2 |
- |
1 |
/* Copyright (C) 1989, 1996, 1997, 1998, 1999, 2000 Aladdin Enterprises. All rights reserved.
|
|
|
2 |
|
|
|
3 |
This software is provided AS-IS with no warranty, either express or
|
|
|
4 |
implied.
|
|
|
5 |
|
|
|
6 |
This software is distributed under license and may not be copied,
|
|
|
7 |
modified or distributed except as expressly authorized under the terms
|
|
|
8 |
of the license contained in the file LICENSE in this distribution.
|
|
|
9 |
|
|
|
10 |
For more information about licensing, please refer to
|
|
|
11 |
http://www.ghostscript.com/licensing/. For information on
|
|
|
12 |
commercial licensing, go to http://www.artifex.com/licensing/ or
|
|
|
13 |
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
|
|
|
14 |
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
|
|
|
15 |
*/
|
|
|
16 |
|
|
|
17 |
/* $Id: idict.c,v 1.12 2004/08/19 19:33:09 stefan Exp $ */
|
|
|
18 |
/* Dictionary implementation */
|
|
|
19 |
#include "math_.h" /* for frexp */
|
|
|
20 |
#include "string_.h" /* for strlen */
|
|
|
21 |
#include "ghost.h"
|
|
|
22 |
#include "gxalloc.h" /* for accessing masks */
|
|
|
23 |
#include "ierrors.h"
|
|
|
24 |
#include "imemory.h"
|
|
|
25 |
#include "idebug.h" /* for debug_print_name */
|
|
|
26 |
#include "inamedef.h"
|
|
|
27 |
#include "iname.h"
|
|
|
28 |
#include "ipacked.h"
|
|
|
29 |
#include "isave.h" /* for value cache in names */
|
|
|
30 |
#include "store.h"
|
|
|
31 |
#include "idict.h" /* interface definition */
|
|
|
32 |
#include "idictdef.h"
|
|
|
33 |
#include "iutil.h"
|
|
|
34 |
#include "ivmspace.h" /* for store check */
|
|
|
35 |
|
|
|
36 |
/*
|
|
|
37 |
* Dictionaries per se aren't supposed to know anything about the
|
|
|
38 |
* dictionary stack, let alone the interpreter's dictionary stack.
|
|
|
39 |
* Unfortunately, there is are two design couplings between them:
|
|
|
40 |
* dictionary stacks cache some of the elements of their top dictionary
|
|
|
41 |
* (requiring updating when that dictionary grows or is unpacked),
|
|
|
42 |
* and names may cache a pointer to their definition (requiring a
|
|
|
43 |
* check whether a dictionary appears on the dictionary stack).
|
|
|
44 |
* Therefore, we need iddstack.h here.
|
|
|
45 |
* We'd really like to fix this, but we don't see how.
|
|
|
46 |
*/
|
|
|
47 |
#include "iddstack.h"
|
|
|
48 |
|
|
|
49 |
/*
|
|
|
50 |
* Define the size of the largest valid dictionary.
|
|
|
51 |
* This is limited by the size field of the keys and values refs,
|
|
|
52 |
* and by the enumeration interface, which requires the size to
|
|
|
53 |
* fit in an int. As it happens, max_array_size will always be
|
|
|
54 |
* smaller than max_int.
|
|
|
55 |
*/
|
|
|
56 |
const uint dict_max_size = max_array_size - 1;
|
|
|
57 |
|
|
|
58 |
/* Define whether dictionaries are packed by default. */
|
|
|
59 |
bool dict_default_pack = true;
|
|
|
60 |
|
|
|
61 |
/*
|
|
|
62 |
* Define the check for whether we can set the 1-element cache.
|
|
|
63 |
* We only set the cache if we aren't inside a save.
|
|
|
64 |
* This way, we never have to undo setting the cache.
|
|
|
65 |
*/
|
|
|
66 |
#define CAN_SET_PVALUE_CACHE(pds, pdref, mem)\
|
|
|
67 |
(pds && dstack_dict_is_permanent(pds, pdref) && !ref_saving_in(mem))
|
|
|
68 |
|
|
|
69 |
/* Forward references */
|
|
|
70 |
private int dict_create_contents(uint size, const ref * pdref, bool pack);
|
|
|
71 |
|
|
|
72 |
/* Debugging statistics */
|
|
|
73 |
#ifdef DEBUG
|
|
|
74 |
struct stats_dict_s {
|
|
|
75 |
long lookups; /* total lookups */
|
|
|
76 |
long probe1; /* successful lookups on only 1 probe */
|
|
|
77 |
long probe2; /* successful lookups on 2 probes */
|
|
|
78 |
} stats_dict;
|
|
|
79 |
|
|
|
80 |
/* Wrapper for dict_find */
|
|
|
81 |
int real_dict_find(const ref * pdref, const ref * key, ref ** ppvalue);
|
|
|
82 |
int
|
|
|
83 |
dict_find(const ref * pdref, const ref * pkey, ref ** ppvalue)
|
|
|
84 |
{
|
|
|
85 |
dict *pdict = pdref->value.pdict;
|
|
|
86 |
int code = real_dict_find(pdref, pkey, ppvalue);
|
|
|
87 |
|
|
|
88 |
stats_dict.lookups++;
|
|
|
89 |
if (r_has_type(pkey, t_name) && dict_is_packed(pdict)) {
|
|
|
90 |
uint nidx = name_index(dict_mem(pdict), pkey);
|
|
|
91 |
uint hash =
|
|
|
92 |
dict_hash_mod(dict_name_index_hash(nidx), npairs(pdict)) + 1;
|
|
|
93 |
|
|
|
94 |
if (pdict->keys.value.packed[hash] ==
|
|
|
95 |
pt_tag(pt_literal_name) + nidx
|
|
|
96 |
)
|
|
|
97 |
stats_dict.probe1++;
|
|
|
98 |
else if (pdict->keys.value.packed[hash - 1] ==
|
|
|
99 |
pt_tag(pt_literal_name) + nidx
|
|
|
100 |
)
|
|
|
101 |
stats_dict.probe2++;
|
|
|
102 |
}
|
|
|
103 |
/* Do the cheap flag test before the expensive remainder test. */
|
|
|
104 |
if (gs_debug_c('d') && !(stats_dict.lookups % 1000))
|
|
|
105 |
dlprintf3("[d]lookups=%ld probe1=%ld probe2=%ld\n",
|
|
|
106 |
stats_dict.lookups, stats_dict.probe1, stats_dict.probe2);
|
|
|
107 |
return code;
|
|
|
108 |
}
|
|
|
109 |
#define dict_find real_dict_find
|
|
|
110 |
#endif
|
|
|
111 |
|
|
|
112 |
/* Round up the size of a dictionary. Return 0 if too large. */
|
|
|
113 |
uint
|
|
|
114 |
dict_round_size_small(uint rsize)
|
|
|
115 |
{
|
|
|
116 |
return (rsize > dict_max_size ? 0 : rsize);
|
|
|
117 |
}
|
|
|
118 |
uint
|
|
|
119 |
dict_round_size_large(uint rsize)
|
|
|
120 |
{ /* Round up to a power of 2 if not huge. */
|
|
|
121 |
/* If the addition overflows, the new rsize will be zero, */
|
|
|
122 |
/* which will (correctly) be interpreted as a limitcheck. */
|
|
|
123 |
if (rsize > dict_max_non_huge)
|
|
|
124 |
return (rsize > dict_max_size ? 0 : rsize);
|
|
|
125 |
while (rsize & (rsize - 1))
|
|
|
126 |
rsize = (rsize | (rsize - 1)) + 1;
|
|
|
127 |
return (rsize <= dict_max_size ? rsize : dict_max_non_huge);
|
|
|
128 |
}
|
|
|
129 |
|
|
|
130 |
/* Create a dictionary using the given allocator. */
|
|
|
131 |
int
|
|
|
132 |
dict_alloc(gs_ref_memory_t * mem, uint size, ref * pdref)
|
|
|
133 |
{
|
|
|
134 |
ref arr;
|
|
|
135 |
int code =
|
|
|
136 |
gs_alloc_ref_array(mem, &arr, a_all, sizeof(dict) / sizeof(ref),
|
|
|
137 |
"dict_alloc");
|
|
|
138 |
dict *pdict;
|
|
|
139 |
ref dref;
|
|
|
140 |
|
|
|
141 |
if (code < 0)
|
|
|
142 |
return code;
|
|
|
143 |
pdict = (dict *) arr.value.refs;
|
|
|
144 |
make_tav(&dref, t_dictionary,
|
|
|
145 |
r_space(&arr) | imemory_new_mask(mem) | a_all,
|
|
|
146 |
pdict, pdict);
|
|
|
147 |
make_struct(&pdict->memory, avm_foreign, mem);
|
|
|
148 |
code = dict_create_contents(size, &dref, dict_default_pack);
|
|
|
149 |
if (code < 0) {
|
|
|
150 |
gs_free_ref_array(mem, &arr, "dict_alloc");
|
|
|
151 |
return code;
|
|
|
152 |
}
|
|
|
153 |
*pdref = dref;
|
|
|
154 |
return 0;
|
|
|
155 |
}
|
|
|
156 |
/* Create unpacked keys for a dictionary. */
|
|
|
157 |
/* The keys are allocated using the same allocator as the dictionary. */
|
|
|
158 |
private int
|
|
|
159 |
dict_create_unpacked_keys(uint asize, const ref * pdref)
|
|
|
160 |
{
|
|
|
161 |
dict *pdict = pdref->value.pdict;
|
|
|
162 |
gs_ref_memory_t *mem = dict_memory(pdict);
|
|
|
163 |
int code;
|
|
|
164 |
|
|
|
165 |
code = gs_alloc_ref_array(mem, &pdict->keys, a_all, asize,
|
|
|
166 |
"dict_create_unpacked_keys");
|
|
|
167 |
if (code >= 0) {
|
|
|
168 |
uint new_mask = imemory_new_mask(mem);
|
|
|
169 |
ref *kp = pdict->keys.value.refs;
|
|
|
170 |
|
|
|
171 |
r_set_attrs(&pdict->keys, new_mask);
|
|
|
172 |
refset_null_new(kp, asize, new_mask);
|
|
|
173 |
r_set_attrs(kp, a_executable); /* wraparound entry */
|
|
|
174 |
}
|
|
|
175 |
return code;
|
|
|
176 |
}
|
|
|
177 |
/* Create the contents (keys and values) of a newly allocated dictionary. */
|
|
|
178 |
/* Allocate in the current VM space, which is assumed to be the same as */
|
|
|
179 |
/* the VM space where the dictionary is allocated. */
|
|
|
180 |
private int
|
|
|
181 |
dict_create_contents(uint size, const ref * pdref, bool pack)
|
|
|
182 |
{
|
|
|
183 |
dict *pdict = pdref->value.pdict;
|
|
|
184 |
gs_ref_memory_t *mem = dict_memory(pdict);
|
|
|
185 |
uint new_mask = imemory_new_mask(mem);
|
|
|
186 |
uint asize = dict_round_size((size == 0 ? 1 : size));
|
|
|
187 |
int code;
|
|
|
188 |
register uint i;
|
|
|
189 |
|
|
|
190 |
if (asize == 0 || asize > max_array_size - 1) /* too large */
|
|
|
191 |
return_error(e_limitcheck);
|
|
|
192 |
asize++; /* allow room for wraparound entry */
|
|
|
193 |
code = gs_alloc_ref_array(mem, &pdict->values, a_all, asize,
|
|
|
194 |
"dict_create_contents(values)");
|
|
|
195 |
if (code < 0)
|
|
|
196 |
return code;
|
|
|
197 |
r_set_attrs(&pdict->values, new_mask);
|
|
|
198 |
refset_null_new(pdict->values.value.refs, asize, new_mask);
|
|
|
199 |
if (pack) {
|
|
|
200 |
uint ksize = (asize + packed_per_ref - 1) / packed_per_ref;
|
|
|
201 |
ref arr;
|
|
|
202 |
ref_packed *pkp;
|
|
|
203 |
ref_packed *pzp;
|
|
|
204 |
|
|
|
205 |
code = gs_alloc_ref_array(mem, &arr, a_all, ksize,
|
|
|
206 |
"dict_create_contents(packed keys)");
|
|
|
207 |
if (code < 0)
|
|
|
208 |
return code;
|
|
|
209 |
pkp = (ref_packed *) arr.value.refs;
|
|
|
210 |
make_tasv(&pdict->keys, t_shortarray,
|
|
|
211 |
r_space(&arr) | a_all | new_mask,
|
|
|
212 |
asize, packed, pkp);
|
|
|
213 |
for (pzp = pkp, i = 0; i < asize || i % packed_per_ref; pzp++, i++)
|
|
|
214 |
*pzp = packed_key_empty;
|
|
|
215 |
*pkp = packed_key_deleted; /* wraparound entry */
|
|
|
216 |
} else { /* not packed */
|
|
|
217 |
int code = dict_create_unpacked_keys(asize, pdref);
|
|
|
218 |
|
|
|
219 |
if (code < 0)
|
|
|
220 |
return code;
|
|
|
221 |
}
|
|
|
222 |
make_tav(&pdict->count, t_integer, new_mask, intval, 0);
|
|
|
223 |
make_tav(&pdict->maxlength, t_integer, new_mask, intval, size);
|
|
|
224 |
return 0;
|
|
|
225 |
}
|
|
|
226 |
|
|
|
227 |
/*
|
|
|
228 |
* Ensure that a dictionary uses the unpacked representation for keys.
|
|
|
229 |
* We can't just use dict_resize, because the values slots mustn't move.
|
|
|
230 |
*/
|
|
|
231 |
int
|
|
|
232 |
dict_unpack(ref * pdref, dict_stack_t *pds)
|
|
|
233 |
{
|
|
|
234 |
dict *pdict = pdref->value.pdict;
|
|
|
235 |
|
|
|
236 |
if (!dict_is_packed(pdict))
|
|
|
237 |
return 0; /* nothing to do */
|
|
|
238 |
{
|
|
|
239 |
gs_ref_memory_t *mem = dict_memory(pdict);
|
|
|
240 |
uint count = nslots(pdict);
|
|
|
241 |
const ref_packed *okp = pdict->keys.value.packed;
|
|
|
242 |
ref old_keys;
|
|
|
243 |
int code;
|
|
|
244 |
ref *nkp;
|
|
|
245 |
|
|
|
246 |
old_keys = pdict->keys;
|
|
|
247 |
if (ref_must_save_in(mem, &old_keys))
|
|
|
248 |
ref_do_save_in(mem, pdref, &pdict->keys, "dict_unpack(keys)");
|
|
|
249 |
code = dict_create_unpacked_keys(count, pdref);
|
|
|
250 |
if (code < 0)
|
|
|
251 |
return code;
|
|
|
252 |
for (nkp = pdict->keys.value.refs; count--; okp++, nkp++)
|
|
|
253 |
if (r_packed_is_name(okp)) {
|
|
|
254 |
packed_get((const gs_memory_t *)mem, okp, nkp);
|
|
|
255 |
ref_mark_new_in(mem, nkp);
|
|
|
256 |
} else if (*okp == packed_key_deleted)
|
|
|
257 |
r_set_attrs(nkp, a_executable);
|
|
|
258 |
if (!ref_must_save_in(mem, &old_keys))
|
|
|
259 |
gs_free_ref_array(mem, &old_keys, "dict_unpack(old keys)");
|
|
|
260 |
if (pds)
|
|
|
261 |
dstack_set_top(pds); /* just in case */
|
|
|
262 |
}
|
|
|
263 |
return 0;
|
|
|
264 |
}
|
|
|
265 |
|
|
|
266 |
/*
|
|
|
267 |
* Look up a key in a dictionary. Store a pointer to the value slot
|
|
|
268 |
* where found, or to the (value) slot for inserting.
|
|
|
269 |
* Return 1 if found, 0 if not and there is room for a new entry,
|
|
|
270 |
* or e_dictfull if the dictionary is full and the key is missing.
|
|
|
271 |
* The caller is responsible for ensuring key is not a null.
|
|
|
272 |
*/
|
|
|
273 |
int
|
|
|
274 |
dict_find(const ref * pdref, const ref * pkey,
|
|
|
275 |
ref ** ppvalue /* result is stored here */ )
|
|
|
276 |
{
|
|
|
277 |
dict *pdict = pdref->value.pdict;
|
|
|
278 |
uint size = npairs(pdict);
|
|
|
279 |
register int etype;
|
|
|
280 |
uint nidx;
|
|
|
281 |
ref_packed kpack;
|
|
|
282 |
uint hash;
|
|
|
283 |
int ktype;
|
|
|
284 |
const gs_memory_t *mem = dict_mem(pdict);
|
|
|
285 |
|
|
|
286 |
/* Compute hash. The only types we bother with are strings, */
|
|
|
287 |
/* names, and (unlikely, but worth checking for) integers. */
|
|
|
288 |
switch (r_type(pkey)) {
|
|
|
289 |
case t_name:
|
|
|
290 |
nidx = name_index(mem, pkey);
|
|
|
291 |
nh:
|
|
|
292 |
hash = dict_name_index_hash(nidx);
|
|
|
293 |
kpack = packed_name_key(nidx);
|
|
|
294 |
ktype = t_name;
|
|
|
295 |
break;
|
|
|
296 |
case t_string: /* convert to a name first */
|
|
|
297 |
{
|
|
|
298 |
ref nref;
|
|
|
299 |
int code;
|
|
|
300 |
|
|
|
301 |
if (!r_has_attr(pkey, a_read))
|
|
|
302 |
return_error(e_invalidaccess);
|
|
|
303 |
code = name_ref(mem, pkey->value.bytes, r_size(pkey), &nref, 1);
|
|
|
304 |
if (code < 0)
|
|
|
305 |
return code;
|
|
|
306 |
nidx = name_index(mem, &nref);
|
|
|
307 |
}
|
|
|
308 |
goto nh;
|
|
|
309 |
case t_real:
|
|
|
310 |
/*
|
|
|
311 |
* Make sure that equal reals and integers hash the same.
|
|
|
312 |
*/
|
|
|
313 |
{
|
|
|
314 |
int expt, i;
|
|
|
315 |
double mant = frexp(pkey->value.realval, &expt);
|
|
|
316 |
/*
|
|
|
317 |
* The value is mant * 2^expt, where 0.5 <= mant < 1,
|
|
|
318 |
* or else expt == mant == 0.
|
|
|
319 |
*/
|
|
|
320 |
|
|
|
321 |
if (expt < sizeof(long) * 8 || pkey->value.realval == min_long)
|
|
|
322 |
i = (int)pkey->value.realval;
|
|
|
323 |
else
|
|
|
324 |
i = (int)(mant * min_long); /* MSVC 6.00.8168.0 cannot compile this */
|
|
|
325 |
hash = (uint)i * 30503; /* with -O2 as a single expression */
|
|
|
326 |
}
|
|
|
327 |
goto ih;
|
|
|
328 |
case t_integer:
|
|
|
329 |
hash = (uint)pkey->value.intval * 30503;
|
|
|
330 |
ih:
|
|
|
331 |
kpack = packed_key_impossible;
|
|
|
332 |
ktype = -1;
|
|
|
333 |
nidx = 0; /* only to pacify gcc */
|
|
|
334 |
break;
|
|
|
335 |
case t_null: /* not allowed as a key */
|
|
|
336 |
return_error(e_typecheck);
|
|
|
337 |
default:
|
|
|
338 |
hash = r_btype(pkey) * 99; /* yech */
|
|
|
339 |
kpack = packed_key_impossible;
|
|
|
340 |
ktype = -1;
|
|
|
341 |
nidx = 0; /* only to pacify gcc */
|
|
|
342 |
}
|
|
|
343 |
/* Search the dictionary */
|
|
|
344 |
if (dict_is_packed(pdict)) {
|
|
|
345 |
const ref_packed *pslot = 0;
|
|
|
346 |
|
|
|
347 |
packed_search_1(*ppvalue = packed_search_value_pointer,
|
|
|
348 |
return 1,
|
|
|
349 |
if (pslot == 0) pslot = kp, goto miss);
|
|
|
350 |
packed_search_2(*ppvalue = packed_search_value_pointer,
|
|
|
351 |
return 1,
|
|
|
352 |
if (pslot == 0) pslot = kp, goto miss);
|
|
|
353 |
/*
|
|
|
354 |
* Double wraparound, dict is full.
|
|
|
355 |
* Note that even if there was an empty slot (pslot != 0),
|
|
|
356 |
* we must return dictfull if length = maxlength.
|
|
|
357 |
*/
|
|
|
358 |
if (pslot == 0 || d_length(pdict) == d_maxlength(pdict))
|
|
|
359 |
return_error(e_dictfull);
|
|
|
360 |
*ppvalue = pdict->values.value.refs + (pslot - kbot);
|
|
|
361 |
return 0;
|
|
|
362 |
miss: /* Key is missing, not double wrap. See above re dictfull. */
|
|
|
363 |
if (d_length(pdict) == d_maxlength(pdict))
|
|
|
364 |
return_error(e_dictfull);
|
|
|
365 |
if (pslot == 0)
|
|
|
366 |
pslot = kp;
|
|
|
367 |
*ppvalue = pdict->values.value.refs + (pslot - kbot);
|
|
|
368 |
return 0;
|
|
|
369 |
} else {
|
|
|
370 |
ref *kbot = pdict->keys.value.refs;
|
|
|
371 |
register ref *kp;
|
|
|
372 |
ref *pslot = 0;
|
|
|
373 |
int wrap = 0;
|
|
|
374 |
|
|
|
375 |
for (kp = kbot + dict_hash_mod(hash, size) + 2;;) {
|
|
|
376 |
--kp;
|
|
|
377 |
if ((etype = r_type(kp)) == ktype) { /* Fast comparison if both keys are names */
|
|
|
378 |
if (name_index(mem, kp) == nidx) {
|
|
|
379 |
*ppvalue = pdict->values.value.refs + (kp - kbot);
|
|
|
380 |
return 1;
|
|
|
381 |
}
|
|
|
382 |
} else if (etype == t_null) { /* Empty, deleted, or wraparound. */
|
|
|
383 |
/* Figure out which. */
|
|
|
384 |
if (kp == kbot) { /* wrap */
|
|
|
385 |
if (wrap++) { /* wrapped twice */
|
|
|
386 |
if (pslot == 0)
|
|
|
387 |
return_error(e_dictfull);
|
|
|
388 |
break;
|
|
|
389 |
}
|
|
|
390 |
kp += size + 1;
|
|
|
391 |
} else if (r_has_attr(kp, a_executable)) { /* Deleted entry, save the slot. */
|
|
|
392 |
if (pslot == 0)
|
|
|
393 |
pslot = kp;
|
|
|
394 |
} else /* key not found */
|
|
|
395 |
break;
|
|
|
396 |
} else {
|
|
|
397 |
if (obj_eq(mem, kp, pkey)) {
|
|
|
398 |
*ppvalue = pdict->values.value.refs + (kp - kbot);
|
|
|
399 |
return 1;
|
|
|
400 |
}
|
|
|
401 |
}
|
|
|
402 |
}
|
|
|
403 |
if (d_length(pdict) == d_maxlength(pdict))
|
|
|
404 |
return_error(e_dictfull);
|
|
|
405 |
*ppvalue = pdict->values.value.refs +
|
|
|
406 |
((pslot != 0 ? pslot : kp) - kbot);
|
|
|
407 |
return 0;
|
|
|
408 |
}
|
|
|
409 |
}
|
|
|
410 |
|
|
|
411 |
/*
|
|
|
412 |
* Look up a (constant) C string in a dictionary.
|
|
|
413 |
* Return 1 if found, <= 0 if not.
|
|
|
414 |
*/
|
|
|
415 |
int
|
|
|
416 |
dict_find_string(const ref * pdref, const char *kstr, ref ** ppvalue)
|
|
|
417 |
{
|
|
|
418 |
int code;
|
|
|
419 |
ref kname;
|
|
|
420 |
if ( pdref != 0 ) {
|
|
|
421 |
dict *pdict = pdref->value.pdict;
|
|
|
422 |
|
|
|
423 |
if ((code = name_ref(dict_mem(pdict),
|
|
|
424 |
(const byte *)kstr, strlen(kstr), &kname, -1)) < 0)
|
|
|
425 |
return code;
|
|
|
426 |
return dict_find(pdref, &kname, ppvalue);
|
|
|
427 |
}
|
|
|
428 |
return 0;
|
|
|
429 |
}
|
|
|
430 |
|
|
|
431 |
/*
|
|
|
432 |
* Enter a key-value pair in a dictionary.
|
|
|
433 |
* See idict.h for the possible return values.
|
|
|
434 |
*/
|
|
|
435 |
int
|
|
|
436 |
dict_put(ref * pdref /* t_dictionary */ , const ref * pkey, const ref * pvalue,
|
|
|
437 |
dict_stack_t *pds)
|
|
|
438 |
{
|
|
|
439 |
dict *pdict = pdref->value.pdict;
|
|
|
440 |
gs_ref_memory_t *mem = dict_memory(pdict);
|
|
|
441 |
gs_memory_t *pmem = dict_mem(pdict);
|
|
|
442 |
int rcode = 0;
|
|
|
443 |
int code;
|
|
|
444 |
ref *pvslot;
|
|
|
445 |
|
|
|
446 |
/* Check the value. */
|
|
|
447 |
store_check_dest(pdref, pvalue);
|
|
|
448 |
top:if ((code = dict_find(pdref, pkey, &pvslot)) <= 0) { /* not found *//* Check for overflow */
|
|
|
449 |
ref kname;
|
|
|
450 |
uint index;
|
|
|
451 |
|
|
|
452 |
switch (code) {
|
|
|
453 |
case 0:
|
|
|
454 |
break;
|
|
|
455 |
case e_dictfull:
|
|
|
456 |
if (!pmem->gs_lib_ctx->dict_auto_expand)
|
|
|
457 |
return_error(e_dictfull);
|
|
|
458 |
code = dict_grow(pdref, pds);
|
|
|
459 |
if (code < 0)
|
|
|
460 |
return code;
|
|
|
461 |
goto top; /* keep things simple */
|
|
|
462 |
default: /* e_typecheck */
|
|
|
463 |
return code;
|
|
|
464 |
}
|
|
|
465 |
index = pvslot - pdict->values.value.refs;
|
|
|
466 |
/* If the key is a string, convert it to a name. */
|
|
|
467 |
if (r_has_type(pkey, t_string)) {
|
|
|
468 |
int code;
|
|
|
469 |
|
|
|
470 |
if (!r_has_attr(pkey, a_read))
|
|
|
471 |
return_error(e_invalidaccess);
|
|
|
472 |
code = name_from_string(pmem, pkey, &kname);
|
|
|
473 |
if (code < 0)
|
|
|
474 |
return code;
|
|
|
475 |
pkey = &kname;
|
|
|
476 |
}
|
|
|
477 |
if (dict_is_packed(pdict)) {
|
|
|
478 |
ref_packed *kp;
|
|
|
479 |
|
|
|
480 |
if (!r_has_type(pkey, t_name) ||
|
|
|
481 |
name_index(pmem, pkey) > packed_name_max_index
|
|
|
482 |
) { /* Change to unpacked representation. */
|
|
|
483 |
int code = dict_unpack(pdref, pds);
|
|
|
484 |
|
|
|
485 |
if (code < 0)
|
|
|
486 |
return code;
|
|
|
487 |
goto top;
|
|
|
488 |
}
|
|
|
489 |
kp = pdict->keys.value.writable_packed + index;
|
|
|
490 |
if (ref_must_save_in(mem, &pdict->keys)) { /* See initial comment for why it is safe */
|
|
|
491 |
/* not to save the change if the keys */
|
|
|
492 |
/* array itself is new. */
|
|
|
493 |
ref_do_save_in(mem, &pdict->keys, kp, "dict_put(key)");
|
|
|
494 |
}
|
|
|
495 |
*kp = pt_tag(pt_literal_name) + name_index(pmem, pkey);
|
|
|
496 |
} else {
|
|
|
497 |
ref *kp = pdict->keys.value.refs + index;
|
|
|
498 |
|
|
|
499 |
if_debug2('d', "[d]0x%lx: fill key at 0x%lx\n",
|
|
|
500 |
(ulong) pdict, (ulong) kp);
|
|
|
501 |
store_check_dest(pdref, pkey);
|
|
|
502 |
ref_assign_old_in(mem, &pdict->keys, kp, pkey,
|
|
|
503 |
"dict_put(key)"); /* set key of pair */
|
|
|
504 |
}
|
|
|
505 |
ref_save_in(mem, pdref, &pdict->count, "dict_put(count)");
|
|
|
506 |
pdict->count.value.intval++;
|
|
|
507 |
/* If the key is a name, update its 1-element cache. */
|
|
|
508 |
if (r_has_type(pkey, t_name)) {
|
|
|
509 |
name *pname = pkey->value.pname;
|
|
|
510 |
|
|
|
511 |
if (pname->pvalue == pv_no_defn &&
|
|
|
512 |
CAN_SET_PVALUE_CACHE(pds, pdref, mem)
|
|
|
513 |
) { /* Set the cache. */
|
|
|
514 |
if_debug0('d', "[d]set cache\n");
|
|
|
515 |
pname->pvalue = pvslot;
|
|
|
516 |
} else { /* The cache can't be used. */
|
|
|
517 |
if_debug0('d', "[d]no cache\n");
|
|
|
518 |
pname->pvalue = pv_other;
|
|
|
519 |
}
|
|
|
520 |
}
|
|
|
521 |
rcode = 1;
|
|
|
522 |
}
|
|
|
523 |
if_debug8('d', "[d]0x%lx: put key 0x%lx 0x%lx\n value at 0x%lx: old 0x%lx 0x%lx, new 0x%lx 0x%lx\n",
|
|
|
524 |
(ulong) pdref->value.pdict,
|
|
|
525 |
((const ulong *)pkey)[0], ((const ulong *)pkey)[1],
|
|
|
526 |
(ulong) pvslot,
|
|
|
527 |
((const ulong *)pvslot)[0], ((const ulong *)pvslot)[1],
|
|
|
528 |
((const ulong *)pvalue)[0], ((const ulong *)pvalue)[1]);
|
|
|
529 |
ref_assign_old_in(mem, &pdref->value.pdict->values, pvslot, pvalue,
|
|
|
530 |
"dict_put(value)");
|
|
|
531 |
return rcode;
|
|
|
532 |
}
|
|
|
533 |
|
|
|
534 |
/*
|
|
|
535 |
* Enter a key-value pair where the key is a (constant) C string.
|
|
|
536 |
*/
|
|
|
537 |
int
|
|
|
538 |
dict_put_string(ref * pdref, const char *kstr, const ref * pvalue,
|
|
|
539 |
dict_stack_t *pds)
|
|
|
540 |
{
|
|
|
541 |
int code;
|
|
|
542 |
ref kname;
|
|
|
543 |
dict *pdict = pdref->value.pdict;
|
|
|
544 |
|
|
|
545 |
if ((code = name_ref(dict_mem(pdict),
|
|
|
546 |
(const byte *)kstr, strlen(kstr), &kname, 0)) < 0)
|
|
|
547 |
return code;
|
|
|
548 |
return dict_put(pdref, &kname, pvalue, pds);
|
|
|
549 |
}
|
|
|
550 |
|
|
|
551 |
/* Remove an element from a dictionary. */
|
|
|
552 |
int
|
|
|
553 |
dict_undef(ref * pdref, const ref * pkey, dict_stack_t *pds)
|
|
|
554 |
{
|
|
|
555 |
gs_ref_memory_t *mem;
|
|
|
556 |
ref *pvslot;
|
|
|
557 |
dict *pdict;
|
|
|
558 |
uint index;
|
|
|
559 |
|
|
|
560 |
if (dict_find(pdref, pkey, &pvslot) <= 0)
|
|
|
561 |
return (e_undefined);
|
|
|
562 |
/* Remove the entry from the dictionary. */
|
|
|
563 |
pdict = pdref->value.pdict;
|
|
|
564 |
index = pvslot - pdict->values.value.refs;
|
|
|
565 |
mem = dict_memory(pdict);
|
|
|
566 |
if (dict_is_packed(pdict)) {
|
|
|
567 |
ref_packed *pkp = pdict->keys.value.writable_packed + index;
|
|
|
568 |
|
|
|
569 |
if_debug3('d', "[d]0x%lx: removing key at 0%lx: 0x%x\n",
|
|
|
570 |
(ulong)pdict, (ulong)pkp, (uint)*pkp);
|
|
|
571 |
/* See the initial comment for why it is safe not to save */
|
|
|
572 |
/* the change if the keys array itself is new. */
|
|
|
573 |
if (ref_must_save_in(mem, &pdict->keys))
|
|
|
574 |
ref_do_save_in(mem, &pdict->keys, pkp, "dict_undef(key)");
|
|
|
575 |
/*
|
|
|
576 |
* Accumulating deleted entries slows down lookup.
|
|
|
577 |
* Detect the easy case where we can use an empty entry
|
|
|
578 |
* rather than a deleted one, namely, when the next entry
|
|
|
579 |
* in the probe order is empty.
|
|
|
580 |
*/
|
|
|
581 |
if (pkp[-1] == packed_key_empty) {
|
|
|
582 |
/*
|
|
|
583 |
* In this case we can replace any preceding deleted keys with
|
|
|
584 |
* empty ones as well.
|
|
|
585 |
*/
|
|
|
586 |
uint end = nslots(pdict);
|
|
|
587 |
|
|
|
588 |
*pkp = packed_key_empty;
|
|
|
589 |
while (++index < end && *++pkp == packed_key_deleted)
|
|
|
590 |
*pkp = packed_key_empty;
|
|
|
591 |
} else
|
|
|
592 |
*pkp = packed_key_deleted;
|
|
|
593 |
} else { /* not packed */
|
|
|
594 |
ref *kp = pdict->keys.value.refs + index;
|
|
|
595 |
|
|
|
596 |
if_debug4('d', "[d]0x%lx: removing key at 0%lx: 0x%lx 0x%lx\n",
|
|
|
597 |
(ulong)pdict, (ulong)kp, ((ulong *)kp)[0], ((ulong *)kp)[1]);
|
|
|
598 |
make_null_old_in(mem, &pdict->keys, kp, "dict_undef(key)");
|
|
|
599 |
/*
|
|
|
600 |
* Accumulating deleted entries slows down lookup.
|
|
|
601 |
* Detect the easy case where we can use an empty entry
|
|
|
602 |
* rather than a deleted one, namely, when the next entry
|
|
|
603 |
* in the probe order is empty.
|
|
|
604 |
*/
|
|
|
605 |
if (!r_has_type(kp - 1, t_null) || /* full entry */
|
|
|
606 |
r_has_attr(kp - 1, a_executable) /* deleted or wraparound */
|
|
|
607 |
)
|
|
|
608 |
r_set_attrs(kp, a_executable); /* mark as deleted */
|
|
|
609 |
}
|
|
|
610 |
ref_save_in(mem, pdref, &pdict->count, "dict_undef(count)");
|
|
|
611 |
pdict->count.value.intval--;
|
|
|
612 |
/* If the key is a name, update its 1-element cache. */
|
|
|
613 |
if (r_has_type(pkey, t_name)) {
|
|
|
614 |
name *pname = pkey->value.pname;
|
|
|
615 |
|
|
|
616 |
if (pv_valid(pname->pvalue)) {
|
|
|
617 |
#ifdef DEBUG
|
|
|
618 |
/* Check the the cache is correct. */
|
|
|
619 |
if (!(pds && dstack_dict_is_permanent(pds, pdref)))
|
|
|
620 |
lprintf1("dict_undef: cached name value pointer 0x%lx is incorrect!\n",
|
|
|
621 |
(ulong) pname->pvalue);
|
|
|
622 |
#endif
|
|
|
623 |
/* Clear the cache */
|
|
|
624 |
pname->pvalue = pv_no_defn;
|
|
|
625 |
}
|
|
|
626 |
}
|
|
|
627 |
make_null_old_in(mem, &pdict->values, pvslot, "dict_undef(value)");
|
|
|
628 |
return 0;
|
|
|
629 |
}
|
|
|
630 |
|
|
|
631 |
/* Return the number of elements in a dictionary. */
|
|
|
632 |
uint
|
|
|
633 |
dict_length(const ref * pdref /* t_dictionary */ )
|
|
|
634 |
{
|
|
|
635 |
return d_length(pdref->value.pdict);
|
|
|
636 |
}
|
|
|
637 |
|
|
|
638 |
/* Return the capacity of a dictionary. */
|
|
|
639 |
uint
|
|
|
640 |
dict_maxlength(const ref * pdref /* t_dictionary */ )
|
|
|
641 |
{
|
|
|
642 |
return d_maxlength(pdref->value.pdict);
|
|
|
643 |
}
|
|
|
644 |
|
|
|
645 |
/* Return the maximum index of a slot within a dictionary. */
|
|
|
646 |
uint
|
|
|
647 |
dict_max_index(const ref * pdref /* t_dictionary */ )
|
|
|
648 |
{
|
|
|
649 |
return npairs(pdref->value.pdict) - 1;
|
|
|
650 |
}
|
|
|
651 |
|
|
|
652 |
/*
|
|
|
653 |
* Copy one dictionary into another.
|
|
|
654 |
* If COPY_NEW_ONLY is set, only copy entries whose keys
|
|
|
655 |
* aren't already present in the destination.
|
|
|
656 |
* If COPY_FOR_RESIZE is set, reset any valid name cache entries to
|
|
|
657 |
* pv_no_defn before doing the dict_put.
|
|
|
658 |
*/
|
|
|
659 |
#define COPY_NEW_ONLY 1
|
|
|
660 |
#define COPY_FOR_RESIZE 2
|
|
|
661 |
private int
|
|
|
662 |
dict_copy_elements(const ref * pdrfrom /* t_dictionary */ ,
|
|
|
663 |
ref * pdrto /* t_dictionary */ , int options,
|
|
|
664 |
dict_stack_t *pds)
|
|
|
665 |
{
|
|
|
666 |
int space = r_space(pdrto);
|
|
|
667 |
int index;
|
|
|
668 |
ref elt[2];
|
|
|
669 |
ref *pvslot;
|
|
|
670 |
int code;
|
|
|
671 |
|
|
|
672 |
if (space != avm_max) {
|
|
|
673 |
/* Do the store check before starting the copy. */
|
|
|
674 |
index = dict_first(pdrfrom);
|
|
|
675 |
while ((index = dict_next(pdrfrom, index, elt)) >= 0)
|
|
|
676 |
if (!(options & COPY_NEW_ONLY) ||
|
|
|
677 |
dict_find(pdrto, &elt[0], &pvslot) <= 0
|
|
|
678 |
) {
|
|
|
679 |
store_check_space(space, &elt[0]);
|
|
|
680 |
store_check_space(space, &elt[1]);
|
|
|
681 |
}
|
|
|
682 |
}
|
|
|
683 |
/* Now copy the contents. */
|
|
|
684 |
index = dict_first(pdrfrom);
|
|
|
685 |
while ((index = dict_next(pdrfrom, index, elt)) >= 0) {
|
|
|
686 |
ref *pvalue = pv_no_defn;
|
|
|
687 |
|
|
|
688 |
if ((options & COPY_NEW_ONLY) &&
|
|
|
689 |
dict_find(pdrto, &elt[0], &pvslot) > 0
|
|
|
690 |
)
|
|
|
691 |
continue;
|
|
|
692 |
if ((options & COPY_FOR_RESIZE) &&
|
|
|
693 |
r_has_type(&elt[0], t_name) &&
|
|
|
694 |
(pvalue = elt[0].value.pname->pvalue, pv_valid(pvalue))
|
|
|
695 |
)
|
|
|
696 |
elt[0].value.pname->pvalue = pv_no_defn;
|
|
|
697 |
if ((code = dict_put(pdrto, &elt[0], &elt[1], pds)) < 0) {
|
|
|
698 |
/*
|
|
|
699 |
* If COPY_FOR_RESIZE is set, the dict_put isn't supposed to
|
|
|
700 |
* be able to fail, but we don't want to depend on this.
|
|
|
701 |
*/
|
|
|
702 |
if (pvalue != pv_no_defn)
|
|
|
703 |
elt[0].value.pname->pvalue = pvalue;
|
|
|
704 |
return code;
|
|
|
705 |
}
|
|
|
706 |
}
|
|
|
707 |
return 0;
|
|
|
708 |
}
|
|
|
709 |
int
|
|
|
710 |
dict_copy_entries(const ref *pdrfrom, ref *pdrto, bool new_only,
|
|
|
711 |
dict_stack_t *pds)
|
|
|
712 |
{
|
|
|
713 |
return dict_copy_elements(pdrfrom, pdrto, (new_only ? COPY_NEW_ONLY : 0),
|
|
|
714 |
pds);
|
|
|
715 |
}
|
|
|
716 |
|
|
|
717 |
/* Resize a dictionary. */
|
|
|
718 |
int
|
|
|
719 |
dict_resize(ref * pdref, uint new_size, dict_stack_t *pds)
|
|
|
720 |
{
|
|
|
721 |
dict *pdict = pdref->value.pdict;
|
|
|
722 |
gs_ref_memory_t *mem = dict_memory(pdict);
|
|
|
723 |
uint new_mask = imemory_new_mask(mem);
|
|
|
724 |
dict dnew;
|
|
|
725 |
ref drto;
|
|
|
726 |
int code;
|
|
|
727 |
|
|
|
728 |
if (new_size < d_length(pdict)) {
|
|
|
729 |
if (!mem->gs_lib_ctx->dict_auto_expand)
|
|
|
730 |
return_error(e_dictfull);
|
|
|
731 |
new_size = d_length(pdict);
|
|
|
732 |
}
|
|
|
733 |
make_tav(&drto, t_dictionary, r_space(pdref) | a_all | new_mask,
|
|
|
734 |
pdict, &dnew);
|
|
|
735 |
dnew.memory = pdict->memory;
|
|
|
736 |
if ((code = dict_create_contents(new_size, &drto, dict_is_packed(pdict))) < 0)
|
|
|
737 |
return code;
|
|
|
738 |
/*
|
|
|
739 |
* We must suppress the store check, in case we are expanding
|
|
|
740 |
* systemdict or another global dictionary that is allowed
|
|
|
741 |
* to reference local objects.
|
|
|
742 |
*/
|
|
|
743 |
r_set_space(&drto, avm_local);
|
|
|
744 |
/*
|
|
|
745 |
* If we are expanding a permanent dictionary, we must make sure that
|
|
|
746 |
* dict_put doesn't think this is a second definition for any
|
|
|
747 |
* single-definition names. This in turn requires that
|
|
|
748 |
* dstack_dict_is_permanent must be true for the second ("to")
|
|
|
749 |
* argument of dict_copy_elements, which requires temporarily
|
|
|
750 |
* setting *pdref = drto.
|
|
|
751 |
*/
|
|
|
752 |
if (CAN_SET_PVALUE_CACHE(pds, pdref, mem)) {
|
|
|
753 |
ref drfrom;
|
|
|
754 |
|
|
|
755 |
drfrom = *pdref;
|
|
|
756 |
*pdref = drto;
|
|
|
757 |
dict_copy_elements(&drfrom, pdref, COPY_FOR_RESIZE, pds);
|
|
|
758 |
*pdref = drfrom;
|
|
|
759 |
} else {
|
|
|
760 |
dict_copy_elements(pdref, &drto, 0, pds);
|
|
|
761 |
}
|
|
|
762 |
/* Save or free the old dictionary. */
|
|
|
763 |
if (ref_must_save_in(mem, &pdict->values))
|
|
|
764 |
ref_do_save_in(mem, pdref, &pdict->values, "dict_resize(values)");
|
|
|
765 |
else
|
|
|
766 |
gs_free_ref_array(mem, &pdict->values, "dict_resize(old values)");
|
|
|
767 |
if (ref_must_save_in(mem, &pdict->keys))
|
|
|
768 |
ref_do_save_in(mem, pdref, &pdict->keys, "dict_resize(keys)");
|
|
|
769 |
else
|
|
|
770 |
gs_free_ref_array(mem, &pdict->keys, "dict_resize(old keys)");
|
|
|
771 |
ref_assign(&pdict->keys, &dnew.keys);
|
|
|
772 |
ref_assign(&pdict->values, &dnew.values);
|
|
|
773 |
ref_save_in(dict_memory(pdict), pdref, &pdict->maxlength,
|
|
|
774 |
"dict_resize(maxlength)");
|
|
|
775 |
d_set_maxlength(pdict, new_size);
|
|
|
776 |
if (pds)
|
|
|
777 |
dstack_set_top(pds); /* just in case this is the top dict */
|
|
|
778 |
return 0;
|
|
|
779 |
}
|
|
|
780 |
|
|
|
781 |
/* Grow a dictionary for dict_put. */
|
|
|
782 |
int
|
|
|
783 |
dict_grow(ref * pdref, dict_stack_t *pds)
|
|
|
784 |
{
|
|
|
785 |
dict *pdict = pdref->value.pdict;
|
|
|
786 |
/* We might have maxlength < npairs, if */
|
|
|
787 |
/* dict_round_size increased the size. */
|
|
|
788 |
ulong new_size = (ulong) d_maxlength(pdict) * 3 / 2 + 2;
|
|
|
789 |
|
|
|
790 |
#if arch_sizeof_int < arch_sizeof_long
|
|
|
791 |
if (new_size > max_uint)
|
|
|
792 |
new_size = max_uint;
|
|
|
793 |
#endif
|
|
|
794 |
if (new_size > npairs(pdict)) {
|
|
|
795 |
int code = dict_resize(pdref, (uint) new_size, pds);
|
|
|
796 |
|
|
|
797 |
if (code >= 0)
|
|
|
798 |
return code;
|
|
|
799 |
/* new_size was too big. */
|
|
|
800 |
if (npairs(pdict) < dict_max_size) {
|
|
|
801 |
code = dict_resize(pdref, dict_max_size, pds);
|
|
|
802 |
if (code >= 0)
|
|
|
803 |
return code;
|
|
|
804 |
}
|
|
|
805 |
if (npairs(pdict) == d_maxlength(pdict)) { /* Can't do it. */
|
|
|
806 |
return code;
|
|
|
807 |
}
|
|
|
808 |
/* We can't grow to new_size, but we can grow to npairs. */
|
|
|
809 |
new_size = npairs(pdict);
|
|
|
810 |
}
|
|
|
811 |
/* maxlength < npairs, we can grow in place */
|
|
|
812 |
ref_save_in(dict_memory(pdict), pdref, &pdict->maxlength,
|
|
|
813 |
"dict_put(maxlength)");
|
|
|
814 |
d_set_maxlength(pdict, new_size);
|
|
|
815 |
return 0;
|
|
|
816 |
}
|
|
|
817 |
|
|
|
818 |
/* Prepare to enumerate a dictionary. */
|
|
|
819 |
int
|
|
|
820 |
dict_first(const ref * pdref)
|
|
|
821 |
{
|
|
|
822 |
return (int)nslots(pdref->value.pdict);
|
|
|
823 |
}
|
|
|
824 |
|
|
|
825 |
/* Enumerate the next element of a dictionary. */
|
|
|
826 |
int
|
|
|
827 |
dict_next(const ref * pdref, int index, ref * eltp /* ref eltp[2] */ )
|
|
|
828 |
{
|
|
|
829 |
dict *pdict = pdref->value.pdict;
|
|
|
830 |
ref *vp = pdict->values.value.refs + index;
|
|
|
831 |
|
|
|
832 |
while (vp--, --index >= 0) {
|
|
|
833 |
array_get(dict_mem(pdict), &pdict->keys, (long)index, eltp);
|
|
|
834 |
/* Make sure this is a valid entry. */
|
|
|
835 |
if (r_has_type(eltp, t_name) ||
|
|
|
836 |
(!dict_is_packed(pdict) && !r_has_type(eltp, t_null))
|
|
|
837 |
) {
|
|
|
838 |
eltp[1] = *vp;
|
|
|
839 |
if_debug6('d', "[d]0x%lx: index %d: %lx %lx, %lx %lx\n",
|
|
|
840 |
(ulong) pdict, index,
|
|
|
841 |
((ulong *) eltp)[0], ((ulong *) eltp)[1],
|
|
|
842 |
((ulong *) vp)[0], ((ulong *) vp)[1]);
|
|
|
843 |
return index;
|
|
|
844 |
}
|
|
|
845 |
}
|
|
|
846 |
return -1; /* no more elements */
|
|
|
847 |
}
|
|
|
848 |
|
|
|
849 |
/* Return the index of a value within a dictionary. */
|
|
|
850 |
int
|
|
|
851 |
dict_value_index(const ref * pdref, const ref * pvalue)
|
|
|
852 |
{
|
|
|
853 |
return (int)(pvalue - pdref->value.pdict->values.value.refs - 1);
|
|
|
854 |
}
|
|
|
855 |
|
|
|
856 |
/* Return the entry at a given index within a dictionary. */
|
|
|
857 |
/* If the index designates an unoccupied entry, return e_undefined. */
|
|
|
858 |
int
|
|
|
859 |
dict_index_entry(const ref * pdref, int index, ref * eltp /* ref eltp[2] */ )
|
|
|
860 |
{
|
|
|
861 |
const dict *pdict = pdref->value.pdict;
|
|
|
862 |
|
|
|
863 |
array_get(dict_mem(pdict), &pdict->keys, (long)(index + 1), eltp);
|
|
|
864 |
if (r_has_type(eltp, t_name) ||
|
|
|
865 |
(!dict_is_packed(pdict) && !r_has_type(eltp, t_null))
|
|
|
866 |
) {
|
|
|
867 |
eltp[1] = pdict->values.value.refs[index + 1];
|
|
|
868 |
return 0;
|
|
|
869 |
}
|
|
|
870 |
return e_undefined;
|
|
|
871 |
}
|