
*/
|
|
|
667 |
return (code < 0 ? code : 0);
|
|
|
668 |
}
|
|
|
669 |
|
|
|
670 |
/* Flush buffered data. */
|
|
|
671 |
private int
|
|
|
672 |
gx_image3_flush(gx_image_enum_common_t * info)
|
|
|
673 |
{
|
|
|
674 |
gx_image3_enum_t * const penum = (gx_image3_enum_t *) info;
|
|
|
675 |
int code = gx_image_flush(penum->mask_info);
|
|
|
676 |
|
|
|
677 |
if (code >= 0)
|
|
|
678 |
code = gx_image_flush(penum->pixel_info);
|
|
|
679 |
return code;
|
|
|
680 |
}
|
|
|
681 |
|
|
|
682 |
/* Determine which data planes are wanted. */
|
|
|
683 |
private bool
|
|
|
684 |
gx_image3_planes_wanted(const gx_image_enum_common_t * info, byte *wanted)
|
|
|
685 |
{
|
|
|
686 |
const gx_image3_enum_t * const penum = (const gx_image3_enum_t *) info;
|
|
|
687 |
|
|
|
688 |
switch (penum->InterleaveType) {
|
|
|
689 |
case interleave_chunky: /* only 1 plane */
|
|
|
690 |
wanted[0] = 0xff;
|
|
|
691 |
return true;
|
|
|
692 |
case interleave_scan_lines: /* only 1 plane, but varying width/depth */
|
|
|
693 |
wanted[0] = 0xff;
|
|
|
694 |
return false;
|
|
|
695 |
case interleave_separate_source: {
|
|
|
696 |
/*
|
|
|
697 |
* We always want at least as much of the mask to be filled as the
|
|
|
698 |
* pixel data. next > 0 iff we've processed more data than mask.
|
|
|
699 |
* Plane 0 is the mask, planes [1 .. num_planes - 1] are pixel data.
|
|
|
700 |
*/
|
|
|
701 |
int next = planes_next(penum);
|
|
|
702 |
|
|
|
703 |
wanted[0] = (next >= 0 ? 0xff : 0);
|
|
|
704 |
memset(wanted + 1, (next <= 0 ? 0xff : 0), info->num_planes - 1);
|
|
|
705 |
/*
|
|
|
706 |
* In principle, wanted will always be true for both mask and pixel
|
|
|
707 |
* data if the full_heights are equal. Unfortunately, even in this
|
|
|
708 |
* case, processing may be interrupted after a mask row has been
|
|
|
709 |
* passed to the underlying image processor but before the data row
|
|
|
710 |
* has been passed, in which case pixel data will be 'wanted', but
|
|
|
711 |
* not mask data, for the next call. Therefore, we must return
|
|
|
712 |
* false.
|
|
|
713 |
*/
|
|
|
714 |
return false
|
|
|
715 |
/*(next == 0 &&
|
|
|
716 |
penum->mask_full_height == penum->pixel_full_height)*/;
|
|
|
717 |
}
|
|
|
718 |
default: /* can't happen */
|
|
|
719 |
memset(wanted, 0, info->num_planes);
|
|
|
720 |
return false;
|
|
|
721 |
}
|
|
|
722 |
}
|
|
|
723 |
|
|
|
724 |
/* Clean up after processing an ImageType 3 image. */
|
|
|
725 |
private int
|
|
|
726 |
gx_image3_end_image(gx_image_enum_common_t * info, bool draw_last)
|
|
|
727 |
{
|
|
|
728 |
gx_image3_enum_t *penum = (gx_image3_enum_t *) info;
|
|
|
729 |
gs_memory_t *mem = penum->memory;
|
|
|
730 |
gx_device *mdev = penum->mdev;
|
|
|
731 |
int mcode = gx_image_end(penum->mask_info, draw_last);
|
|
|
732 |
gx_device *pcdev = penum->pcdev;
|
|
|
733 |
int pcode = gx_image_end(penum->pixel_info, draw_last);
|
|
|
734 |
int code1 = gs_closedevice(pcdev);
|
|
|
735 |
int code2 = gs_closedevice(mdev);
|
|
|
736 |
|
|
|
737 |
gs_free_object(mem, penum->mask_data,
|
|
|
738 |
"gx_image3_end_image(mask_data)");
|
|
|
739 |
gs_free_object(mem, penum->pixel_data,
|
|
|
740 |
"gx_image3_end_image(pixel_data)");
|
|
|
741 |
gs_free_object(mem, pcdev, "gx_image3_end_image(pcdev)");
|
|
|
742 |
gs_free_object(mem, mdev, "gx_image3_end_image(mdev)");
|
|
|
743 |
gs_free_object(mem, penum, "gx_image3_end_image");
|
|
|
744 |
return (pcode < 0 ? pcode : mcode < 0 ? mcode : code1 < 0 ? code1 : code2);
|
|
|
745 |
}
|