Subversion Repositories planix.SVN

Rev

Rev 2 | Blame | Compare with Previous | Last modification | View Log | RSS feed

#include "fconv.h"

static int quorem(Bigint *, Bigint *);

/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 *
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
 *
 * Modifications:
 *      1. Rather than iterating, we use a simple numeric overestimate
 *         to determine k = floor(log10(d)).  We scale relevant
 *         quantities using O(log2(k)) rather than O(k) multiplications.
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 *         try to generate digits strictly left to right.  Instead, we
 *         compute with fewer bits and propagate the carry if necessary
 *         when rounding the final digit up.  This is often faster.
 *      3. Under the assumption that input will be rounded nearest,
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 *         That is, we allow equality in stopping tests when the
 *         round-nearest rule will give the same floating-point value
 *         as would satisfaction of the stopping test with strict
 *         inequality.
 *      4. We remove common factors of powers of 2 from relevant
 *         quantities.
 *      5. When converting floating-point integers less than 1e16,
 *         we use floating-point arithmetic rather than resorting
 *         to multiple-precision integers.
 *      6. When asked to produce fewer than 15 digits, we first try
 *         to get by with floating-point arithmetic; we resort to
 *         multiple-precision integer arithmetic only if we cannot
 *         guarantee that the floating-point calculation has given
 *         the correctly rounded result.  For k requested digits and
 *         "uniformly" distributed input, the probability is
 *         something like 10^(k-15) that we must resort to the long
 *         calculation.
 */

 char *
_dtoa(double darg, int mode, int ndigits, int *decpt, int *sign, char **rve)
{
 /*     Arguments ndigits, decpt, sign are similar to those
        of ecvt and fcvt; trailing zeros are suppressed from
        the returned string.  If not null, *rve is set to point
        to the end of the return value.  If d is +-Infinity or NaN,
        then *decpt is set to 9999.

        mode:
                0 ==> shortest string that yields d when read in
                        and rounded to nearest.
                1 ==> like 0, but with Steele & White stopping rule;
                        e.g. with IEEE P754 arithmetic , mode 0 gives
                        1e23 whereas mode 1 gives 9.999999999999999e22.
                2 ==> max(1,ndigits) significant digits.  This gives a
                        return value similar to that of ecvt, except
                        that trailing zeros are suppressed.
                3 ==> through ndigits past the decimal point.  This
                        gives a return value similar to that from fcvt,
                        except that trailing zeros are suppressed, and
                        ndigits can be negative.
                4-9 should give the same return values as 2-3, i.e.,
                        4 <= mode <= 9 ==> same return as mode
                        2 + (mode & 1).  These modes are mainly for
                        debugging; often they run slower but sometimes
                        faster than modes 2-3.
                4,5,8,9 ==> left-to-right digit generation.
                6-9 ==> don't try fast floating-point estimate
                        (if applicable).

                Values of mode other than 0-9 are treated as mode 0.

                Sufficient space is allocated to the return value
                to hold the suppressed trailing zeros.
        */

        int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
                j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
                spec_case, try_quick;
        long L;
#ifndef Sudden_Underflow
        int denorm;
        unsigned long x;
#endif
        Bigint *b, *b1, *delta, *mlo, *mhi, *S;
        double ds;
        Dul d2, eps;
        char *s, *s0;
        static Bigint *result;
        static int result_k;
        Dul d;

        d.d = darg;
        if (result) {
                result->k = result_k;
                result->maxwds = 1 << result_k;
                Bfree(result);
                result = 0;
                }

        if (word0(d) & Sign_bit) {
                /* set sign for everything, including 0's and NaNs */
                *sign = 1;
                word0(d) &= ~Sign_bit;  /* clear sign bit */
                }
        else
                *sign = 0;

#if defined(IEEE_Arith) + defined(VAX)
#ifdef IEEE_Arith
        if ((word0(d) & Exp_mask) == Exp_mask)
#else
        if (word0(d)  == 0x8000)
#endif
                {
                /* Infinity or NaN */
                *decpt = 9999;
                s =
#ifdef IEEE_Arith
                        !word1(d) && !(word0(d) & 0xfffff) ? "Infinity" :
#endif
                                "NaN";
                if (rve)
                        *rve =
#ifdef IEEE_Arith
                                s[3] ? s + 8 :
#endif
                                                s + 3;
                return s;
                }
#endif
#ifdef IBM
        d.d += 0; /* normalize */
#endif
        if (!d.d) {
                *decpt = 1;
                s = "0";
                if (rve)
                        *rve = s + 1;
                return s;
                }

        b = d2b(d.d, &be, &bbits);
#ifdef Sudden_Underflow
        i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
#else
        if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) {
#endif
                d2.d = d.d;
                word0(d2) &= Frac_mask1;
                word0(d2) |= Exp_11;
#ifdef IBM
                if (j = 11 - hi0bits(word0(d2) & Frac_mask))
                        d2.d /= 1 << j;
#endif

                /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
                 * log10(x)      =  log(x) / log(10)
                 *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
                 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
                 *
                 * This suggests computing an approximation k to log10(d) by
                 *
                 * k = (i - Bias)*0.301029995663981
                 *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
                 *
                 * We want k to be too large rather than too small.
                 * The error in the first-order Taylor series approximation
                 * is in our favor, so we just round up the constant enough
                 * to compensate for any error in the multiplication of
                 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
                 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
                 * adding 1e-13 to the constant term more than suffices.
                 * Hence we adjust the constant term to 0.1760912590558.
                 * (We could get a more accurate k by invoking log10,
                 *  but this is probably not worthwhile.)
                 */

                i -= Bias;
#ifdef IBM
                i <<= 2;
                i += j;
#endif
#ifndef Sudden_Underflow
                denorm = 0;
                }
        else {
                /* d is denormalized */

                i = bbits + be + (Bias + (P-1) - 1);
                x = i > 32  ? word0(d) << 64 - i | word1(d) >> i - 32
                            : word1(d) << 32 - i;
                d2.d = x;
                word0(d2) -= 31*Exp_msk1; /* adjust exponent */
                i -= (Bias + (P-1) - 1) + 1;
                denorm = 1;
                }
#endif
        ds = (d2.d-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
        k = floor(ds);
        k_check = 1;
        if (k >= 0 && k <= Ten_pmax) {
                if (d.d < tens[k])
                        k--;
                k_check = 0;
                }
        j = bbits - i - 1;
        if (j >= 0) {
                b2 = 0;
                s2 = j;
                }
        else {
                b2 = -j;
                s2 = 0;
                }
        if (k >= 0) {
                b5 = 0;
                s5 = k;
                s2 += k;
                }
        else {
                b2 -= k;
                b5 = -k;
                s5 = 0;
                }
        if (mode < 0 || mode > 9)
                mode = 0;
        try_quick = 1;
        if (mode > 5) {
                mode -= 4;
                try_quick = 0;
                }
        leftright = 1;
        switch(mode) {
                case 0:
                case 1:
                        ilim = ilim1 = -1;
                        i = 18;
                        ndigits = 0;
                        break;
                case 2:
                        leftright = 0;
                        /* no break */
                case 4:
                        if (ndigits <= 0)
                                ndigits = 1;
                        ilim = ilim1 = i = ndigits;
                        break;
                case 3:
                        leftright = 0;
                        /* no break */
                case 5:
                        i = ndigits + k + 1;
                        ilim = i;
                        ilim1 = i - 1;
                        if (i <= 0)
                                i = 1;
                }
        j = sizeof(unsigned long);
        for(result_k = 0; sizeof(Bigint) - sizeof(unsigned long) + j <= i;
                j <<= 1) result_k++;
        result = Balloc(result_k);
        s = s0 = (char *)result;

        if (ilim >= 0 && ilim <= Quick_max && try_quick) {
        
                /* Try to get by with floating-point arithmetic. */
        
                i = 0;
                d2.d = d.d;
                k0 = k;
                ilim0 = ilim;
                ieps = 2; /* conservative */
                if (k > 0) {
                        ds = tens[k&0xf];
                        j = k >> 4;
                        if (j & Bletch) {
                                /* prevent overflows */
                                j &= Bletch - 1;
                                d.d /= bigtens[n_bigtens-1];
                                ieps++;
                                }
                        for(; j; j >>= 1, i++)
                                if (j & 1) {
                                        ieps++;
                                        ds *= bigtens[i];
                                        }
                        d.d /= ds;
                        }
                else if (j1 = -k) {
                        d.d *= tens[j1 & 0xf];
                        for(j = j1 >> 4; j; j >>= 1, i++)
                                if (j & 1) {
                                        ieps++;
                                        d.d *= bigtens[i];
                                        }
                        }
                if (k_check && d.d < 1. && ilim > 0) {
                        if (ilim1 <= 0)
                                goto fast_failed;
                        ilim = ilim1;
                        k--;
                        d.d *= 10.;
                        ieps++;
                        }
                eps.d = ieps*d.d + 7.;
                word0(eps) -= (P-1)*Exp_msk1;
                if (ilim == 0) {
                        S = mhi = 0;
                        d.d -= 5.;
                        if (d.d > eps.d)
                                goto one_digit;
                        if (d.d < -eps.d)
                                goto no_digits;
                        goto fast_failed;
                        }
#ifndef No_leftright
                if (leftright) {
                        /* Use Steele & White method of only
                         * generating digits needed.
                         */
                        eps.d = 0.5/tens[ilim-1] - eps.d;
                        for(i = 0;;) {
                                L = floor(d.d);
                                d.d -= L;
                                *s++ = '0' + (int)L;
                                if (d.d < eps.d)
                                        goto ret1;
                                if (1. - d.d < eps.d)
                                        goto bump_up;
                                if (++i >= ilim)
                                        break;
                                eps.d *= 10.;
                                d.d *= 10.;
                                }
                        }
                else {
#endif
                        /* Generate ilim digits, then fix them up. */
                        eps.d *= tens[ilim-1];
                        for(i = 1;; i++, d.d *= 10.) {
                                L = floor(d.d);
                                d.d -= L;
                                *s++ = '0' + (int)L;
                                if (i == ilim) {
                                        if (d.d > 0.5 + eps.d)
                                                goto bump_up;
                                        else if (d.d < 0.5 - eps.d) {
                                                while(*--s == '0');
                                                s++;
                                                goto ret1;
                                                }
                                        break;
                                        }
                                }
#ifndef No_leftright
                        }
#endif
 fast_failed:
                s = s0;
                d.d = d2.d;
                k = k0;
                ilim = ilim0;
                }

        /* Do we have a "small" integer? */

        if (be >= 0 && k <= Int_max) {
                /* Yes. */
                ds = tens[k];
                if (ndigits < 0 && ilim <= 0) {
                        S = mhi = 0;
                        if (ilim < 0 || d.d <= 5*ds)
                                goto no_digits;
                        goto one_digit;
                        }
                for(i = 1;; i++) {
                        L = floor(d.d / ds);
                        d.d -= L*ds;
#ifdef Check_FLT_ROUNDS
                        /* If FLT_ROUNDS == 2, L will usually be high by 1 */
                        if (d.d < 0) {
                                L--;
                                d.d += ds;
                                }
#endif
                        *s++ = '0' + (int)L;
                        if (i == ilim) {
                                d.d += d.d;
                                if (d.d > ds || d.d == ds && L & 1) {
 bump_up:
                                        while(*--s == '9')
                                                if (s == s0) {
                                                        k++;
                                                        *s = '0';
                                                        break;
                                                        }
                                        ++*s++;
                                        }
                                break;
                                }
                        d.d *= 10.;
                        if (d.d == 0.)
                                break;
                        }
                goto ret1;
                }

        m2 = b2;
        m5 = b5;
        mhi = mlo = 0;
        if (leftright) {
                if (mode < 2) {
                        i =
#ifndef Sudden_Underflow
                                denorm ? be + (Bias + (P-1) - 1 + 1) :
#endif
#ifdef IBM
                                1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
#else
                                1 + P - bbits;
#endif
                        }
                else {
                        j = ilim - 1;
                        if (m5 >= j)
                                m5 -= j;
                        else {
                                s5 += j -= m5;
                                b5 += j;
                                m5 = 0;
                                }
                        if ((i = ilim) < 0) {
                                m2 -= i;
                                i = 0;
                                }
                        }
                b2 += i;
                s2 += i;
                mhi = i2b(1);
                }
        if (m2 > 0 && s2 > 0) {
                i = m2 < s2 ? m2 : s2;
                b2 -= i;
                m2 -= i;
                s2 -= i;
                }
        if (b5 > 0) {
                if (leftright) {
                        if (m5 > 0) {
                                mhi = pow5mult(mhi, m5);
                                b1 = mult(mhi, b);
                                Bfree(b);
                                b = b1;
                                }
                        if (j = b5 - m5)
                                b = pow5mult(b, j);
                        }
                else
                        b = pow5mult(b, b5);
                }
        S = i2b(1);
        if (s5 > 0)
                S = pow5mult(S, s5);

        /* Check for special case that d is a normalized power of 2. */

        if (mode < 2) {
                if (!word1(d) && !(word0(d) & Bndry_mask)
#ifndef Sudden_Underflow
                 && word0(d) & Exp_mask
#endif
                                ) {
                        /* The special case */
                        b2 += Log2P;
                        s2 += Log2P;
                        spec_case = 1;
                        }
                else
                        spec_case = 0;
                }

        /* Arrange for convenient computation of quotients:
         * shift left if necessary so divisor has 4 leading 0 bits.
         *
         * Perhaps we should just compute leading 28 bits of S once
         * and for all and pass them and a shift to quorem, so it
         * can do shifts and ors to compute the numerator for q.
         */
#ifdef Pack_32
        if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)
                i = 32 - i;
#else
        if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
                i = 16 - i;
#endif
        if (i > 4) {
                i -= 4;
                b2 += i;
                m2 += i;
                s2 += i;
                }
        else if (i < 4) {
                i += 28;
                b2 += i;
                m2 += i;
                s2 += i;
                }
        if (b2 > 0)
                b = lshift(b, b2);
        if (s2 > 0)
                S = lshift(S, s2);
        if (k_check) {
                if (cmp(b,S) < 0) {
                        k--;
                        b = multadd(b, 10, 0);  /* we botched the k estimate */
                        if (leftright)
                                mhi = multadd(mhi, 10, 0);
                        ilim = ilim1;
                        }
                }
        if (ilim <= 0 && mode > 2) {
                if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
                        /* no digits, fcvt style */
 no_digits:
                        k = -1 - ndigits;
                        goto ret;
                        }
 one_digit:
                *s++ = '1';
                k++;
                goto ret;
                }
        if (leftright) {
                if (m2 > 0)
                        mhi = lshift(mhi, m2);

                /* Compute mlo -- check for special case
                 * that d is a normalized power of 2.
                 */

                mlo = mhi;
                if (spec_case) {
                        mhi = Balloc(mhi->k);
                        Bcopy(mhi, mlo);
                        mhi = lshift(mhi, Log2P);
                        }

                for(i = 1;;i++) {
                        dig = quorem(b,S) + '0';
                        /* Do we yet have the shortest decimal string
                         * that will round to d?
                         */
                        j = cmp(b, mlo);
                        delta = diff(S, mhi);
                        j1 = delta->sign ? 1 : cmp(b, delta);
                        Bfree(delta);
#ifndef ROUND_BIASED
                        if (j1 == 0 && !mode && !(word1(d) & 1)) {
                                if (dig == '9')
                                        goto round_9_up;
                                if (j > 0)
                                        dig++;
                                *s++ = dig;
                                goto ret;
                                }
#endif
                        if (j < 0 || j == 0 && !mode
#ifndef ROUND_BIASED
                                                        && !(word1(d) & 1)
#endif
                                        ) {
                                if (j1 > 0) {
                                        b = lshift(b, 1);
                                        j1 = cmp(b, S);
                                        if ((j1 > 0 || j1 == 0 && dig & 1)
                                        && dig++ == '9')
                                                goto round_9_up;
                                        }
                                *s++ = dig;
                                goto ret;
                                }
                        if (j1 > 0) {
                                if (dig == '9') { /* possible if i == 1 */
 round_9_up:
                                        *s++ = '9';
                                        goto roundoff;
                                        }
                                *s++ = dig + 1;
                                goto ret;
                                }
                        *s++ = dig;
                        if (i == ilim)
                                break;
                        b = multadd(b, 10, 0);
                        if (mlo == mhi)
                                mlo = mhi = multadd(mhi, 10, 0);
                        else {
                                mlo = multadd(mlo, 10, 0);
                                mhi = multadd(mhi, 10, 0);
                                }
                        }
                }
        else
                for(i = 1;; i++) {
                        *s++ = dig = quorem(b,S) + '0';
                        if (i >= ilim)
                                break;
                        b = multadd(b, 10, 0);
                        }

        /* Round off last digit */

        b = lshift(b, 1);
        j = cmp(b, S);
        if (j > 0 || j == 0 && dig & 1) {
 roundoff:
                while(*--s == '9')
                        if (s == s0) {
                                k++;
                                *s++ = '1';
                                goto ret;
                                }
                ++*s++;
                }
        else {
                while(*--s == '0');
                s++;
                }
 ret:
        Bfree(S);
        if (mhi) {
                if (mlo && mlo != mhi)
                        Bfree(mlo);
                Bfree(mhi);
                }
 ret1:
        Bfree(b);
        *s = 0;
        *decpt = k + 1;
        if (rve)
                *rve = s;
        return s0;
        }

 static int
quorem(Bigint *b, Bigint *S)
{
        int n;
        long borrow, y;
        unsigned long carry, q, ys;
        unsigned long *bx, *bxe, *sx, *sxe;
#ifdef Pack_32
        long z;
        unsigned long si, zs;
#endif

        n = S->wds;
#ifdef DEBUG
        /*debug*/ if (b->wds > n)
        /*debug*/       Bug("oversize b in quorem");
#endif
        if (b->wds < n)
                return 0;
        sx = S->x;
        sxe = sx + --n;
        bx = b->x;
        bxe = bx + n;
        q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
#ifdef DEBUG
        /*debug*/ if (q > 9)
        /*debug*/       Bug("oversized quotient in quorem");
#endif
        if (q) {
                borrow = 0;
                carry = 0;
                do {
#ifdef Pack_32
                        si = *sx++;
                        ys = (si & 0xffff) * q + carry;
                        zs = (si >> 16) * q + (ys >> 16);
                        carry = zs >> 16;
                        y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
                        borrow = y >> 16;
                        Sign_Extend(borrow, y);
                        z = (*bx >> 16) - (zs & 0xffff) + borrow;
                        borrow = z >> 16;
                        Sign_Extend(borrow, z);
                        Storeinc(bx, z, y);
#else
                        ys = *sx++ * q + carry;
                        carry = ys >> 16;
                        y = *bx - (ys & 0xffff) + borrow;
                        borrow = y >> 16;
                        Sign_Extend(borrow, y);
                        *bx++ = y & 0xffff;
#endif
                        }
                        while(sx <= sxe);
                if (!*bxe) {
                        bx = b->x;
                        while(--bxe > bx && !*bxe)
                                --n;
                        b->wds = n;
                        }
                }
        if (cmp(b, S) >= 0) {
                q++;
                borrow = 0;
                carry = 0;
                bx = b->x;
                sx = S->x;
                do {
#ifdef Pack_32
                        si = *sx++;
                        ys = (si & 0xffff) + carry;
                        zs = (si >> 16) + (ys >> 16);
                        carry = zs >> 16;
                        y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
                        borrow = y >> 16;
                        Sign_Extend(borrow, y);
                        z = (*bx >> 16) - (zs & 0xffff) + borrow;
                        borrow = z >> 16;
                        Sign_Extend(borrow, z);
                        Storeinc(bx, z, y);
#else
                        ys = *sx++ + carry;
                        carry = ys >> 16;
                        y = *bx - (ys & 0xffff) + borrow;
                        borrow = y >> 16;
                        Sign_Extend(borrow, y);
                        *bx++ = y & 0xffff;
#endif
                        }
                        while(sx <= sxe);
                bx = b->x;
                bxe = bx + n;
                if (!*bxe) {
                        while(--bxe > bx && !*bxe)
                                --n;
                        b->wds = n;
                        }
                }
        return q;
        }