2 |
- |
1 |
/* Copyright (C) 1989, 1995, 1997, 1998, 1999 Aladdin Enterprises. All rights reserved.
|
|
|
2 |
|
|
|
3 |
This software is provided AS-IS with no warranty, either express or
|
|
|
4 |
implied.
|
|
|
5 |
|
|
|
6 |
This software is distributed under license and may not be copied,
|
|
|
7 |
modified or distributed except as expressly authorized under the terms
|
|
|
8 |
of the license contained in the file LICENSE in this distribution.
|
|
|
9 |
|
|
|
10 |
For more information about licensing, please refer to
|
|
|
11 |
http://www.ghostscript.com/licensing/. For information on
|
|
|
12 |
commercial licensing, go to http://www.artifex.com/licensing/ or
|
|
|
13 |
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
|
|
|
14 |
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
|
|
|
15 |
*/
|
|
|
16 |
|
|
|
17 |
/* $Id: iname.c,v 1.7 2003/09/03 03:22:59 giles Exp $ */
|
|
|
18 |
/* Name lookup for Ghostscript interpreter */
|
|
|
19 |
#include "memory_.h"
|
|
|
20 |
#include "string_.h"
|
|
|
21 |
#include "ghost.h"
|
|
|
22 |
#include "gsstruct.h"
|
|
|
23 |
#include "gxobj.h" /* for o_set_unmarked */
|
|
|
24 |
#include "ierrors.h"
|
|
|
25 |
#include "inamedef.h"
|
|
|
26 |
#include "imemory.h" /* for isave.h */
|
|
|
27 |
#include "isave.h"
|
|
|
28 |
#include "store.h"
|
|
|
29 |
|
|
|
30 |
/* Public values */
|
|
|
31 |
const uint name_max_string = max_name_string;
|
|
|
32 |
|
|
|
33 |
/* Define the permutation table for name hashing. */
|
|
|
34 |
private const byte hash_permutation[256] = {
|
|
|
35 |
NAME_HASH_PERMUTATION_DATA
|
|
|
36 |
};
|
|
|
37 |
|
|
|
38 |
/* Define the data for the 1-character names. */
|
|
|
39 |
private const byte nt_1char_names[NT_1CHAR_SIZE] = {
|
|
|
40 |
NT_1CHAR_NAMES_DATA
|
|
|
41 |
};
|
|
|
42 |
|
|
|
43 |
/* Structure descriptors */
|
|
|
44 |
gs_private_st_simple(st_name_sub_table, name_sub_table, "name_sub_table");
|
|
|
45 |
gs_private_st_composite(st_name_string_sub_table, name_string_sub_table_t,
|
|
|
46 |
"name_string_sub_table_t",
|
|
|
47 |
name_string_sub_enum_ptrs, name_string_sub_reloc_ptrs);
|
|
|
48 |
gs_private_st_composite(st_name_table, name_table, "name_table",
|
|
|
49 |
name_table_enum_ptrs, name_table_reloc_ptrs);
|
|
|
50 |
|
|
|
51 |
/* Forward references */
|
|
|
52 |
private int name_alloc_sub(name_table *);
|
|
|
53 |
private void name_free_sub(name_table *, uint);
|
|
|
54 |
private void name_scan_sub(name_table *, uint, bool);
|
|
|
55 |
|
|
|
56 |
/* Debugging printout */
|
|
|
57 |
#ifdef DEBUG
|
|
|
58 |
private void
|
|
|
59 |
name_print(const char *msg, const name_table *nt, uint nidx, const int *pflag)
|
|
|
60 |
{
|
|
|
61 |
const name_string_t *pnstr = names_index_string_inline(nt, nidx);
|
|
|
62 |
const name *pname = names_index_ptr_inline(nt, nidx);
|
|
|
63 |
const byte *str = pnstr->string_bytes;
|
|
|
64 |
|
|
|
65 |
dlprintf1("[n]%s", msg);
|
|
|
66 |
if (pflag)
|
|
|
67 |
dprintf1("(%d)", *pflag);
|
|
|
68 |
dprintf2(" (0x%lx#%u)", (ulong)pname, nidx);
|
|
|
69 |
debug_print_string(str, pnstr->string_size);
|
|
|
70 |
dprintf2("(0x%lx,%u)\n", (ulong)str, pnstr->string_size);
|
|
|
71 |
}
|
|
|
72 |
# define if_debug_name(msg, nt, nidx, pflag)\
|
|
|
73 |
if ( gs_debug_c('n') ) name_print(msg, nt, nidx, pflag)
|
|
|
74 |
#else
|
|
|
75 |
# define if_debug_name(msg, nt, nidx, pflag) DO_NOTHING
|
|
|
76 |
#endif
|
|
|
77 |
|
|
|
78 |
/* Initialize a name table */
|
|
|
79 |
name_table *
|
|
|
80 |
names_init(ulong count, gs_ref_memory_t *imem)
|
|
|
81 |
{
|
|
|
82 |
gs_memory_t *mem = (gs_memory_t *)imem;
|
|
|
83 |
name_table *nt;
|
|
|
84 |
int i;
|
|
|
85 |
|
|
|
86 |
if (count == 0)
|
|
|
87 |
count = max_name_count + 1L;
|
|
|
88 |
else if (count - 1 > max_name_count)
|
|
|
89 |
return 0;
|
|
|
90 |
nt = gs_alloc_struct(mem, name_table, &st_name_table, "name_init(nt)");
|
|
|
91 |
if (nt == 0)
|
|
|
92 |
return 0;
|
|
|
93 |
memset(nt, 0, sizeof(name_table));
|
|
|
94 |
nt->max_sub_count =
|
|
|
95 |
((count - 1) | nt_sub_index_mask) >> nt_log2_sub_size;
|
|
|
96 |
nt->name_string_attrs = imemory_space(imem) | a_readonly;
|
|
|
97 |
nt->memory = mem;
|
|
|
98 |
/* Initialize the one-character names. */
|
|
|
99 |
/* Start by creating the necessary sub-tables. */
|
|
|
100 |
for (i = 0; i < NT_1CHAR_FIRST + NT_1CHAR_SIZE; i += nt_sub_size) {
|
|
|
101 |
int code = name_alloc_sub(nt);
|
|
|
102 |
|
|
|
103 |
if (code < 0) {
|
|
|
104 |
while (nt->sub_next > 0)
|
|
|
105 |
name_free_sub(nt, --(nt->sub_next));
|
|
|
106 |
gs_free_object(mem, nt, "name_init(nt)");
|
|
|
107 |
return 0;
|
|
|
108 |
}
|
|
|
109 |
}
|
|
|
110 |
for (i = -1; i < NT_1CHAR_SIZE; i++) {
|
|
|
111 |
uint ncnt = NT_1CHAR_FIRST + i;
|
|
|
112 |
uint nidx = name_count_to_index(ncnt);
|
|
|
113 |
name *pname = names_index_ptr_inline(nt, nidx);
|
|
|
114 |
name_string_t *pnstr = names_index_string_inline(nt, nidx);
|
|
|
115 |
|
|
|
116 |
if (i < 0)
|
|
|
117 |
pnstr->string_bytes = nt_1char_names,
|
|
|
118 |
pnstr->string_size = 0;
|
|
|
119 |
else
|
|
|
120 |
pnstr->string_bytes = nt_1char_names + i,
|
|
|
121 |
pnstr->string_size = 1;
|
|
|
122 |
pnstr->foreign_string = 1;
|
|
|
123 |
pnstr->mark = 1;
|
|
|
124 |
pname->pvalue = pv_no_defn;
|
|
|
125 |
}
|
|
|
126 |
nt->perm_count = NT_1CHAR_FIRST + NT_1CHAR_SIZE;
|
|
|
127 |
/* Reconstruct the free list. */
|
|
|
128 |
nt->free = 0;
|
|
|
129 |
names_trace_finish(nt, NULL);
|
|
|
130 |
return nt;
|
|
|
131 |
}
|
|
|
132 |
|
|
|
133 |
/* Get the allocator for the name table. */
|
|
|
134 |
gs_memory_t *
|
|
|
135 |
names_memory(const name_table * nt)
|
|
|
136 |
{
|
|
|
137 |
return nt->memory;
|
|
|
138 |
}
|
|
|
139 |
|
|
|
140 |
/* Look up or enter a name in the table. */
|
|
|
141 |
/* Return 0 or an error code. */
|
|
|
142 |
/* The return may overlap the characters of the string! */
|
|
|
143 |
/* See iname.h for the meaning of enterflag. */
|
|
|
144 |
int
|
|
|
145 |
names_ref(name_table *nt, const byte *ptr, uint size, ref *pref, int enterflag)
|
|
|
146 |
{
|
|
|
147 |
name *pname;
|
|
|
148 |
name_string_t *pnstr;
|
|
|
149 |
uint nidx;
|
|
|
150 |
uint *phash;
|
|
|
151 |
|
|
|
152 |
/* Compute a hash for the string. */
|
|
|
153 |
/* Make a special check for 1-character names. */
|
|
|
154 |
switch (size) {
|
|
|
155 |
case 0:
|
|
|
156 |
nidx = name_count_to_index(1);
|
|
|
157 |
pname = names_index_ptr_inline(nt, nidx);
|
|
|
158 |
goto mkn;
|
|
|
159 |
case 1:
|
|
|
160 |
if (*ptr < NT_1CHAR_SIZE) {
|
|
|
161 |
uint hash = *ptr + NT_1CHAR_FIRST;
|
|
|
162 |
|
|
|
163 |
nidx = name_count_to_index(hash);
|
|
|
164 |
pname = names_index_ptr_inline(nt, nidx);
|
|
|
165 |
goto mkn;
|
|
|
166 |
}
|
|
|
167 |
/* falls through */
|
|
|
168 |
default: {
|
|
|
169 |
uint hash;
|
|
|
170 |
|
|
|
171 |
NAME_HASH(hash, hash_permutation, ptr, size);
|
|
|
172 |
phash = nt->hash + (hash & (NT_HASH_SIZE - 1));
|
|
|
173 |
}
|
|
|
174 |
}
|
|
|
175 |
|
|
|
176 |
for (nidx = *phash; nidx != 0;
|
|
|
177 |
nidx = name_next_index(nidx, pnstr)
|
|
|
178 |
) {
|
|
|
179 |
pnstr = names_index_string_inline(nt, nidx);
|
|
|
180 |
if (pnstr->string_size == size &&
|
|
|
181 |
!memcmp_inline(ptr, pnstr->string_bytes, size)
|
|
|
182 |
) {
|
|
|
183 |
pname = name_index_ptr_inline(nt, nidx);
|
|
|
184 |
goto mkn;
|
|
|
185 |
}
|
|
|
186 |
}
|
|
|
187 |
/* Name was not in the table. Make a new entry. */
|
|
|
188 |
if (enterflag < 0)
|
|
|
189 |
return_error(e_undefined);
|
|
|
190 |
if (size > max_name_string)
|
|
|
191 |
return_error(e_limitcheck);
|
|
|
192 |
nidx = nt->free;
|
|
|
193 |
if (nidx == 0) {
|
|
|
194 |
int code = name_alloc_sub(nt);
|
|
|
195 |
|
|
|
196 |
if (code < 0)
|
|
|
197 |
return code;
|
|
|
198 |
nidx = nt->free;
|
|
|
199 |
}
|
|
|
200 |
pnstr = names_index_string_inline(nt, nidx);
|
|
|
201 |
if (enterflag == 1) {
|
|
|
202 |
byte *cptr = (byte *)gs_alloc_string(nt->memory, size,
|
|
|
203 |
"names_ref(string)");
|
|
|
204 |
|
|
|
205 |
if (cptr == 0)
|
|
|
206 |
return_error(e_VMerror);
|
|
|
207 |
memcpy(cptr, ptr, size);
|
|
|
208 |
pnstr->string_bytes = cptr;
|
|
|
209 |
pnstr->foreign_string = 0;
|
|
|
210 |
} else {
|
|
|
211 |
pnstr->string_bytes = ptr;
|
|
|
212 |
pnstr->foreign_string = (enterflag == 0 ? 1 : 0);
|
|
|
213 |
}
|
|
|
214 |
pnstr->string_size = size;
|
|
|
215 |
pname = name_index_ptr_inline(nt, nidx);
|
|
|
216 |
pname->pvalue = pv_no_defn;
|
|
|
217 |
nt->free = name_next_index(nidx, pnstr);
|
|
|
218 |
set_name_next_index(nidx, pnstr, *phash);
|
|
|
219 |
*phash = nidx;
|
|
|
220 |
if_debug_name("new name", nt, nidx, &enterflag);
|
|
|
221 |
mkn:
|
|
|
222 |
make_name(pref, nidx, pname);
|
|
|
223 |
return 0;
|
|
|
224 |
}
|
|
|
225 |
|
|
|
226 |
/* Get the string for a name. */
|
|
|
227 |
void
|
|
|
228 |
names_string_ref(const name_table * nt, const ref * pnref /* t_name */ ,
|
|
|
229 |
ref * psref /* result, t_string */ )
|
|
|
230 |
{
|
|
|
231 |
const name_string_t *pnstr = names_string_inline(nt, pnref);
|
|
|
232 |
|
|
|
233 |
make_const_string(psref,
|
|
|
234 |
(pnstr->foreign_string ? avm_foreign | a_readonly :
|
|
|
235 |
nt->name_string_attrs),
|
|
|
236 |
pnstr->string_size,
|
|
|
237 |
(const byte *)pnstr->string_bytes);
|
|
|
238 |
}
|
|
|
239 |
|
|
|
240 |
/* Convert a t_string object to a name. */
|
|
|
241 |
/* Copy the executable attribute. */
|
|
|
242 |
int
|
|
|
243 |
names_from_string(name_table * nt, const ref * psref, ref * pnref)
|
|
|
244 |
{
|
|
|
245 |
int exec = r_has_attr(psref, a_executable);
|
|
|
246 |
int code = names_ref(nt, psref->value.bytes, r_size(psref), pnref, 1);
|
|
|
247 |
|
|
|
248 |
if (code < 0)
|
|
|
249 |
return code;
|
|
|
250 |
if (exec)
|
|
|
251 |
r_set_attrs(pnref, a_executable);
|
|
|
252 |
return code;
|
|
|
253 |
}
|
|
|
254 |
|
|
|
255 |
/* Enter a (permanently allocated) C string as a name. */
|
|
|
256 |
int
|
|
|
257 |
names_enter_string(name_table * nt, const char *str, ref * pref)
|
|
|
258 |
{
|
|
|
259 |
return names_ref(nt, (const byte *)str, strlen(str), pref, 0);
|
|
|
260 |
}
|
|
|
261 |
|
|
|
262 |
/* Invalidate the value cache for a name. */
|
|
|
263 |
void
|
|
|
264 |
names_invalidate_value_cache(name_table * nt, const ref * pnref)
|
|
|
265 |
{
|
|
|
266 |
pnref->value.pname->pvalue = pv_other;
|
|
|
267 |
}
|
|
|
268 |
|
|
|
269 |
/* Convert between names and indices. */
|
|
|
270 |
#undef names_index
|
|
|
271 |
name_index_t
|
|
|
272 |
names_index(const name_table * nt, const ref * pnref)
|
|
|
273 |
{
|
|
|
274 |
return names_index_inline(nt, pnref);
|
|
|
275 |
}
|
|
|
276 |
void
|
|
|
277 |
names_index_ref(const name_table * nt, name_index_t index, ref * pnref)
|
|
|
278 |
{
|
|
|
279 |
names_index_ref_inline(nt, index, pnref);
|
|
|
280 |
}
|
|
|
281 |
name *
|
|
|
282 |
names_index_ptr(const name_table * nt, name_index_t index)
|
|
|
283 |
{
|
|
|
284 |
return names_index_ptr_inline(nt, index);
|
|
|
285 |
}
|
|
|
286 |
|
|
|
287 |
/* Get the index of the next valid name. */
|
|
|
288 |
/* The argument is 0 or a valid index. */
|
|
|
289 |
/* Return 0 if there are no more. */
|
|
|
290 |
name_index_t
|
|
|
291 |
names_next_valid_index(name_table * nt, name_index_t nidx)
|
|
|
292 |
{
|
|
|
293 |
const name_string_sub_table_t *ssub =
|
|
|
294 |
nt->sub[nidx >> nt_log2_sub_size].strings;
|
|
|
295 |
const name_string_t *pnstr;
|
|
|
296 |
|
|
|
297 |
do {
|
|
|
298 |
++nidx;
|
|
|
299 |
if ((nidx & nt_sub_index_mask) == 0)
|
|
|
300 |
for (;; nidx += nt_sub_size) {
|
|
|
301 |
if ((nidx >> nt_log2_sub_size) >= nt->sub_count)
|
|
|
302 |
return 0;
|
|
|
303 |
ssub = nt->sub[nidx >> nt_log2_sub_size].strings;
|
|
|
304 |
if (ssub != 0)
|
|
|
305 |
break;
|
|
|
306 |
}
|
|
|
307 |
pnstr = &ssub->strings[nidx & nt_sub_index_mask];
|
|
|
308 |
}
|
|
|
309 |
while (pnstr->string_bytes == 0);
|
|
|
310 |
return nidx;
|
|
|
311 |
}
|
|
|
312 |
|
|
|
313 |
/* ------ Garbage collection ------ */
|
|
|
314 |
|
|
|
315 |
/* Unmark all non-permanent names before a garbage collection. */
|
|
|
316 |
void
|
|
|
317 |
names_unmark_all(name_table * nt)
|
|
|
318 |
{
|
|
|
319 |
uint si;
|
|
|
320 |
name_string_sub_table_t *ssub;
|
|
|
321 |
|
|
|
322 |
for (si = 0; si < nt->sub_count; ++si)
|
|
|
323 |
if ((ssub = nt->sub[si].strings) != 0) {
|
|
|
324 |
uint i;
|
|
|
325 |
|
|
|
326 |
/* We can make the test much more efficient if we want.... */
|
|
|
327 |
for (i = 0; i < nt_sub_size; ++i)
|
|
|
328 |
if (name_index_to_count((si << nt_log2_sub_size) + i) >=
|
|
|
329 |
nt->perm_count)
|
|
|
330 |
ssub->strings[i].mark = 0;
|
|
|
331 |
}
|
|
|
332 |
}
|
|
|
333 |
|
|
|
334 |
/* Mark a name. Return true if new mark. We export this so we can mark */
|
|
|
335 |
/* character names in the character cache. */
|
|
|
336 |
bool
|
|
|
337 |
names_mark_index(name_table * nt, name_index_t nidx)
|
|
|
338 |
{
|
|
|
339 |
name_string_t *pnstr = names_index_string_inline(nt, nidx);
|
|
|
340 |
|
|
|
341 |
if (pnstr->mark)
|
|
|
342 |
return false;
|
|
|
343 |
pnstr->mark = 1;
|
|
|
344 |
return true;
|
|
|
345 |
}
|
|
|
346 |
|
|
|
347 |
/* Get the object (sub-table) containing a name. */
|
|
|
348 |
/* The garbage collector needs this so it can relocate pointers to names. */
|
|
|
349 |
void /*obj_header_t */ *
|
|
|
350 |
names_ref_sub_table(name_table * nt, const ref * pnref)
|
|
|
351 |
{
|
|
|
352 |
/* When this procedure is called, the pointers from the name table */
|
|
|
353 |
/* to the sub-tables may or may not have been relocated already, */
|
|
|
354 |
/* so we can't use them. Instead, we have to work backwards from */
|
|
|
355 |
/* the name pointer itself. */
|
|
|
356 |
return pnref->value.pname - (r_size(pnref) & nt_sub_index_mask);
|
|
|
357 |
}
|
|
|
358 |
void /*obj_header_t */ *
|
|
|
359 |
names_index_sub_table(name_table * nt, name_index_t index)
|
|
|
360 |
{
|
|
|
361 |
return nt->sub[index >> nt_log2_sub_size].names;
|
|
|
362 |
}
|
|
|
363 |
void /*obj_header_t */ *
|
|
|
364 |
names_index_string_sub_table(name_table * nt, name_index_t index)
|
|
|
365 |
{
|
|
|
366 |
return nt->sub[index >> nt_log2_sub_size].strings;
|
|
|
367 |
}
|
|
|
368 |
|
|
|
369 |
/*
|
|
|
370 |
* Clean up the name table after the trace/mark phase of a garbage
|
|
|
371 |
* collection, by removing names that aren't marked. gcst == NULL indicates
|
|
|
372 |
* we're doing this for initialization or restore rather than for a GC.
|
|
|
373 |
*/
|
|
|
374 |
void
|
|
|
375 |
names_trace_finish(name_table * nt, gc_state_t * gcst)
|
|
|
376 |
{
|
|
|
377 |
uint *phash = &nt->hash[0];
|
|
|
378 |
uint i;
|
|
|
379 |
|
|
|
380 |
for (i = 0; i < NT_HASH_SIZE; phash++, i++) {
|
|
|
381 |
name_index_t prev = 0;
|
|
|
382 |
/*
|
|
|
383 |
* The following initialization is only to pacify compilers:
|
|
|
384 |
* pnprev is only referenced if prev has been set in the loop,
|
|
|
385 |
* in which case pnprev is also set.
|
|
|
386 |
*/
|
|
|
387 |
name_string_t *pnprev = 0;
|
|
|
388 |
name_index_t nidx = *phash;
|
|
|
389 |
|
|
|
390 |
while (nidx != 0) {
|
|
|
391 |
name_string_t *pnstr = names_index_string_inline(nt, nidx);
|
|
|
392 |
name_index_t next = name_next_index(nidx, pnstr);
|
|
|
393 |
|
|
|
394 |
if (pnstr->mark) {
|
|
|
395 |
prev = nidx;
|
|
|
396 |
pnprev = pnstr;
|
|
|
397 |
} else {
|
|
|
398 |
if_debug_name("GC remove name", nt, nidx, NULL);
|
|
|
399 |
/* Zero out the string data for the GC. */
|
|
|
400 |
pnstr->string_bytes = 0;
|
|
|
401 |
pnstr->string_size = 0;
|
|
|
402 |
if (prev == 0)
|
|
|
403 |
*phash = next;
|
|
|
404 |
else
|
|
|
405 |
set_name_next_index(prev, pnprev, next);
|
|
|
406 |
}
|
|
|
407 |
nidx = next;
|
|
|
408 |
}
|
|
|
409 |
}
|
|
|
410 |
/* Reconstruct the free list. */
|
|
|
411 |
nt->free = 0;
|
|
|
412 |
for (i = nt->sub_count; i--;) {
|
|
|
413 |
name_sub_table *sub = nt->sub[i].names;
|
|
|
414 |
name_string_sub_table_t *ssub = nt->sub[i].strings;
|
|
|
415 |
|
|
|
416 |
if (sub != 0) {
|
|
|
417 |
name_scan_sub(nt, i, true);
|
|
|
418 |
if (nt->sub[i].names == 0 && gcst != 0) {
|
|
|
419 |
/* Mark the just-freed sub-table as unmarked. */
|
|
|
420 |
o_set_unmarked((obj_header_t *)sub - 1);
|
|
|
421 |
o_set_unmarked((obj_header_t *)ssub - 1);
|
|
|
422 |
}
|
|
|
423 |
}
|
|
|
424 |
if (i == 0)
|
|
|
425 |
break;
|
|
|
426 |
}
|
|
|
427 |
nt->sub_next = 0;
|
|
|
428 |
}
|
|
|
429 |
|
|
|
430 |
/* ------ Save/restore ------ */
|
|
|
431 |
|
|
|
432 |
/* Clean up the name table before a restore. */
|
|
|
433 |
/* Currently, this is never called, because the name table is allocated */
|
|
|
434 |
/* in system VM. However, for a Level 1 system, we might choose to */
|
|
|
435 |
/* allocate the name table in global VM; in this case, this routine */
|
|
|
436 |
/* would be called before doing the global part of a top-level restore. */
|
|
|
437 |
/* Currently we don't make any attempt to optimize this. */
|
|
|
438 |
void
|
|
|
439 |
names_restore(name_table * nt, alloc_save_t * save)
|
|
|
440 |
{
|
|
|
441 |
/* We simply mark all names older than the save, */
|
|
|
442 |
/* and let names_trace_finish sort everything out. */
|
|
|
443 |
uint si;
|
|
|
444 |
|
|
|
445 |
for (si = 0; si < nt->sub_count; ++si)
|
|
|
446 |
if (nt->sub[si].strings != 0) {
|
|
|
447 |
uint i;
|
|
|
448 |
|
|
|
449 |
for (i = 0; i < nt_sub_size; ++i) {
|
|
|
450 |
name_string_t *pnstr =
|
|
|
451 |
names_index_string_inline(nt, (si << nt_log2_sub_size) + i);
|
|
|
452 |
|
|
|
453 |
if (pnstr->string_bytes == 0)
|
|
|
454 |
pnstr->mark = 0;
|
|
|
455 |
else if (pnstr->foreign_string) {
|
|
|
456 |
/* Avoid storing into a read-only name string. */
|
|
|
457 |
if (!pnstr->mark)
|
|
|
458 |
pnstr->mark = 1;
|
|
|
459 |
} else
|
|
|
460 |
pnstr->mark =
|
|
|
461 |
!alloc_is_since_save(pnstr->string_bytes, save);
|
|
|
462 |
}
|
|
|
463 |
}
|
|
|
464 |
names_trace_finish(nt, NULL);
|
|
|
465 |
}
|
|
|
466 |
|
|
|
467 |
/* ------ Internal procedures ------ */
|
|
|
468 |
|
|
|
469 |
/* Allocate the next sub-table. */
|
|
|
470 |
private int
|
|
|
471 |
name_alloc_sub(name_table * nt)
|
|
|
472 |
{
|
|
|
473 |
gs_memory_t *mem = nt->memory;
|
|
|
474 |
uint sub_index = nt->sub_next;
|
|
|
475 |
name_sub_table *sub;
|
|
|
476 |
name_string_sub_table_t *ssub;
|
|
|
477 |
|
|
|
478 |
for (;; ++sub_index) {
|
|
|
479 |
if (sub_index > nt->max_sub_count)
|
|
|
480 |
return_error(e_limitcheck);
|
|
|
481 |
if (nt->sub[sub_index].names == 0)
|
|
|
482 |
break;
|
|
|
483 |
}
|
|
|
484 |
nt->sub_next = sub_index + 1;
|
|
|
485 |
if (nt->sub_next > nt->sub_count)
|
|
|
486 |
nt->sub_count = nt->sub_next;
|
|
|
487 |
sub = gs_alloc_struct(mem, name_sub_table, &st_name_sub_table,
|
|
|
488 |
"name_alloc_sub(sub-table)");
|
|
|
489 |
ssub = gs_alloc_struct(mem, name_string_sub_table_t,
|
|
|
490 |
&st_name_string_sub_table,
|
|
|
491 |
"name_alloc_sub(string sub-table)");
|
|
|
492 |
if (sub == 0 || ssub == 0) {
|
|
|
493 |
gs_free_object(mem, ssub, "name_alloc_sub(string sub-table)");
|
|
|
494 |
gs_free_object(mem, sub, "name_alloc_sub(sub-table)");
|
|
|
495 |
return_error(e_VMerror);
|
|
|
496 |
}
|
|
|
497 |
memset(sub, 0, sizeof(name_sub_table));
|
|
|
498 |
memset(ssub, 0, sizeof(name_string_sub_table_t));
|
|
|
499 |
/* The following code is only used if EXTEND_NAMES is non-zero. */
|
|
|
500 |
#if name_extension_bits > 0
|
|
|
501 |
sub->high_index = (sub_index >> (16 - nt_log2_sub_size)) << 16;
|
|
|
502 |
#endif
|
|
|
503 |
nt->sub[sub_index].names = sub;
|
|
|
504 |
nt->sub[sub_index].strings = ssub;
|
|
|
505 |
/* Add the newly allocated entries to the free list. */
|
|
|
506 |
/* Note that the free list will only be properly sorted if */
|
|
|
507 |
/* it was empty initially. */
|
|
|
508 |
name_scan_sub(nt, sub_index, false);
|
|
|
509 |
#ifdef DEBUG
|
|
|
510 |
if (gs_debug_c('n')) { /* Print the lengths of the hash chains. */
|
|
|
511 |
int i0;
|
|
|
512 |
|
|
|
513 |
for (i0 = 0; i0 < NT_HASH_SIZE; i0 += 16) {
|
|
|
514 |
int i;
|
|
|
515 |
|
|
|
516 |
dlprintf1("[n]chain %d:", i0);
|
|
|
517 |
for (i = i0; i < i0 + 16; i++) {
|
|
|
518 |
int n = 0;
|
|
|
519 |
uint nidx;
|
|
|
520 |
|
|
|
521 |
for (nidx = nt->hash[i]; nidx != 0;
|
|
|
522 |
nidx = name_next_index(nidx,
|
|
|
523 |
names_index_string_inline(nt, nidx))
|
|
|
524 |
)
|
|
|
525 |
n++;
|
|
|
526 |
dprintf1(" %d", n);
|
|
|
527 |
}
|
|
|
528 |
dputc('\n');
|
|
|
529 |
}
|
|
|
530 |
}
|
|
|
531 |
#endif
|
|
|
532 |
return 0;
|
|
|
533 |
}
|
|
|
534 |
|
|
|
535 |
/* Free a sub-table. */
|
|
|
536 |
private void
|
|
|
537 |
name_free_sub(name_table * nt, uint sub_index)
|
|
|
538 |
{
|
|
|
539 |
gs_free_object(nt->memory, nt->sub[sub_index].strings,
|
|
|
540 |
"name_free_sub(string sub-table)");
|
|
|
541 |
gs_free_object(nt->memory, nt->sub[sub_index].names,
|
|
|
542 |
"name_free_sub(sub-table)");
|
|
|
543 |
nt->sub[sub_index].names = 0;
|
|
|
544 |
nt->sub[sub_index].strings = 0;
|
|
|
545 |
}
|
|
|
546 |
|
|
|
547 |
/* Scan a sub-table and add unmarked entries to the free list. */
|
|
|
548 |
/* We add the entries in decreasing count order, so the free list */
|
|
|
549 |
/* will stay sorted. If all entries are unmarked and free_empty is true, */
|
|
|
550 |
/* free the sub-table. */
|
|
|
551 |
private void
|
|
|
552 |
name_scan_sub(name_table * nt, uint sub_index, bool free_empty)
|
|
|
553 |
{
|
|
|
554 |
name_string_sub_table_t *ssub = nt->sub[sub_index].strings;
|
|
|
555 |
uint free = nt->free;
|
|
|
556 |
uint nbase = sub_index << nt_log2_sub_size;
|
|
|
557 |
uint ncnt = nbase + (nt_sub_size - 1);
|
|
|
558 |
bool keep = !free_empty;
|
|
|
559 |
|
|
|
560 |
if (ssub == 0)
|
|
|
561 |
return;
|
|
|
562 |
if (nbase == 0)
|
|
|
563 |
nbase = 1, keep = true; /* don't free name 0 */
|
|
|
564 |
for (;; --ncnt) {
|
|
|
565 |
uint nidx = name_count_to_index(ncnt);
|
|
|
566 |
name_string_t *pnstr = &ssub->strings[nidx & nt_sub_index_mask];
|
|
|
567 |
|
|
|
568 |
if (pnstr->mark)
|
|
|
569 |
keep = true;
|
|
|
570 |
else {
|
|
|
571 |
set_name_next_index(nidx, pnstr, free);
|
|
|
572 |
free = nidx;
|
|
|
573 |
}
|
|
|
574 |
if (ncnt == nbase)
|
|
|
575 |
break;
|
|
|
576 |
}
|
|
|
577 |
if (keep)
|
|
|
578 |
nt->free = free;
|
|
|
579 |
else {
|
|
|
580 |
/* No marked entries, free the sub-table. */
|
|
|
581 |
name_free_sub(nt, sub_index);
|
|
|
582 |
if (sub_index == nt->sub_count - 1) {
|
|
|
583 |
/* Back up over a final run of deleted sub-tables. */
|
|
|
584 |
do {
|
|
|
585 |
--sub_index;
|
|
|
586 |
} while (nt->sub[sub_index].names == 0);
|
|
|
587 |
nt->sub_count = sub_index + 1;
|
|
|
588 |
if (nt->sub_next > sub_index)
|
|
|
589 |
nt->sub_next = sub_index;
|
|
|
590 |
} else if (nt->sub_next == sub_index)
|
|
|
591 |
nt->sub_next--;
|
|
|
592 |
}
|
|
|
593 |
}
|
|
|
594 |
|
|
|
595 |
/* Garbage collector enumeration and relocation procedures. */
|
|
|
596 |
private
|
|
|
597 |
ENUM_PTRS_BEGIN_PROC(name_table_enum_ptrs)
|
|
|
598 |
{
|
|
|
599 |
EV_CONST name_table *const nt = vptr;
|
|
|
600 |
uint i = index >> 1;
|
|
|
601 |
|
|
|
602 |
if (i >= nt->sub_count)
|
|
|
603 |
return 0;
|
|
|
604 |
if (index & 1)
|
|
|
605 |
ENUM_RETURN(nt->sub[i].strings);
|
|
|
606 |
else
|
|
|
607 |
ENUM_RETURN(nt->sub[i].names);
|
|
|
608 |
}
|
|
|
609 |
ENUM_PTRS_END_PROC
|
|
|
610 |
private RELOC_PTRS_WITH(name_table_reloc_ptrs, name_table *nt)
|
|
|
611 |
{
|
|
|
612 |
uint sub_count = nt->sub_count;
|
|
|
613 |
uint i;
|
|
|
614 |
|
|
|
615 |
/* Now we can relocate the sub-table pointers. */
|
|
|
616 |
for (i = 0; i < sub_count; i++) {
|
|
|
617 |
RELOC_VAR(nt->sub[i].names);
|
|
|
618 |
RELOC_VAR(nt->sub[i].strings);
|
|
|
619 |
}
|
|
|
620 |
/*
|
|
|
621 |
* We also need to relocate the cached value pointers.
|
|
|
622 |
* We don't do this here, but in a separate scan over the
|
|
|
623 |
* permanent dictionaries, at the very end of garbage collection.
|
|
|
624 |
*/
|
|
|
625 |
}
|
|
|
626 |
RELOC_PTRS_END
|
|
|
627 |
|
|
|
628 |
private ENUM_PTRS_BEGIN_PROC(name_string_sub_enum_ptrs)
|
|
|
629 |
{
|
|
|
630 |
return 0;
|
|
|
631 |
}
|
|
|
632 |
ENUM_PTRS_END_PROC
|
|
|
633 |
private RELOC_PTRS_BEGIN(name_string_sub_reloc_ptrs)
|
|
|
634 |
{
|
|
|
635 |
name_string_t *pnstr = ((name_string_sub_table_t *)vptr)->strings;
|
|
|
636 |
uint i;
|
|
|
637 |
|
|
|
638 |
for (i = 0; i < nt_sub_size; ++pnstr, ++i) {
|
|
|
639 |
if (pnstr->string_bytes != 0 && !pnstr->foreign_string) {
|
|
|
640 |
gs_const_string nstr;
|
|
|
641 |
|
|
|
642 |
nstr.data = pnstr->string_bytes;
|
|
|
643 |
nstr.size = pnstr->string_size;
|
|
|
644 |
RELOC_CONST_STRING_VAR(nstr);
|
|
|
645 |
pnstr->string_bytes = nstr.data;
|
|
|
646 |
}
|
|
|
647 |
}
|
|
|
648 |
}
|
|
|
649 |
RELOC_PTRS_END
|