2 |
- |
1 |
/* Copyright (C) 1992, 2000 Aladdin Enterprises. All rights reserved.
|
|
|
2 |
|
|
|
3 |
This software is provided AS-IS with no warranty, either express or
|
|
|
4 |
implied.
|
|
|
5 |
|
|
|
6 |
This software is distributed under license and may not be copied,
|
|
|
7 |
modified or distributed except as expressly authorized under the terms
|
|
|
8 |
of the license contained in the file LICENSE in this distribution.
|
|
|
9 |
|
|
|
10 |
For more information about licensing, please refer to
|
|
|
11 |
http://www.ghostscript.com/licensing/. For information on
|
|
|
12 |
commercial licensing, go to http://www.artifex.com/licensing/ or
|
|
|
13 |
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
|
|
|
14 |
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
|
|
|
15 |
*/
|
|
|
16 |
|
|
|
17 |
/* $Id: gxpcopy.c,v 1.26 2005/08/30 06:38:44 igor Exp $ */
|
|
|
18 |
/* Path copying and flattening */
|
|
|
19 |
#include "math_.h"
|
|
|
20 |
#include "gx.h"
|
|
|
21 |
#include "gserrors.h"
|
|
|
22 |
#include "gconfigv.h" /* for USE_FPU */
|
|
|
23 |
#include "gxfixed.h"
|
|
|
24 |
#include "gxfarith.h"
|
|
|
25 |
#include "gxistate.h" /* for access to line params */
|
|
|
26 |
#include "gzpath.h"
|
|
|
27 |
#include "vdtrace.h"
|
|
|
28 |
|
|
|
29 |
/* Forward declarations */
|
|
|
30 |
private void adjust_point_to_tangent(segment *, const segment *,
|
|
|
31 |
const gs_fixed_point *);
|
|
|
32 |
/* Copy a path, optionally flattening or monotonizing it. */
|
|
|
33 |
/* If the copy fails, free the new path. */
|
|
|
34 |
int
|
|
|
35 |
gx_path_copy_reducing(const gx_path *ppath_old, gx_path *ppath,
|
|
|
36 |
fixed fixed_flatness, const gs_imager_state *pis,
|
|
|
37 |
gx_path_copy_options options)
|
|
|
38 |
{
|
|
|
39 |
const segment *pseg;
|
|
|
40 |
fixed flat = fixed_flatness;
|
|
|
41 |
gs_fixed_point expansion;
|
|
|
42 |
/*
|
|
|
43 |
* Since we're going to be adding to the path, unshare it
|
|
|
44 |
* before we start.
|
|
|
45 |
*/
|
|
|
46 |
int code = gx_path_unshare(ppath);
|
|
|
47 |
|
|
|
48 |
if (code < 0)
|
|
|
49 |
return code;
|
|
|
50 |
#ifdef DEBUG
|
|
|
51 |
if (gs_debug_c('P'))
|
|
|
52 |
gx_dump_path(ppath_old, "before reducing");
|
|
|
53 |
#endif
|
|
|
54 |
if (options & pco_for_stroke) {
|
|
|
55 |
/* Precompute the maximum expansion of the bounding box. */
|
|
|
56 |
double width = pis->line_params.half_width;
|
|
|
57 |
|
|
|
58 |
expansion.x =
|
|
|
59 |
float2fixed((fabs(pis->ctm.xx) + fabs(pis->ctm.yx)) * width) * 2;
|
|
|
60 |
expansion.y =
|
|
|
61 |
float2fixed((fabs(pis->ctm.xy) + fabs(pis->ctm.yy)) * width) * 2;
|
|
|
62 |
}
|
|
|
63 |
vd_setcolor(RGB(255,255,0));
|
|
|
64 |
pseg = (const segment *)(ppath_old->first_subpath);
|
|
|
65 |
while (pseg) {
|
|
|
66 |
switch (pseg->type) {
|
|
|
67 |
case s_start:
|
|
|
68 |
code = gx_path_add_point(ppath,
|
|
|
69 |
pseg->pt.x, pseg->pt.y);
|
|
|
70 |
vd_moveto(pseg->pt.x, pseg->pt.y);
|
|
|
71 |
break;
|
|
|
72 |
case s_curve:
|
|
|
73 |
{
|
|
|
74 |
const curve_segment *pc = (const curve_segment *)pseg;
|
|
|
75 |
|
|
|
76 |
if (fixed_flatness == max_fixed) { /* don't flatten */
|
|
|
77 |
if (options & pco_monotonize)
|
|
|
78 |
code = gx_curve_monotonize(ppath, pc);
|
|
|
79 |
else
|
|
|
80 |
code = gx_path_add_curve_notes(ppath,
|
|
|
81 |
pc->p1.x, pc->p1.y, pc->p2.x, pc->p2.y,
|
|
|
82 |
pc->pt.x, pc->pt.y, pseg->notes);
|
|
|
83 |
} else {
|
|
|
84 |
fixed x0 = ppath->position.x;
|
|
|
85 |
fixed y0 = ppath->position.y;
|
|
|
86 |
segment_notes notes = pseg->notes;
|
|
|
87 |
curve_segment cseg;
|
|
|
88 |
int k;
|
|
|
89 |
|
|
|
90 |
if (options & pco_for_stroke) {
|
|
|
91 |
/*
|
|
|
92 |
* When flattening for stroking, the flatness
|
|
|
93 |
* must apply to the outside of the resulting
|
|
|
94 |
* stroked region. We approximate this by
|
|
|
95 |
* dividing the flatness by the ratio of the
|
|
|
96 |
* expanded bounding box to the original
|
|
|
97 |
* bounding box. This is crude, but pretty
|
|
|
98 |
* simple to calculate, and produces reasonably
|
|
|
99 |
* good results.
|
|
|
100 |
*/
|
|
|
101 |
fixed min01, max01, min23, max23;
|
|
|
102 |
fixed ex, ey, flat_x, flat_y;
|
|
|
103 |
|
|
|
104 |
#define SET_EXTENT(r, c0, c1, c2, c3)\
|
|
|
105 |
BEGIN\
|
|
|
106 |
if (c0 < c1) min01 = c0, max01 = c1;\
|
|
|
107 |
else min01 = c1, max01 = c0;\
|
|
|
108 |
if (c2 < c3) min23 = c2, max23 = c3;\
|
|
|
109 |
else min23 = c3, max23 = c2;\
|
|
|
110 |
r = max(max01, max23) - min(min01, min23);\
|
|
|
111 |
END
|
|
|
112 |
SET_EXTENT(ex, x0, pc->p1.x, pc->p2.x, pc->pt.x);
|
|
|
113 |
SET_EXTENT(ey, y0, pc->p1.y, pc->p2.y, pc->pt.y);
|
|
|
114 |
#undef SET_EXTENT
|
|
|
115 |
/*
|
|
|
116 |
* We check for the degenerate case specially
|
|
|
117 |
* to avoid a division by zero.
|
|
|
118 |
*/
|
|
|
119 |
if (ex == 0 || ey == 0)
|
|
|
120 |
k = 0;
|
|
|
121 |
else {
|
|
|
122 |
flat_x =
|
|
|
123 |
fixed_mult_quo(fixed_flatness, ex,
|
|
|
124 |
ex + expansion.x);
|
|
|
125 |
flat_y =
|
|
|
126 |
fixed_mult_quo(fixed_flatness, ey,
|
|
|
127 |
ey + expansion.y);
|
|
|
128 |
flat = min(flat_x, flat_y);
|
|
|
129 |
k = gx_curve_log2_samples(x0, y0, pc, flat);
|
|
|
130 |
}
|
|
|
131 |
} else
|
|
|
132 |
k = gx_curve_log2_samples(x0, y0, pc, flat);
|
|
|
133 |
if (options & pco_accurate) {
|
|
|
134 |
segment *start;
|
|
|
135 |
segment *end;
|
|
|
136 |
|
|
|
137 |
/*
|
|
|
138 |
* Add an extra line, which will become
|
|
|
139 |
* the tangent segment.
|
|
|
140 |
*/
|
|
|
141 |
code = gx_path_add_line_notes(ppath, x0, y0,
|
|
|
142 |
notes);
|
|
|
143 |
if (code < 0)
|
|
|
144 |
break;
|
|
|
145 |
vd_lineto(x0, y0);
|
|
|
146 |
start = ppath->current_subpath->last;
|
|
|
147 |
notes |= sn_not_first;
|
|
|
148 |
cseg = *pc;
|
|
|
149 |
code = gx_subdivide_curve(ppath, k, &cseg, notes);
|
|
|
150 |
if (code < 0)
|
|
|
151 |
break;
|
|
|
152 |
/*
|
|
|
153 |
* Adjust the first and last segments so that
|
|
|
154 |
* they line up with the tangents.
|
|
|
155 |
*/
|
|
|
156 |
end = ppath->current_subpath->last;
|
|
|
157 |
vd_lineto(ppath->position.x, ppath->position.y);
|
|
|
158 |
if ((code = gx_path_add_line_notes(ppath,
|
|
|
159 |
ppath->position.x,
|
|
|
160 |
ppath->position.y,
|
|
|
161 |
pseg->notes | sn_not_first)) < 0)
|
|
|
162 |
break;
|
|
|
163 |
if (start->next->pt.x != pc->p1.x || start->next->pt.y != pc->p1.y)
|
|
|
164 |
adjust_point_to_tangent(start, start->next, &pc->p1);
|
|
|
165 |
else if (start->next->pt.x != pc->p2.x || start->next->pt.y != pc->p2.y)
|
|
|
166 |
adjust_point_to_tangent(start, start->next, &pc->p2);
|
|
|
167 |
else
|
|
|
168 |
adjust_point_to_tangent(start, start->next, &end->prev->pt);
|
|
|
169 |
if (end->prev->pt.x != pc->p2.x || end->prev->pt.y != pc->p2.y)
|
|
|
170 |
adjust_point_to_tangent(end, end->prev, &pc->p2);
|
|
|
171 |
else if (end->prev->pt.x != pc->p1.x || end->prev->pt.y != pc->p1.y)
|
|
|
172 |
adjust_point_to_tangent(end, end->prev, &pc->p1);
|
|
|
173 |
else
|
|
|
174 |
adjust_point_to_tangent(end, end->prev, &start->pt);
|
|
|
175 |
} else {
|
|
|
176 |
cseg = *pc;
|
|
|
177 |
code = gx_subdivide_curve(ppath, k, &cseg, notes);
|
|
|
178 |
}
|
|
|
179 |
}
|
|
|
180 |
break;
|
|
|
181 |
}
|
|
|
182 |
case s_line:
|
|
|
183 |
code = gx_path_add_line_notes(ppath,
|
|
|
184 |
pseg->pt.x, pseg->pt.y, pseg->notes);
|
|
|
185 |
vd_lineto(pseg->pt.x, pseg->pt.y);
|
|
|
186 |
break;
|
|
|
187 |
case s_line_close:
|
|
|
188 |
code = gx_path_close_subpath(ppath);
|
|
|
189 |
vd_closepath;
|
|
|
190 |
break;
|
|
|
191 |
default: /* can't happen */
|
|
|
192 |
code = gs_note_error(gs_error_unregistered);
|
|
|
193 |
}
|
|
|
194 |
if (code < 0) {
|
|
|
195 |
gx_path_new(ppath);
|
|
|
196 |
return code;
|
|
|
197 |
}
|
|
|
198 |
pseg = pseg->next;
|
|
|
199 |
}
|
|
|
200 |
if (path_last_is_moveto(ppath_old))
|
|
|
201 |
gx_path_add_point(ppath, ppath_old->position.x,
|
|
|
202 |
ppath_old->position.y);
|
|
|
203 |
if (ppath_old->bbox_set) {
|
|
|
204 |
if (ppath->bbox_set) {
|
|
|
205 |
ppath->bbox.p.x = min(ppath_old->bbox.p.x, ppath->bbox.p.x);
|
|
|
206 |
ppath->bbox.p.y = min(ppath_old->bbox.p.y, ppath->bbox.p.y);
|
|
|
207 |
ppath->bbox.q.x = max(ppath_old->bbox.q.x, ppath->bbox.q.x);
|
|
|
208 |
ppath->bbox.q.y = max(ppath_old->bbox.q.y, ppath->bbox.q.y);
|
|
|
209 |
} else {
|
|
|
210 |
ppath->bbox_set = true;
|
|
|
211 |
ppath->bbox = ppath_old->bbox;
|
|
|
212 |
}
|
|
|
213 |
}
|
|
|
214 |
#ifdef DEBUG
|
|
|
215 |
if (gs_debug_c('P'))
|
|
|
216 |
gx_dump_path(ppath, "after reducing");
|
|
|
217 |
#endif
|
|
|
218 |
return 0;
|
|
|
219 |
}
|
|
|
220 |
|
|
|
221 |
/*
|
|
|
222 |
* Adjust one end of a line (the first or last line of a flattened curve)
|
|
|
223 |
* so it falls on the curve tangent. The closest point on the line from
|
|
|
224 |
* (0,0) to (C,D) to a point (U,V) -- i.e., the point on the line at which
|
|
|
225 |
* a perpendicular line from the point intersects it -- is given by
|
|
|
226 |
* T = (C*U + D*V) / (C^2 + D^2)
|
|
|
227 |
* (X,Y) = (C*T,D*T)
|
|
|
228 |
* However, any smaller value of T will also work: the one we actually
|
|
|
229 |
* use is 0.25 * the value we just derived. We must check that
|
|
|
230 |
* numerical instabilities don't lead to a negative value of T.
|
|
|
231 |
*/
|
|
|
232 |
private void
|
|
|
233 |
adjust_point_to_tangent(segment * pseg, const segment * next,
|
|
|
234 |
const gs_fixed_point * p1)
|
|
|
235 |
{
|
|
|
236 |
const fixed x0 = pseg->pt.x, y0 = pseg->pt.y;
|
|
|
237 |
const fixed fC = p1->x - x0, fD = p1->y - y0;
|
|
|
238 |
|
|
|
239 |
/*
|
|
|
240 |
* By far the commonest case is that the end of the curve is
|
|
|
241 |
* horizontal or vertical. Check for this specially, because
|
|
|
242 |
* we can handle it with far less work (and no floating point).
|
|
|
243 |
*/
|
|
|
244 |
if (fC == 0) {
|
|
|
245 |
/* Vertical tangent. */
|
|
|
246 |
const fixed DT = arith_rshift(next->pt.y - y0, 2);
|
|
|
247 |
|
|
|
248 |
if (fD == 0)
|
|
|
249 |
return; /* anomalous case */
|
|
|
250 |
if_debug1('2', "[2]adjusting vertical: DT = %g\n",
|
|
|
251 |
fixed2float(DT));
|
|
|
252 |
if ((DT ^ fD) > 0)
|
|
|
253 |
pseg->pt.y = DT + y0;
|
|
|
254 |
} else if (fD == 0) {
|
|
|
255 |
/* Horizontal tangent. */
|
|
|
256 |
const fixed CT = arith_rshift(next->pt.x - x0, 2);
|
|
|
257 |
|
|
|
258 |
if_debug1('2', "[2]adjusting horizontal: CT = %g\n",
|
|
|
259 |
fixed2float(CT));
|
|
|
260 |
if ((CT ^ fC) > 0)
|
|
|
261 |
pseg->pt.x = CT + x0;
|
|
|
262 |
} else {
|
|
|
263 |
/* General case. */
|
|
|
264 |
const double C = fC, D = fD;
|
|
|
265 |
double T = (C * (next->pt.x - x0) + D * (next->pt.y - y0)) /
|
|
|
266 |
(C * C + D * D);
|
|
|
267 |
|
|
|
268 |
if_debug3('2', "[2]adjusting: C = %g, D = %g, T = %g\n",
|
|
|
269 |
C, D, T);
|
|
|
270 |
if (T > 0) {
|
|
|
271 |
if (T > 1) {
|
|
|
272 |
/* Don't go outside the curve bounding box. */
|
|
|
273 |
T = 1;
|
|
|
274 |
}
|
|
|
275 |
pseg->pt.x = arith_rshift((fixed) (C * T), 2) + x0;
|
|
|
276 |
pseg->pt.y = arith_rshift((fixed) (D * T), 2) + y0;
|
|
|
277 |
}
|
|
|
278 |
}
|
|
|
279 |
}
|
|
|
280 |
|
|
|
281 |
/* ---------------- Monotonic curves ---------------- */
|
|
|
282 |
|
|
|
283 |
/* Test whether a path is free of non-monotonic curves. */
|
|
|
284 |
bool
|
|
|
285 |
gx_path__check_curves(const gx_path * ppath, gx_path_copy_options options, fixed fixed_flat)
|
|
|
286 |
{
|
|
|
287 |
const segment *pseg = (const segment *)(ppath->first_subpath);
|
|
|
288 |
gs_fixed_point pt0;
|
|
|
289 |
|
|
|
290 |
while (pseg) {
|
|
|
291 |
switch (pseg->type) {
|
|
|
292 |
case s_start:
|
|
|
293 |
{
|
|
|
294 |
const subpath *psub = (const subpath *)pseg;
|
|
|
295 |
|
|
|
296 |
/* Skip subpaths without curves. */
|
|
|
297 |
if (!psub->curve_count)
|
|
|
298 |
pseg = psub->last;
|
|
|
299 |
}
|
|
|
300 |
break;
|
|
|
301 |
case s_curve:
|
|
|
302 |
{
|
|
|
303 |
const curve_segment *pc = (const curve_segment *)pseg;
|
|
|
304 |
|
|
|
305 |
if (options & pco_monotonize) {
|
|
|
306 |
double t[2];
|
|
|
307 |
int nz = gx_curve_monotonic_points(pt0.y,
|
|
|
308 |
pc->p1.y, pc->p2.y, pc->pt.y, t);
|
|
|
309 |
|
|
|
310 |
if (nz != 0)
|
|
|
311 |
return false;
|
|
|
312 |
nz = gx_curve_monotonic_points(pt0.x,
|
|
|
313 |
pc->p1.x, pc->p2.x, pc->pt.x, t);
|
|
|
314 |
if (nz != 0)
|
|
|
315 |
return false;
|
|
|
316 |
}
|
|
|
317 |
if (options & pco_small_curves) {
|
|
|
318 |
fixed ax, bx, cx, ay, by, cy;
|
|
|
319 |
int k = gx_curve_log2_samples(pt0.x, pt0.y, pc, fixed_flat);
|
|
|
320 |
|
|
|
321 |
if(!curve_coeffs_ranged(pt0.x, pc->p1.x, pc->p2.x, pc->pt.x,
|
|
|
322 |
pt0.y, pc->p1.y, pc->p2.y, pc->pt.y,
|
|
|
323 |
&ax, &bx, &cx, &ay, &by, &cy, k))
|
|
|
324 |
return false;
|
|
|
325 |
}
|
|
|
326 |
}
|
|
|
327 |
break;
|
|
|
328 |
default:
|
|
|
329 |
;
|
|
|
330 |
}
|
|
|
331 |
pt0 = pseg->pt;
|
|
|
332 |
pseg = pseg->next;
|
|
|
333 |
}
|
|
|
334 |
return true;
|
|
|
335 |
}
|
|
|
336 |
|
|
|
337 |
/* Monotonize a curve, by splitting it if necessary. */
|
|
|
338 |
/* In the worst case, this could split the curve into 9 pieces. */
|
|
|
339 |
int
|
|
|
340 |
gx_curve_monotonize(gx_path * ppath, const curve_segment * pc)
|
|
|
341 |
{
|
|
|
342 |
fixed x0 = ppath->position.x, y0 = ppath->position.y;
|
|
|
343 |
segment_notes notes = pc->notes;
|
|
|
344 |
double t[4], tt = 1, tp;
|
|
|
345 |
int c[4];
|
|
|
346 |
int n0, n1, n, i, j, k = 0;
|
|
|
347 |
fixed ax, bx, cx, ay, by, cy, v01, v12;
|
|
|
348 |
fixed px, py, qx, qy, rx, ry, sx, sy;
|
|
|
349 |
const double delta = 0.0000001;
|
|
|
350 |
|
|
|
351 |
/* Roots of the derivative : */
|
|
|
352 |
n0 = gx_curve_monotonic_points(x0, pc->p1.x, pc->p2.x, pc->pt.x, t);
|
|
|
353 |
n1 = gx_curve_monotonic_points(y0, pc->p1.y, pc->p2.y, pc->pt.y, t + n0);
|
|
|
354 |
n = n0 + n1;
|
|
|
355 |
if (n == 0)
|
|
|
356 |
return gx_path_add_curve_notes(ppath, pc->p1.x, pc->p1.y,
|
|
|
357 |
pc->p2.x, pc->p2.y, pc->pt.x, pc->pt.y, notes);
|
|
|
358 |
if (n0 > 0)
|
|
|
359 |
c[0] = 1;
|
|
|
360 |
if (n0 > 1)
|
|
|
361 |
c[1] = 1;
|
|
|
362 |
if (n1 > 0)
|
|
|
363 |
c[n0] = 2;
|
|
|
364 |
if (n1 > 1)
|
|
|
365 |
c[n0 + 1] = 2;
|
|
|
366 |
/* Order roots : */
|
|
|
367 |
for (i = 0; i < n; i++)
|
|
|
368 |
for (j = i + 1; j < n; j++)
|
|
|
369 |
if (t[i] > t[j]) {
|
|
|
370 |
int w;
|
|
|
371 |
double v = t[i]; t[i] = t[j]; t[j] = v;
|
|
|
372 |
w = c[i]; c[i] = c[j]; c[j] = w;
|
|
|
373 |
}
|
|
|
374 |
/* Drop roots near zero : */
|
|
|
375 |
for (k = 0; k < n; k++)
|
|
|
376 |
if (t[k] >= delta)
|
|
|
377 |
break;
|
|
|
378 |
/* Merge close roots, and drop roots at 1 : */
|
|
|
379 |
if (t[n - 1] > 1 - delta)
|
|
|
380 |
n--;
|
|
|
381 |
for (i = k + 1, j = k; i < n && t[k] < 1 - delta; i++)
|
|
|
382 |
if (any_abs(t[i] - t[j]) < delta) {
|
|
|
383 |
t[j] = (t[j] + t[i]) / 2; /* Unlikely 3 roots are close. */
|
|
|
384 |
c[j] |= c[i];
|
|
|
385 |
} else {
|
|
|
386 |
j++;
|
|
|
387 |
t[j] = t[i];
|
|
|
388 |
c[j] = c[i];
|
|
|
389 |
}
|
|
|
390 |
n = j + 1;
|
|
|
391 |
/* Do split : */
|
|
|
392 |
curve_points_to_coefficients(x0, pc->p1.x, pc->p2.x, pc->pt.x, ax, bx, cx, v01, v12);
|
|
|
393 |
curve_points_to_coefficients(y0, pc->p1.y, pc->p2.y, pc->pt.y, ay, by, cy, v01, v12);
|
|
|
394 |
ax *= 3, bx *= 2; /* Coefficients of the derivative. */
|
|
|
395 |
ay *= 3, by *= 2;
|
|
|
396 |
px = x0;
|
|
|
397 |
py = y0;
|
|
|
398 |
qx = (fixed)((pc->p1.x - px) * t[0] + 0.5);
|
|
|
399 |
qy = (fixed)((pc->p1.y - py) * t[0] + 0.5);
|
|
|
400 |
tp = 0;
|
|
|
401 |
for (i = k; i < n; i++) {
|
|
|
402 |
double ti = t[i];
|
|
|
403 |
double t2 = ti * ti, t3 = t2 * ti;
|
|
|
404 |
double omt = 1 - ti, omt2 = omt * omt, omt3 = omt2 * omt;
|
|
|
405 |
double x = x0 * omt3 + 3 * pc->p1.x * omt2 * ti + 3 * pc->p2.x * omt * t2 + pc->pt.x * t3;
|
|
|
406 |
double y = y0 * omt3 + 3 * pc->p1.y * omt2 * ti + 3 * pc->p2.y * omt * t2 + pc->pt.y * t3;
|
|
|
407 |
double ddx = (c[i] & 1 ? 0 : ax * t2 + bx * ti + cx); /* Suppress noize. */
|
|
|
408 |
double ddy = (c[i] & 2 ? 0 : ay * t2 + by * ti + cy);
|
|
|
409 |
fixed dx = (fixed)(ddx + 0.5);
|
|
|
410 |
fixed dy = (fixed)(ddy + 0.5);
|
|
|
411 |
int code;
|
|
|
412 |
|
|
|
413 |
tt = (i + 1 < n ? t[i + 1] : 1) - ti;
|
|
|
414 |
rx = (fixed)(dx * (t[i] - tp) / 3 + 0.5);
|
|
|
415 |
ry = (fixed)(dy * (t[i] - tp) / 3 + 0.5);
|
|
|
416 |
sx = (fixed)(x + 0.5);
|
|
|
417 |
sy = (fixed)(y + 0.5);
|
|
|
418 |
/* Suppress the derivative sign noize near a beak : */
|
|
|
419 |
if ((double)(sx - px) * qx + (double)(sy - py) * qy < 0)
|
|
|
420 |
qx = -qx, qy = -qy;
|
|
|
421 |
if ((double)(sx - px) * rx + (double)(sy - py) * ry < 0)
|
|
|
422 |
rx = -rx, ry = -qy;
|
|
|
423 |
/* Do add : */
|
|
|
424 |
code = gx_path_add_curve_notes(ppath, px + qx, py + qy, sx - rx, sy - ry, sx, sy, notes);
|
|
|
425 |
if (code < 0)
|
|
|
426 |
return code;
|
|
|
427 |
notes |= sn_not_first;
|
|
|
428 |
px = sx;
|
|
|
429 |
py = sy;
|
|
|
430 |
qx = (fixed)(dx * tt / 3 + 0.5);
|
|
|
431 |
qy = (fixed)(dy * tt / 3 + 0.5);
|
|
|
432 |
tp = t[i];
|
|
|
433 |
}
|
|
|
434 |
sx = pc->pt.x;
|
|
|
435 |
sy = pc->pt.y;
|
|
|
436 |
rx = (fixed)((pc->pt.x - pc->p2.x) * tt + 0.5);
|
|
|
437 |
ry = (fixed)((pc->pt.y - pc->p2.y) * tt + 0.5);
|
|
|
438 |
/* Suppress the derivative sign noize near peaks : */
|
|
|
439 |
if ((double)(sx - px) * qx + (double)(sy - py) * qy < 0)
|
|
|
440 |
qx = -qx, qy = -qy;
|
|
|
441 |
if ((double)(sx - px) * rx + (double)(sy - py) * ry < 0)
|
|
|
442 |
rx = -rx, ry = -qy;
|
|
|
443 |
return gx_path_add_curve_notes(ppath, px + qx, py + qy, sx - rx, sy - ry, sx, sy, notes);
|
|
|
444 |
}
|
|
|
445 |
|
|
|
446 |
/*
|
|
|
447 |
* Split a curve if necessary into pieces that are monotonic in X or Y as a
|
|
|
448 |
* function of the curve parameter t. This allows us to rasterize curves
|
|
|
449 |
* directly without pre-flattening. This takes a fair amount of analysis....
|
|
|
450 |
* Store the values of t of the split points in pst[0] and pst[1]. Return
|
|
|
451 |
* the number of split points (0, 1, or 2).
|
|
|
452 |
*/
|
|
|
453 |
int
|
|
|
454 |
gx_curve_monotonic_points(fixed v0, fixed v1, fixed v2, fixed v3,
|
|
|
455 |
double pst[2])
|
|
|
456 |
{
|
|
|
457 |
/*
|
|
|
458 |
Let
|
|
|
459 |
v(t) = a*t^3 + b*t^2 + c*t + d, 0 <= t <= 1.
|
|
|
460 |
Then
|
|
|
461 |
dv(t) = 3*a*t^2 + 2*b*t + c.
|
|
|
462 |
v(t) has a local minimum or maximum (or inflection point)
|
|
|
463 |
precisely where dv(t) = 0. Now the roots of dv(t) = 0 (i.e.,
|
|
|
464 |
the zeros of dv(t)) are at
|
|
|
465 |
t = ( -2*b +/- sqrt(4*b^2 - 12*a*c) ) / 6*a
|
|
|
466 |
= ( -b +/- sqrt(b^2 - 3*a*c) ) / 3*a
|
|
|
467 |
(Note that real roots exist iff b^2 >= 3*a*c.)
|
|
|
468 |
We want to know if these lie in the range (0..1).
|
|
|
469 |
(The endpoints don't count.) Call such a root a "valid zero."
|
|
|
470 |
Since computing the roots is expensive, we would like to have
|
|
|
471 |
some cheap tests to filter out cases where they don't exist
|
|
|
472 |
(i.e., where the curve is already monotonic).
|
|
|
473 |
*/
|
|
|
474 |
fixed v01, v12, a, b, c, b2, a3;
|
|
|
475 |
fixed dv_end, b2abs, a3abs;
|
|
|
476 |
|
|
|
477 |
curve_points_to_coefficients(v0, v1, v2, v3, a, b, c, v01, v12);
|
|
|
478 |
b2 = b << 1;
|
|
|
479 |
a3 = (a << 1) + a;
|
|
|
480 |
/*
|
|
|
481 |
If a = 0, the only possible zero is t = -c / 2*b.
|
|
|
482 |
This zero is valid iff sign(c) != sign(b) and 0 < |c| < 2*|b|.
|
|
|
483 |
*/
|
|
|
484 |
if (a == 0) {
|
|
|
485 |
if ((b ^ c) < 0 && any_abs(c) < any_abs(b2) && c != 0) {
|
|
|
486 |
*pst = (double)(-c) / b2;
|
|
|
487 |
return 1;
|
|
|
488 |
} else
|
|
|
489 |
return 0;
|
|
|
490 |
}
|
|
|
491 |
/*
|
|
|
492 |
Iff a curve is horizontal at t = 0, c = 0. In this case,
|
|
|
493 |
there can be at most one other zero, at -2*b / 3*a.
|
|
|
494 |
This zero is valid iff sign(a) != sign(b) and 0 < 2*|b| < 3*|a|.
|
|
|
495 |
*/
|
|
|
496 |
if (c == 0) {
|
|
|
497 |
if ((a ^ b) < 0 && any_abs(b2) < any_abs(a3) && b != 0) {
|
|
|
498 |
*pst = (double)(-b2) / a3;
|
|
|
499 |
return 1;
|
|
|
500 |
} else
|
|
|
501 |
return 0;
|
|
|
502 |
}
|
|
|
503 |
/*
|
|
|
504 |
Similarly, iff a curve is horizontal at t = 1, 3*a + 2*b + c = 0.
|
|
|
505 |
In this case, there can be at most one other zero,
|
|
|
506 |
at -1 - 2*b / 3*a, iff sign(a) != sign(b) and 1 < -2*b / 3*a < 2,
|
|
|
507 |
i.e., 3*|a| < 2*|b| < 6*|a|.
|
|
|
508 |
*/
|
|
|
509 |
else if ((dv_end = a3 + b2 + c) == 0) {
|
|
|
510 |
if ((a ^ b) < 0 &&
|
|
|
511 |
(b2abs = any_abs(b2)) > (a3abs = any_abs(a3)) &&
|
|
|
512 |
b2abs < a3abs << 1
|
|
|
513 |
) {
|
|
|
514 |
*pst = (double)(-b2 - a3) / a3;
|
|
|
515 |
return 1;
|
|
|
516 |
} else
|
|
|
517 |
return 0;
|
|
|
518 |
}
|
|
|
519 |
/*
|
|
|
520 |
If sign(dv_end) != sign(c), at least one valid zero exists,
|
|
|
521 |
since dv(0) and dv(1) have opposite signs and hence
|
|
|
522 |
dv(t) must be zero somewhere in the interval [0..1].
|
|
|
523 |
*/
|
|
|
524 |
else if ((dv_end ^ c) < 0);
|
|
|
525 |
/*
|
|
|
526 |
If sign(a) = sign(b), no valid zero exists,
|
|
|
527 |
since dv is monotonic on [0..1] and has the same sign
|
|
|
528 |
at both endpoints.
|
|
|
529 |
*/
|
|
|
530 |
else if ((a ^ b) >= 0)
|
|
|
531 |
return 0;
|
|
|
532 |
/*
|
|
|
533 |
Otherwise, dv(t) may be non-monotonic on [0..1]; it has valid zeros
|
|
|
534 |
iff its sign anywhere in this interval is different from its sign
|
|
|
535 |
at the endpoints, which occurs iff it has an extremum in this
|
|
|
536 |
interval and the extremum is of the opposite sign from c.
|
|
|
537 |
To find this out, we look for the local extremum of dv(t)
|
|
|
538 |
by observing
|
|
|
539 |
d2v(t) = 6*a*t + 2*b
|
|
|
540 |
which has a zero only at
|
|
|
541 |
t1 = -b / 3*a
|
|
|
542 |
Now if t1 <= 0 or t1 >= 1, no valid zero exists.
|
|
|
543 |
Note that we just determined that sign(a) != sign(b), so we know t1 > 0.
|
|
|
544 |
*/
|
|
|
545 |
else if (any_abs(b) >= any_abs(a3))
|
|
|
546 |
return 0;
|
|
|
547 |
/*
|
|
|
548 |
Otherwise, we just go ahead with the computation of the roots,
|
|
|
549 |
and test them for being in the correct range. Note that a valid
|
|
|
550 |
zero is an inflection point of v(t) iff d2v(t) = 0; we don't
|
|
|
551 |
bother to check for this case, since it's rare.
|
|
|
552 |
*/
|
|
|
553 |
{
|
|
|
554 |
double nbf = (double)(-b);
|
|
|
555 |
double a3f = (double)a3;
|
|
|
556 |
double radicand = nbf * nbf - a3f * c;
|
|
|
557 |
|
|
|
558 |
if (radicand < 0) {
|
|
|
559 |
if_debug1('2', "[2]negative radicand = %g\n", radicand);
|
|
|
560 |
return 0;
|
|
|
561 |
} {
|
|
|
562 |
double root = sqrt(radicand);
|
|
|
563 |
int nzeros = 0;
|
|
|
564 |
double z = (nbf - root) / a3f;
|
|
|
565 |
|
|
|
566 |
/*
|
|
|
567 |
* We need to return the zeros in the correct order.
|
|
|
568 |
* We know that root is non-negative, but a3f may be either
|
|
|
569 |
* positive or negative, so we need to check the ordering
|
|
|
570 |
* explicitly.
|
|
|
571 |
*/
|
|
|
572 |
if_debug2('2', "[2]zeros at %g, %g\n", z, (nbf + root) / a3f);
|
|
|
573 |
if (z > 0 && z < 1)
|
|
|
574 |
*pst = z, nzeros = 1;
|
|
|
575 |
if (root != 0) {
|
|
|
576 |
z = (nbf + root) / a3f;
|
|
|
577 |
if (z > 0 && z < 1) {
|
|
|
578 |
if (nzeros && a3f < 0) /* order is reversed */
|
|
|
579 |
pst[1] = *pst, *pst = z;
|
|
|
580 |
else
|
|
|
581 |
pst[nzeros] = z;
|
|
|
582 |
nzeros++;
|
|
|
583 |
}
|
|
|
584 |
}
|
|
|
585 |
return nzeros;
|
|
|
586 |
}
|
|
|
587 |
}
|
|
|
588 |
}
|
|
|
589 |
|
|
|
590 |
/* ---------------- Path optimization for the filling algorithm. ---------------- */
|
|
|
591 |
|
|
|
592 |
private bool
|
|
|
593 |
find_contacting_segments(const subpath *sp0, segment *sp0last,
|
|
|
594 |
const subpath *sp1, segment *sp1last,
|
|
|
595 |
segment **sc0, segment **sc1)
|
|
|
596 |
{
|
|
|
597 |
segment *s0, *s1;
|
|
|
598 |
const segment *s0s, *s1s;
|
|
|
599 |
int count0, count1, search_limit = 50;
|
|
|
600 |
int min_length = fixed_1 * 1;
|
|
|
601 |
|
|
|
602 |
/* This is a simplified algorithm, which only checks for quazi-colinear vertical lines.
|
|
|
603 |
"Quazi-vertical" means dx <= 1 && dy >= min_length . */
|
|
|
604 |
/* To avoid a big unuseful expence of the processor time,
|
|
|
605 |
we search the first subpath from the end
|
|
|
606 |
(assuming that it was recently merged near the end),
|
|
|
607 |
and restrict the search with search_limit segments
|
|
|
608 |
against a quadratic scanning of two long subpaths.
|
|
|
609 |
Thus algorithm is not necessary finds anything contacting.
|
|
|
610 |
Instead it either quickly finds something, or maybe not. */
|
|
|
611 |
for (s0 = sp0last, count0 = 0; count0 < search_limit && s0 != (segment *)sp0; s0 = s0->prev, count0++) {
|
|
|
612 |
s0s = s0->prev;
|
|
|
613 |
if (s0->type == s_line && (s0s->pt.x == s0->pt.x ||
|
|
|
614 |
(any_abs(s0s->pt.x - s0->pt.x) == 1 && any_abs(s0s->pt.y - s0->pt.y) > min_length))) {
|
|
|
615 |
for (s1 = sp1last, count1 = 0; count1 < search_limit && s1 != (segment *)sp1; s1 = s1->prev, count1++) {
|
|
|
616 |
s1s = s1->prev;
|
|
|
617 |
if (s1->type == s_line && (s1s->pt.x == s1->pt.x ||
|
|
|
618 |
(any_abs(s1s->pt.x - s1->pt.x) == 1 && any_abs(s1s->pt.y - s1->pt.y) > min_length))) {
|
|
|
619 |
if (s0s->pt.x == s1s->pt.x || s0->pt.x == s1->pt.x || s0->pt.x == s1s->pt.x || s0s->pt.x == s1->pt.x) {
|
|
|
620 |
if (s0s->pt.y < s0->pt.y && s1s->pt.y > s1->pt.y) {
|
|
|
621 |
fixed y0 = max(s0s->pt.y, s1->pt.y);
|
|
|
622 |
fixed y1 = min(s0->pt.y, s1s->pt.y);
|
|
|
623 |
|
|
|
624 |
if (y0 <= y1) {
|
|
|
625 |
*sc0 = s0;
|
|
|
626 |
*sc1 = s1;
|
|
|
627 |
return true;
|
|
|
628 |
}
|
|
|
629 |
}
|
|
|
630 |
if (s0s->pt.y > s0->pt.y && s1s->pt.y < s1->pt.y) {
|
|
|
631 |
fixed y0 = max(s0->pt.y, s1s->pt.y);
|
|
|
632 |
fixed y1 = min(s0s->pt.y, s1->pt.y);
|
|
|
633 |
|
|
|
634 |
if (y0 <= y1) {
|
|
|
635 |
*sc0 = s0;
|
|
|
636 |
*sc1 = s1;
|
|
|
637 |
return true;
|
|
|
638 |
}
|
|
|
639 |
}
|
|
|
640 |
}
|
|
|
641 |
}
|
|
|
642 |
}
|
|
|
643 |
}
|
|
|
644 |
}
|
|
|
645 |
return false;
|
|
|
646 |
}
|
|
|
647 |
|
|
|
648 |
int
|
|
|
649 |
gx_path_merge_contacting_contours(gx_path *ppath)
|
|
|
650 |
{
|
|
|
651 |
/* Now this is a simplified algorithm,
|
|
|
652 |
which merge only contours by a common quazi-vertical line. */
|
|
|
653 |
int window = 5/* max spot holes */ * 6/* segments per subpath */;
|
|
|
654 |
subpath *sp0 = ppath->segments->contents.subpath_first;
|
|
|
655 |
|
|
|
656 |
for (; sp0 != NULL; sp0 = (subpath *)sp0->last->next) {
|
|
|
657 |
segment *sp0last = sp0->last;
|
|
|
658 |
subpath *sp1 = (subpath *)sp0last->next, *spnext;
|
|
|
659 |
subpath *sp1p = sp0;
|
|
|
660 |
int count;
|
|
|
661 |
|
|
|
662 |
for (count = 0; sp1 != NULL && count < window; sp1 = spnext, count++) {
|
|
|
663 |
segment *sp1last = sp1->last;
|
|
|
664 |
segment *sc0, *sc1;
|
|
|
665 |
|
|
|
666 |
spnext = (subpath *)sp1last->next;
|
|
|
667 |
if (find_contacting_segments(sp0, sp0last, sp1, sp1last, &sc0, &sc1)) {
|
|
|
668 |
/* Detach the subpath 1 from the path: */
|
|
|
669 |
sp1->prev->next = sp1last->next;
|
|
|
670 |
if (sp1last->next != NULL)
|
|
|
671 |
sp1last->next->prev = sp1->prev;
|
|
|
672 |
sp1->prev = 0;
|
|
|
673 |
sp1last->next = 0;
|
|
|
674 |
/* Change 'closepath' of the subpath 1 to a line (maybe degenerate) : */
|
|
|
675 |
if (sp1last->type == s_line_close)
|
|
|
676 |
sp1last->type = s_line;
|
|
|
677 |
/* Rotate the subpath 1 to sc1 : */
|
|
|
678 |
{ segment *old_first = sp1->next;
|
|
|
679 |
|
|
|
680 |
/* Detach s_start and make a loop : */
|
|
|
681 |
sp1last->next = old_first;
|
|
|
682 |
old_first->prev = sp1last;
|
|
|
683 |
/* Unlink before sc1 : */
|
|
|
684 |
sp1last = sc1->prev;
|
|
|
685 |
sc1->prev->next = 0;
|
|
|
686 |
sc1->prev = 0; /* Safety. */
|
|
|
687 |
/* sp1 is not longer in use. Free it : */
|
|
|
688 |
if (ppath->segments->contents.subpath_current == sp1) {
|
|
|
689 |
ppath->segments->contents.subpath_current = sp1p;
|
|
|
690 |
}
|
|
|
691 |
gs_free_object(ppath->memory, sp1, "gx_path_merge_contacting_contours");
|
|
|
692 |
sp1 = 0; /* Safety. */
|
|
|
693 |
}
|
|
|
694 |
/* Insert the subpath 1 into the subpath 0 before sc0 :*/
|
|
|
695 |
sc0->prev->next = sc1;
|
|
|
696 |
sc1->prev = sc0->prev;
|
|
|
697 |
sp1last->next = sc0;
|
|
|
698 |
sc0->prev = sp1last;
|
|
|
699 |
/* Remove degenearte "bridge" segments : (fixme: Not done due to low importance). */
|
|
|
700 |
/* Edit the subpath count : */
|
|
|
701 |
ppath->subpath_count--;
|
|
|
702 |
} else
|
|
|
703 |
sp1p = sp1;
|
|
|
704 |
}
|
|
|
705 |
}
|
|
|
706 |
return 0;
|
|
|
707 |
}
|
|
|
708 |
|