2 |
- |
1 |
/* Copyright (C) 1992, 2000 Aladdin Enterprises. All rights reserved.
|
|
|
2 |
|
|
|
3 |
This software is provided AS-IS with no warranty, either express or
|
|
|
4 |
implied.
|
|
|
5 |
|
|
|
6 |
This software is distributed under license and may not be copied,
|
|
|
7 |
modified or distributed except as expressly authorized under the terms
|
|
|
8 |
of the license contained in the file LICENSE in this distribution.
|
|
|
9 |
|
|
|
10 |
For more information about licensing, please refer to
|
|
|
11 |
http://www.ghostscript.com/licensing/. For information on
|
|
|
12 |
commercial licensing, go to http://www.artifex.com/licensing/ or
|
|
|
13 |
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
|
|
|
14 |
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
|
|
|
15 |
*/
|
|
|
16 |
|
|
|
17 |
/* $Id: gsciemap.c,v 1.16 2005/03/16 12:27:42 igor Exp $ */
|
|
|
18 |
/* CIE color rendering */
|
|
|
19 |
#include "math_.h"
|
|
|
20 |
#include "gx.h"
|
|
|
21 |
#include "gserrors.h"
|
|
|
22 |
#include "gxcspace.h" /* for gxcie.c */
|
|
|
23 |
#include "gxarith.h"
|
|
|
24 |
#include "gxcie.h"
|
|
|
25 |
#include "gxdevice.h" /* for gxcmap.h */
|
|
|
26 |
#include "gxcmap.h"
|
|
|
27 |
#include "gxistate.h"
|
|
|
28 |
|
|
|
29 |
/*
|
|
|
30 |
* Compute a cache index as (vin - base) * factor.
|
|
|
31 |
* vin, base, factor, and the result are cie_cached_values.
|
|
|
32 |
* We know that the result doesn't exceed (gx_cie_cache_size - 1) << fbits.
|
|
|
33 |
*
|
|
|
34 |
* Since this operation is extremely time-critical, we don't rely on the
|
|
|
35 |
* compiler providing 'inline'.
|
|
|
36 |
*/
|
|
|
37 |
#define LOOKUP_INDEX_(vin, pcache, fbits)\
|
|
|
38 |
(cie_cached_value)\
|
|
|
39 |
((vin) <= (pcache)->vecs.params.base ? 0 :\
|
|
|
40 |
(vin) >= (pcache)->vecs.params.limit ? (gx_cie_cache_size - 1) << (fbits) :\
|
|
|
41 |
cie_cached_product2int( ((vin) - (pcache)->vecs.params.base),\
|
|
|
42 |
(pcache)->vecs.params.factor, fbits ))
|
|
|
43 |
#define LOOKUP_ENTRY_(vin, pcache)\
|
|
|
44 |
(&(pcache)->vecs.values[(int)LOOKUP_INDEX(vin, pcache, 0)])
|
|
|
45 |
#ifdef DEBUG
|
|
|
46 |
private cie_cached_value
|
|
|
47 |
LOOKUP_INDEX(cie_cached_value vin, const gx_cie_vector_cache *pcache,
|
|
|
48 |
int fbits)
|
|
|
49 |
{
|
|
|
50 |
return LOOKUP_INDEX_(vin, pcache, fbits);
|
|
|
51 |
}
|
|
|
52 |
private const cie_cached_vector3 *
|
|
|
53 |
LOOKUP_ENTRY(cie_cached_value vin, const gx_cie_vector_cache *pcache)
|
|
|
54 |
{
|
|
|
55 |
return LOOKUP_ENTRY_(vin, pcache);
|
|
|
56 |
}
|
|
|
57 |
#else /* !DEBUG */
|
|
|
58 |
# define LOOKUP_INDEX(vin, pcache, fbits) LOOKUP_INDEX_(vin, pcache, fbits)
|
|
|
59 |
# define LOOKUP_ENTRY(vin, pcache) LOOKUP_ENTRY_(vin, pcache)
|
|
|
60 |
#endif /* DEBUG */
|
|
|
61 |
|
|
|
62 |
/*
|
|
|
63 |
* Call the remap_finish procedure in the structure without going through
|
|
|
64 |
* the extra level of procedure.
|
|
|
65 |
*/
|
|
|
66 |
#ifdef DEBUG
|
|
|
67 |
# define GX_CIE_REMAP_FINISH(vec3, pconc, pis, pcs)\
|
|
|
68 |
gx_cie_remap_finish(vec3, pconc, pis, pcs)
|
|
|
69 |
#else
|
|
|
70 |
# define GX_CIE_REMAP_FINISH(vec3, pconc, pis, pcs)\
|
|
|
71 |
((pis)->cie_joint_caches->remap_finish(vec3, pconc, pis, pcs))
|
|
|
72 |
#endif
|
|
|
73 |
|
|
|
74 |
/* Forward references */
|
|
|
75 |
private void cie_lookup_mult3(cie_cached_vector3 *,
|
|
|
76 |
const gx_cie_vector_cache3_t *);
|
|
|
77 |
|
|
|
78 |
#ifdef DEBUG
|
|
|
79 |
private void
|
|
|
80 |
cie_lookup_map3(cie_cached_vector3 * pvec,
|
|
|
81 |
const gx_cie_vector_cache3_t * pc, const char *cname)
|
|
|
82 |
{
|
|
|
83 |
if_debug5('c', "[c]lookup %s 0x%lx [%g %g %g]\n",
|
|
|
84 |
(const char *)cname, (ulong) pc,
|
|
|
85 |
cie_cached2float(pvec->u), cie_cached2float(pvec->v),
|
|
|
86 |
cie_cached2float(pvec->w));
|
|
|
87 |
cie_lookup_mult3(pvec, pc);
|
|
|
88 |
if_debug3('c', " =[%g %g %g]\n",
|
|
|
89 |
cie_cached2float(pvec->u), cie_cached2float(pvec->v),
|
|
|
90 |
cie_cached2float(pvec->w));
|
|
|
91 |
}
|
|
|
92 |
#else
|
|
|
93 |
# define cie_lookup_map3(pvec, pc, cname) cie_lookup_mult3(pvec, pc)
|
|
|
94 |
#endif
|
|
|
95 |
|
|
|
96 |
/* Render a CIEBasedDEFG color. */
|
|
|
97 |
int
|
|
|
98 |
gx_concretize_CIEDEFG(const gs_client_color * pc, const gs_color_space * pcs,
|
|
|
99 |
frac * pconc, const gs_imager_state * pis)
|
|
|
100 |
{
|
|
|
101 |
const gs_cie_defg *pcie = pcs->params.defg;
|
|
|
102 |
int i;
|
|
|
103 |
fixed hijk[4];
|
|
|
104 |
frac abc[3];
|
|
|
105 |
cie_cached_vector3 vec3;
|
|
|
106 |
|
|
|
107 |
if_debug4('c', "[c]concretize DEFG [%g %g %g %g]\n",
|
|
|
108 |
pc->paint.values[0], pc->paint.values[1],
|
|
|
109 |
pc->paint.values[2], pc->paint.values[3]);
|
|
|
110 |
CIE_CHECK_RENDERING(pcs, pconc, pis, return 0);
|
|
|
111 |
|
|
|
112 |
/*
|
|
|
113 |
* Apply DecodeDEFG, including restriction to RangeHIJK and scaling to
|
|
|
114 |
* the Table dimensions.
|
|
|
115 |
*/
|
|
|
116 |
for (i = 0; i < 4; ++i) {
|
|
|
117 |
int tdim = pcie->Table.dims[i] - 1;
|
|
|
118 |
double factor = pcie->caches_defg.DecodeDEFG[i].floats.params.factor;
|
|
|
119 |
double v0 = pc->paint.values[i];
|
|
|
120 |
const gs_range *const rangeDEFG = &pcie->RangeDEFG.ranges[i];
|
|
|
121 |
double value =
|
|
|
122 |
(v0 < rangeDEFG->rmin ? 0.0 :
|
|
|
123 |
v0 > rangeDEFG->rmax ? factor :
|
|
|
124 |
(v0 - rangeDEFG->rmin) * factor /
|
|
|
125 |
(rangeDEFG->rmax - rangeDEFG->rmin));
|
|
|
126 |
int vi = (int)value;
|
|
|
127 |
double vf = value - vi;
|
|
|
128 |
double v = pcie->caches_defg.DecodeDEFG[i].floats.values[vi];
|
|
|
129 |
|
|
|
130 |
if (vf != 0 && vi < factor)
|
|
|
131 |
v += vf *
|
|
|
132 |
(pcie->caches_defg.DecodeDEFG[i].floats.values[vi + 1] - v);
|
|
|
133 |
v = (v < 0 ? 0 : v > tdim ? tdim : v);
|
|
|
134 |
hijk[i] = float2fixed(v);
|
|
|
135 |
}
|
|
|
136 |
/* Apply Table. */
|
|
|
137 |
gx_color_interpolate_linear(hijk, &pcie->Table, abc);
|
|
|
138 |
|
|
|
139 |
#define SCALE_TO_RANGE(range, frac) ( \
|
|
|
140 |
float2cie_cached(((range).rmax - (range).rmin) * frac2float(frac) + \
|
|
|
141 |
(range).rmin) \
|
|
|
142 |
)
|
|
|
143 |
/* Scale the abc[] frac values to RangeABC cie_cached result */
|
|
|
144 |
vec3.u = SCALE_TO_RANGE(pcie->RangeABC.ranges[0], abc[0]);
|
|
|
145 |
vec3.v = SCALE_TO_RANGE(pcie->RangeABC.ranges[1], abc[1]);
|
|
|
146 |
vec3.w = SCALE_TO_RANGE(pcie->RangeABC.ranges[2], abc[2]);
|
|
|
147 |
/* Apply DecodeABC and MatrixABC. */
|
|
|
148 |
if (!pis->cie_joint_caches->skipDecodeABC)
|
|
|
149 |
cie_lookup_map3(&vec3 /* ABC => LMN */, &pcie->caches.DecodeABC,
|
|
|
150 |
"Decode/MatrixABC");
|
|
|
151 |
GX_CIE_REMAP_FINISH(vec3, pconc, pis, pcs);
|
|
|
152 |
return 0;
|
|
|
153 |
}
|
|
|
154 |
|
|
|
155 |
/* Render a CIEBasedDEF color. */
|
|
|
156 |
int
|
|
|
157 |
gx_concretize_CIEDEF(const gs_client_color * pc, const gs_color_space * pcs,
|
|
|
158 |
frac * pconc, const gs_imager_state * pis)
|
|
|
159 |
{
|
|
|
160 |
const gs_cie_def *pcie = pcs->params.def;
|
|
|
161 |
int i;
|
|
|
162 |
fixed hij[3];
|
|
|
163 |
frac abc[3];
|
|
|
164 |
cie_cached_vector3 vec3;
|
|
|
165 |
|
|
|
166 |
if_debug3('c', "[c]concretize DEF [%g %g %g]\n",
|
|
|
167 |
pc->paint.values[0], pc->paint.values[1],
|
|
|
168 |
pc->paint.values[2]);
|
|
|
169 |
CIE_CHECK_RENDERING(pcs, pconc, pis, return 0);
|
|
|
170 |
|
|
|
171 |
/*
|
|
|
172 |
* Apply DecodeDEF, including restriction to RangeHIJ and scaling to
|
|
|
173 |
* the Table dimensions.
|
|
|
174 |
*/
|
|
|
175 |
for (i = 0; i < 3; ++i) {
|
|
|
176 |
int tdim = pcie->Table.dims[i] - 1;
|
|
|
177 |
double factor = pcie->caches_def.DecodeDEF[i].floats.params.factor;
|
|
|
178 |
double v0 = pc->paint.values[i];
|
|
|
179 |
const gs_range *const rangeDEF = &pcie->RangeDEF.ranges[i];
|
|
|
180 |
double value =
|
|
|
181 |
(v0 < rangeDEF->rmin ? 0.0 :
|
|
|
182 |
v0 > rangeDEF->rmax ? factor :
|
|
|
183 |
(v0 - rangeDEF->rmin) * factor /
|
|
|
184 |
(rangeDEF->rmax - rangeDEF->rmin));
|
|
|
185 |
int vi = (int)value;
|
|
|
186 |
double vf = value - vi;
|
|
|
187 |
double v = pcie->caches_def.DecodeDEF[i].floats.values[vi];
|
|
|
188 |
|
|
|
189 |
if (vf != 0 && vi < factor)
|
|
|
190 |
v += vf *
|
|
|
191 |
(pcie->caches_def.DecodeDEF[i].floats.values[vi + 1] - v);
|
|
|
192 |
v = (v < 0 ? 0 : v > tdim ? tdim : v);
|
|
|
193 |
hij[i] = float2fixed(v);
|
|
|
194 |
}
|
|
|
195 |
/* Apply Table. */
|
|
|
196 |
gx_color_interpolate_linear(hij, &pcie->Table, abc);
|
|
|
197 |
/* Scale the abc[] frac values to RangeABC cie_cached result */
|
|
|
198 |
vec3.u = SCALE_TO_RANGE(pcie->RangeABC.ranges[0], abc[0]);
|
|
|
199 |
vec3.v = SCALE_TO_RANGE(pcie->RangeABC.ranges[1], abc[1]);
|
|
|
200 |
vec3.w = SCALE_TO_RANGE(pcie->RangeABC.ranges[2], abc[2]);
|
|
|
201 |
/* Apply DecodeABC and MatrixABC. */
|
|
|
202 |
if (!pis->cie_joint_caches->skipDecodeABC)
|
|
|
203 |
cie_lookup_map3(&vec3 /* ABC => LMN */, &pcie->caches.DecodeABC,
|
|
|
204 |
"Decode/MatrixABC");
|
|
|
205 |
GX_CIE_REMAP_FINISH(vec3, pconc, pis, pcs);
|
|
|
206 |
return 0;
|
|
|
207 |
}
|
|
|
208 |
#undef SCALE_TO_RANGE
|
|
|
209 |
|
|
|
210 |
/* Render a CIEBasedABC color. */
|
|
|
211 |
/* We provide both remap and concretize, but only the former */
|
|
|
212 |
/* needs to be efficient. */
|
|
|
213 |
int
|
|
|
214 |
gx_remap_CIEABC(const gs_client_color * pc, const gs_color_space * pcs,
|
|
|
215 |
gx_device_color * pdc, const gs_imager_state * pis, gx_device * dev,
|
|
|
216 |
gs_color_select_t select)
|
|
|
217 |
{
|
|
|
218 |
frac conc[4];
|
|
|
219 |
cie_cached_vector3 vec3;
|
|
|
220 |
|
|
|
221 |
if_debug3('c', "[c]remap CIEABC [%g %g %g]\n",
|
|
|
222 |
pc->paint.values[0], pc->paint.values[1],
|
|
|
223 |
pc->paint.values[2]);
|
|
|
224 |
CIE_CHECK_RENDERING(pcs, conc, pis, goto map3);
|
|
|
225 |
vec3.u = float2cie_cached(pc->paint.values[0]);
|
|
|
226 |
vec3.v = float2cie_cached(pc->paint.values[1]);
|
|
|
227 |
vec3.w = float2cie_cached(pc->paint.values[2]);
|
|
|
228 |
|
|
|
229 |
/* Apply DecodeABC and MatrixABC. */
|
|
|
230 |
if (!pis->cie_joint_caches->skipDecodeABC) {
|
|
|
231 |
const gs_cie_abc *pcie = pcs->params.abc;
|
|
|
232 |
|
|
|
233 |
cie_lookup_map3(&vec3 /* ABC => LMN */, &pcie->caches.DecodeABC,
|
|
|
234 |
"Decode/MatrixABC");
|
|
|
235 |
}
|
|
|
236 |
switch (GX_CIE_REMAP_FINISH(vec3 /* LMN */, conc, pis, pcs)) {
|
|
|
237 |
case 4:
|
|
|
238 |
if_debug4('c', "[c]=CMYK [%g %g %g %g]\n",
|
|
|
239 |
frac2float(conc[0]), frac2float(conc[1]),
|
|
|
240 |
frac2float(conc[2]), frac2float(conc[3]));
|
|
|
241 |
gx_remap_concrete_cmyk(conc[0], conc[1], conc[2], conc[3],
|
|
|
242 |
pdc, pis, dev, select);
|
|
|
243 |
goto done;
|
|
|
244 |
default: /* Can't happen. */
|
|
|
245 |
return_error(gs_error_unknownerror);
|
|
|
246 |
case 3:
|
|
|
247 |
;
|
|
|
248 |
}
|
|
|
249 |
map3:
|
|
|
250 |
if_debug3('c', "[c]=RGB [%g %g %g]\n",
|
|
|
251 |
frac2float(conc[0]), frac2float(conc[1]),
|
|
|
252 |
frac2float(conc[2]));
|
|
|
253 |
gx_remap_concrete_rgb(conc[0], conc[1], conc[2], pdc, pis,
|
|
|
254 |
dev, select);
|
|
|
255 |
done:
|
|
|
256 |
/* Save original color space and color info into dev color */
|
|
|
257 |
pdc->ccolor.paint.values[0] = pc->paint.values[0];
|
|
|
258 |
pdc->ccolor.paint.values[1] = pc->paint.values[1];
|
|
|
259 |
pdc->ccolor.paint.values[2] = pc->paint.values[2];
|
|
|
260 |
pdc->ccolor_valid = true;
|
|
|
261 |
return 0;
|
|
|
262 |
}
|
|
|
263 |
int
|
|
|
264 |
gx_concretize_CIEABC(const gs_client_color * pc, const gs_color_space * pcs,
|
|
|
265 |
frac * pconc, const gs_imager_state * pis)
|
|
|
266 |
{
|
|
|
267 |
const gs_cie_abc *pcie = pcs->params.abc;
|
|
|
268 |
cie_cached_vector3 vec3;
|
|
|
269 |
|
|
|
270 |
if_debug3('c', "[c]concretize CIEABC [%g %g %g]\n",
|
|
|
271 |
pc->paint.values[0], pc->paint.values[1],
|
|
|
272 |
pc->paint.values[2]);
|
|
|
273 |
CIE_CHECK_RENDERING(pcs, pconc, pis, return 0);
|
|
|
274 |
|
|
|
275 |
vec3.u = float2cie_cached(pc->paint.values[0]);
|
|
|
276 |
vec3.v = float2cie_cached(pc->paint.values[1]);
|
|
|
277 |
vec3.w = float2cie_cached(pc->paint.values[2]);
|
|
|
278 |
if (!pis->cie_joint_caches->skipDecodeABC)
|
|
|
279 |
cie_lookup_map3(&vec3 /* ABC => LMN */, &pcie->caches.DecodeABC,
|
|
|
280 |
"Decode/MatrixABC");
|
|
|
281 |
GX_CIE_REMAP_FINISH(vec3, pconc, pis, pcs);
|
|
|
282 |
return 0;
|
|
|
283 |
}
|
|
|
284 |
|
|
|
285 |
/* Render a CIEBasedA color. */
|
|
|
286 |
int
|
|
|
287 |
gx_concretize_CIEA(const gs_client_color * pc, const gs_color_space * pcs,
|
|
|
288 |
frac * pconc, const gs_imager_state * pis)
|
|
|
289 |
{
|
|
|
290 |
const gs_cie_a *pcie = pcs->params.a;
|
|
|
291 |
cie_cached_value a = float2cie_cached(pc->paint.values[0]);
|
|
|
292 |
cie_cached_vector3 vlmn;
|
|
|
293 |
|
|
|
294 |
if_debug1('c', "[c]concretize CIEA %g\n", pc->paint.values[0]);
|
|
|
295 |
CIE_CHECK_RENDERING(pcs, pconc, pis, return 0);
|
|
|
296 |
|
|
|
297 |
/* Apply DecodeA and MatrixA. */
|
|
|
298 |
if (!pis->cie_joint_caches->skipDecodeABC)
|
|
|
299 |
vlmn = *LOOKUP_ENTRY(a, &pcie->caches.DecodeA);
|
|
|
300 |
else
|
|
|
301 |
vlmn.u = vlmn.v = vlmn.w = a;
|
|
|
302 |
GX_CIE_REMAP_FINISH(vlmn, pconc, pis, pcs);
|
|
|
303 |
return 0;
|
|
|
304 |
}
|
|
|
305 |
|
|
|
306 |
/* Call the remap_finish procedure in the joint_caches structure. */
|
|
|
307 |
int
|
|
|
308 |
gx_cie_remap_finish(cie_cached_vector3 vec3, frac * pconc,
|
|
|
309 |
const gs_imager_state * pis,
|
|
|
310 |
const gs_color_space *pcs)
|
|
|
311 |
{
|
|
|
312 |
return pis->cie_joint_caches->remap_finish(vec3, pconc, pis, pcs);
|
|
|
313 |
}
|
|
|
314 |
|
|
|
315 |
/* Finish remapping a CIEBased color. */
|
|
|
316 |
/* Return 3 if RGB, 4 if CMYK. */
|
|
|
317 |
/* this procedure is exported for the benefit of gsicc.c */
|
|
|
318 |
int
|
|
|
319 |
gx_cie_real_remap_finish(cie_cached_vector3 vec3, frac * pconc,
|
|
|
320 |
const gs_imager_state * pis,
|
|
|
321 |
const gs_color_space *pcs)
|
|
|
322 |
{
|
|
|
323 |
const gs_cie_render *pcrd = pis->cie_render;
|
|
|
324 |
const gx_cie_joint_caches *pjc = pis->cie_joint_caches;
|
|
|
325 |
const gs_const_string *table = pcrd->RenderTable.lookup.table;
|
|
|
326 |
int tabc[3]; /* indices for final EncodeABC lookup */
|
|
|
327 |
|
|
|
328 |
/* Apply DecodeLMN, MatrixLMN(decode), and MatrixPQR. */
|
|
|
329 |
if (!pjc->skipDecodeLMN)
|
|
|
330 |
cie_lookup_map3(&vec3 /* LMN => PQR */, &pjc->DecodeLMN,
|
|
|
331 |
"Decode/MatrixLMN+MatrixPQR");
|
|
|
332 |
|
|
|
333 |
/* Apply TransformPQR, MatrixPQR', and MatrixLMN(encode). */
|
|
|
334 |
if (!pjc->skipPQR)
|
|
|
335 |
cie_lookup_map3(&vec3 /* PQR => LMN */, &pjc->TransformPQR,
|
|
|
336 |
"Transform/Matrix'PQR+MatrixLMN");
|
|
|
337 |
|
|
|
338 |
/* Apply EncodeLMN and MatrixABC(encode). */
|
|
|
339 |
if (!pjc->skipEncodeLMN)
|
|
|
340 |
cie_lookup_map3(&vec3 /* LMN => ABC */, &pcrd->caches.EncodeLMN,
|
|
|
341 |
"EncodeLMN+MatrixABC");
|
|
|
342 |
|
|
|
343 |
/* MatrixABCEncode includes the scaling of the EncodeABC */
|
|
|
344 |
/* cache index. */
|
|
|
345 |
#define SET_TABC(i, t)\
|
|
|
346 |
BEGIN\
|
|
|
347 |
tabc[i] = cie_cached2int(vec3 /*ABC*/.t - pcrd->EncodeABC_base[i],\
|
|
|
348 |
_cie_interpolate_bits);\
|
|
|
349 |
if ((uint)tabc[i] > (gx_cie_cache_size - 1) << _cie_interpolate_bits)\
|
|
|
350 |
tabc[i] = (tabc[i] < 0 ? 0 :\
|
|
|
351 |
(gx_cie_cache_size - 1) << _cie_interpolate_bits);\
|
|
|
352 |
END
|
|
|
353 |
SET_TABC(0, u);
|
|
|
354 |
SET_TABC(1, v);
|
|
|
355 |
SET_TABC(2, w);
|
|
|
356 |
#undef SET_TABC
|
|
|
357 |
if (table == 0) {
|
|
|
358 |
/*
|
|
|
359 |
* No further transformation.
|
|
|
360 |
* The final mapping step includes both restriction to
|
|
|
361 |
* the range [0..1] and conversion to fracs.
|
|
|
362 |
*/
|
|
|
363 |
#define EABC(i)\
|
|
|
364 |
cie_interpolate_fracs(pcrd->caches.EncodeABC[i].fixeds.fracs.values, tabc[i])
|
|
|
365 |
pconc[0] = EABC(0);
|
|
|
366 |
pconc[1] = EABC(1);
|
|
|
367 |
pconc[2] = EABC(2);
|
|
|
368 |
#undef EABC
|
|
|
369 |
return 3;
|
|
|
370 |
} else {
|
|
|
371 |
/*
|
|
|
372 |
* Use the RenderTable.
|
|
|
373 |
*/
|
|
|
374 |
int m = pcrd->RenderTable.lookup.m;
|
|
|
375 |
|
|
|
376 |
#define RT_LOOKUP(j, i) pcrd->caches.RenderTableT[j].fracs.values[i]
|
|
|
377 |
#ifdef CIE_RENDER_TABLE_INTERPOLATE
|
|
|
378 |
|
|
|
379 |
/*
|
|
|
380 |
* The final mapping step includes restriction to the
|
|
|
381 |
* ranges [0..dims[c]] as ints with interpolation bits.
|
|
|
382 |
*/
|
|
|
383 |
fixed rfix[3];
|
|
|
384 |
const int s = _fixed_shift - _cie_interpolate_bits;
|
|
|
385 |
|
|
|
386 |
#define EABC(i)\
|
|
|
387 |
cie_interpolate_fracs(pcrd->caches.EncodeABC[i].fixeds.ints.values, tabc[i])
|
|
|
388 |
#define FABC(i, s)\
|
|
|
389 |
((s) > 0) ? (EABC(i) << (s)) : (EABC(i) >> -(s))
|
|
|
390 |
rfix[0] = FABC(0, s);
|
|
|
391 |
rfix[1] = FABC(1, s);
|
|
|
392 |
rfix[2] = FABC(2, s);
|
|
|
393 |
#undef FABC
|
|
|
394 |
#undef EABC
|
|
|
395 |
if_debug6('c', "[c]ABC=%g,%g,%g => iabc=%g,%g,%g\n",
|
|
|
396 |
cie_cached2float(vec3.u), cie_cached2float(vec3.v),
|
|
|
397 |
cie_cached2float(vec3.w), fixed2float(rfix[0]),
|
|
|
398 |
fixed2float(rfix[1]), fixed2float(rfix[2]));
|
|
|
399 |
gx_color_interpolate_linear(rfix, &pcrd->RenderTable.lookup,
|
|
|
400 |
pconc);
|
|
|
401 |
if_debug3('c', "[c] interpolated => %g,%g,%g\n",
|
|
|
402 |
frac2float(pconc[0]), frac2float(pconc[1]),
|
|
|
403 |
frac2float(pconc[2]));
|
|
|
404 |
if (!pcrd->caches.RenderTableT_is_identity) {
|
|
|
405 |
/* Map the interpolated values. */
|
|
|
406 |
#define frac2cache_index(v) frac2bits(v, gx_cie_log2_cache_size)
|
|
|
407 |
pconc[0] = RT_LOOKUP(0, frac2cache_index(pconc[0]));
|
|
|
408 |
pconc[1] = RT_LOOKUP(1, frac2cache_index(pconc[1]));
|
|
|
409 |
pconc[2] = RT_LOOKUP(2, frac2cache_index(pconc[2]));
|
|
|
410 |
if (m > 3)
|
|
|
411 |
pconc[3] = RT_LOOKUP(3, frac2cache_index(pconc[3]));
|
|
|
412 |
#undef frac2cache_index
|
|
|
413 |
}
|
|
|
414 |
|
|
|
415 |
#else /* !CIE_RENDER_TABLE_INTERPOLATE */
|
|
|
416 |
|
|
|
417 |
/*
|
|
|
418 |
* The final mapping step includes restriction to the ranges
|
|
|
419 |
* [0..dims[c]], plus scaling of the indices in the strings.
|
|
|
420 |
*/
|
|
|
421 |
#define RI(i)\
|
|
|
422 |
pcrd->caches.EncodeABC[i].ints.values[tabc[i] >> _cie_interpolate_bits]
|
|
|
423 |
int ia = RI(0);
|
|
|
424 |
int ib = RI(1); /* pre-multiplied by m * NC */
|
|
|
425 |
int ic = RI(2); /* pre-multiplied by m */
|
|
|
426 |
const byte *prtc = table[ia].data + ib + ic;
|
|
|
427 |
|
|
|
428 |
/* (*pcrd->RenderTable.T)(prtc, m, pcrd, pconc); */
|
|
|
429 |
|
|
|
430 |
if_debug6('c', "[c]ABC=%g,%g,%g => iabc=%d,%d,%d\n",
|
|
|
431 |
cie_cached2float(vec3.u), cie_cached2float(vec3.v),
|
|
|
432 |
cie_cached2float(vec3.w), ia, ib, ic);
|
|
|
433 |
if (pcrd->caches.RenderTableT_is_identity) {
|
|
|
434 |
pconc[0] = byte2frac(prtc[0]);
|
|
|
435 |
pconc[1] = byte2frac(prtc[1]);
|
|
|
436 |
pconc[2] = byte2frac(prtc[2]);
|
|
|
437 |
if (m > 3)
|
|
|
438 |
pconc[3] = byte2frac(prtc[3]);
|
|
|
439 |
} else {
|
|
|
440 |
#if gx_cie_log2_cache_size == 8
|
|
|
441 |
# define byte2cache_index(b) (b)
|
|
|
442 |
#else
|
|
|
443 |
# if gx_cie_log2_cache_size > 8
|
|
|
444 |
# define byte2cache_index(b)\
|
|
|
445 |
( ((b) << (gx_cie_log2_cache_size - 8)) +\
|
|
|
446 |
((b) >> (16 - gx_cie_log2_cache_size)) )
|
|
|
447 |
# else /* < 8 */
|
|
|
448 |
# define byte2cache_index(b) ((b) >> (8 - gx_cie_log2_cache_size))
|
|
|
449 |
# endif
|
|
|
450 |
#endif
|
|
|
451 |
pconc[0] = RT_LOOKUP(0, byte2cache_index(prtc[0]));
|
|
|
452 |
pconc[1] = RT_LOOKUP(1, byte2cache_index(prtc[1]));
|
|
|
453 |
pconc[2] = RT_LOOKUP(2, byte2cache_index(prtc[2]));
|
|
|
454 |
if (m > 3)
|
|
|
455 |
pconc[3] = RT_LOOKUP(3, byte2cache_index(prtc[3]));
|
|
|
456 |
#undef byte2cache_index
|
|
|
457 |
}
|
|
|
458 |
|
|
|
459 |
#endif /* !CIE_RENDER_TABLE_INTERPOLATE */
|
|
|
460 |
#undef RI
|
|
|
461 |
#undef RT_LOOKUP
|
|
|
462 |
return m;
|
|
|
463 |
}
|
|
|
464 |
}
|
|
|
465 |
|
|
|
466 |
/*
|
|
|
467 |
* Finish "remapping" a CIEBased color only to the XYZ intermediate values.
|
|
|
468 |
* Note that we can't currently represent values outside the range [0..1]:
|
|
|
469 |
* this is a bug that we will have to address someday.
|
|
|
470 |
*/
|
|
|
471 |
private frac
|
|
|
472 |
float2frac_clamp(floatp x)
|
|
|
473 |
{
|
|
|
474 |
return float2frac((x <= 0 ? 0 : x >= 1 ? 1 : x));
|
|
|
475 |
}
|
|
|
476 |
int
|
|
|
477 |
gx_cie_xyz_remap_finish(cie_cached_vector3 vec3, frac * pconc,
|
|
|
478 |
const gs_imager_state * pis,
|
|
|
479 |
const gs_color_space *pcs)
|
|
|
480 |
{
|
|
|
481 |
const gx_cie_joint_caches *pjc = pis->cie_joint_caches;
|
|
|
482 |
|
|
|
483 |
/*
|
|
|
484 |
* All the steps through DecodeABC/MatrixABC have been applied, i.e.,
|
|
|
485 |
* vec3 is LMN values. Just apply DecodeLMN/MatrixLMN.
|
|
|
486 |
*/
|
|
|
487 |
if (!pjc->skipDecodeLMN)
|
|
|
488 |
cie_lookup_map3(&vec3 /* LMN => XYZ */, &pjc->DecodeLMN,
|
|
|
489 |
"Decode/MatrixLMN");
|
|
|
490 |
|
|
|
491 |
|
|
|
492 |
pconc[0] = float2frac_clamp(cie_cached2float(vec3.u));
|
|
|
493 |
pconc[1] = float2frac_clamp(cie_cached2float(vec3.v));
|
|
|
494 |
pconc[2] = float2frac_clamp(cie_cached2float(vec3.w));
|
|
|
495 |
return 3;
|
|
|
496 |
}
|
|
|
497 |
|
|
|
498 |
/* Look up 3 values in a cache, with cached post-multiplication. */
|
|
|
499 |
private void
|
|
|
500 |
cie_lookup_mult3(cie_cached_vector3 * pvec,
|
|
|
501 |
const gx_cie_vector_cache3_t * pc)
|
|
|
502 |
{
|
|
|
503 |
#ifdef CIE_CACHE_INTERPOLATE
|
|
|
504 |
cie_cached_value u, v, w;
|
|
|
505 |
|
|
|
506 |
#ifdef CIE_CACHE_USE_FIXED
|
|
|
507 |
# define LOOKUP_INTERPOLATE_BETWEEN(v0, v1, i, ftemp)\
|
|
|
508 |
cie_interpolate_between(v0, v1, i)
|
|
|
509 |
#else
|
|
|
510 |
float ftemp;
|
|
|
511 |
|
|
|
512 |
# define LOOKUP_INTERPOLATE_BETWEEN(v0, v1, i)\
|
|
|
513 |
((v0) + ((v1) - (v0)) *\
|
|
|
514 |
((ftemp = float_rshift(i, _cie_interpolate_bits)), ftemp - (int)ftemp))
|
|
|
515 |
#endif
|
|
|
516 |
|
|
|
517 |
/*
|
|
|
518 |
* Defining a macro for the entire component calculation would
|
|
|
519 |
* minimize source code, but it would make the result impossible
|
|
|
520 |
* to trace or debug. We use smaller macros instead, and run
|
|
|
521 |
* the usual risks associated with having 3 copies of the code.
|
|
|
522 |
* Note that pvec and pc are free variables in these macros.
|
|
|
523 |
*/
|
|
|
524 |
|
|
|
525 |
#define I_IN_RANGE(j, n)\
|
|
|
526 |
(pvec->n >= pc->interpolation_ranges[j].rmin &&\
|
|
|
527 |
pvec->n < pc->interpolation_ranges[j].rmax)
|
|
|
528 |
#define I_INDEX(j, n)\
|
|
|
529 |
LOOKUP_INDEX(pvec->n, &pc->caches[j], _cie_interpolate_bits)
|
|
|
530 |
#define I_ENTRY(i, j)\
|
|
|
531 |
&pc->caches[j].vecs.values[(int)cie_cached_rshift(i, _cie_interpolate_bits)]
|
|
|
532 |
#define I_ENTRY1(i, p)\
|
|
|
533 |
(i >= (gx_cie_cache_size - 1) << _cie_interpolate_bits ? p : p + 1)
|
|
|
534 |
|
|
|
535 |
if (I_IN_RANGE(0, u)) {
|
|
|
536 |
cie_cached_value i = I_INDEX(0, u);
|
|
|
537 |
const cie_cached_vector3 *p = I_ENTRY(i, 0);
|
|
|
538 |
const cie_cached_vector3 *p1 = I_ENTRY1(i, p);
|
|
|
539 |
|
|
|
540 |
if_debug0('C', "[c]Interpolating u.\n");
|
|
|
541 |
u = LOOKUP_INTERPOLATE_BETWEEN(p->u, p1->u, i);
|
|
|
542 |
v = LOOKUP_INTERPOLATE_BETWEEN(p->v, p1->v, i);
|
|
|
543 |
w = LOOKUP_INTERPOLATE_BETWEEN(p->w, p1->w, i);
|
|
|
544 |
} else {
|
|
|
545 |
const cie_cached_vector3 *p = LOOKUP_ENTRY(pvec->u, &pc->caches[0]);
|
|
|
546 |
|
|
|
547 |
if_debug0('C', "[c]Not interpolating u.\n");
|
|
|
548 |
u = p->u, v = p->v, w = p->w;
|
|
|
549 |
}
|
|
|
550 |
|
|
|
551 |
if (I_IN_RANGE(1, v)) {
|
|
|
552 |
cie_cached_value i = I_INDEX(1, v);
|
|
|
553 |
const cie_cached_vector3 *p = I_ENTRY(i, 1);
|
|
|
554 |
const cie_cached_vector3 *p1 = I_ENTRY1(i, p);
|
|
|
555 |
|
|
|
556 |
if_debug0('C', "[c]Interpolating v.\n");
|
|
|
557 |
u += LOOKUP_INTERPOLATE_BETWEEN(p->u, p1->u, i);
|
|
|
558 |
v += LOOKUP_INTERPOLATE_BETWEEN(p->v, p1->v, i);
|
|
|
559 |
w += LOOKUP_INTERPOLATE_BETWEEN(p->w, p1->w, i);
|
|
|
560 |
} else {
|
|
|
561 |
const cie_cached_vector3 *p = LOOKUP_ENTRY(pvec->v, &pc->caches[1]);
|
|
|
562 |
|
|
|
563 |
if_debug0('C', "[c]Not interpolating v.\n");
|
|
|
564 |
u += p->u, v += p->v, w += p->w;
|
|
|
565 |
}
|
|
|
566 |
|
|
|
567 |
if (I_IN_RANGE(2, w)) {
|
|
|
568 |
cie_cached_value i = I_INDEX(2, w);
|
|
|
569 |
const cie_cached_vector3 *p = I_ENTRY(i, 2);
|
|
|
570 |
const cie_cached_vector3 *p1 = I_ENTRY1(i, p);
|
|
|
571 |
|
|
|
572 |
if_debug0('C', "[c]Interpolating w.\n");
|
|
|
573 |
u += LOOKUP_INTERPOLATE_BETWEEN(p->u, p1->u, i);
|
|
|
574 |
v += LOOKUP_INTERPOLATE_BETWEEN(p->v, p1->v, i);
|
|
|
575 |
w += LOOKUP_INTERPOLATE_BETWEEN(p->w, p1->w, i);
|
|
|
576 |
} else {
|
|
|
577 |
const cie_cached_vector3 *p = LOOKUP_ENTRY(pvec->w, &pc->caches[2]);
|
|
|
578 |
|
|
|
579 |
if_debug0('C', "[c]Not interpolating w.\n");
|
|
|
580 |
u += p->u, v += p->v, w += p->w;
|
|
|
581 |
}
|
|
|
582 |
|
|
|
583 |
#undef I_IN_RANGE
|
|
|
584 |
#undef I_INDEX
|
|
|
585 |
#undef I_ENTRY
|
|
|
586 |
#undef I_ENTRY1
|
|
|
587 |
|
|
|
588 |
pvec->u = u;
|
|
|
589 |
pvec->v = v;
|
|
|
590 |
pvec->w = w;
|
|
|
591 |
|
|
|
592 |
#else /* no interpolation */
|
|
|
593 |
|
|
|
594 |
const cie_cached_vector3 *pu = LOOKUP_ENTRY(pvec->u, &pc->caches[0]);
|
|
|
595 |
const cie_cached_vector3 *pv = LOOKUP_ENTRY(pvec->v, &pc->caches[1]);
|
|
|
596 |
const cie_cached_vector3 *pw = LOOKUP_ENTRY(pvec->w, &pc->caches[2]);
|
|
|
597 |
|
|
|
598 |
if_debug0('C', "[c]Not interpolating.\n");
|
|
|
599 |
|
|
|
600 |
pvec->u = pu->u + pv->u + pw->u;
|
|
|
601 |
pvec->v = pu->v + pv->v + pw->v;
|
|
|
602 |
pvec->w = pu->w + pv->w + pw->w;
|
|
|
603 |
|
|
|
604 |
#endif /* (no) interpolation */
|
|
|
605 |
}
|